android_system_core/fastboot/device/flashing.cpp

209 lines
7.1 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flashing.h"
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <algorithm>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include <ext4_utils/ext4_utils.h>
#include <fs_mgr_overlayfs.h>
#include <fstab/fstab.h>
#include <liblp/builder.h>
#include <liblp/liblp.h>
#include <libsnapshot/snapshot.h>
#include <sparse/sparse.h>
#include "fastboot_device.h"
#include "utility.h"
using namespace android::fs_mgr;
using namespace std::literals;
namespace {
constexpr uint32_t SPARSE_HEADER_MAGIC = 0xed26ff3a;
void WipeOverlayfsForPartition(FastbootDevice* device, const std::string& partition_name) {
// May be called, in the case of sparse data, multiple times so cache/skip.
static std::set<std::string> wiped;
if (wiped.find(partition_name) != wiped.end()) return;
wiped.insert(partition_name);
// Following appears to have a first time 2% impact on flashing speeds.
// Convert partition_name to a validated mount point and wipe.
Fstab fstab;
ReadDefaultFstab(&fstab);
std::optional<AutoMountMetadata> mount_metadata;
for (const auto& entry : fstab) {
auto partition = android::base::Basename(entry.mount_point);
if ("/" == entry.mount_point) {
partition = "system";
}
if ((partition + device->GetCurrentSlot()) == partition_name) {
mount_metadata.emplace();
fs_mgr_overlayfs_teardown(entry.mount_point.c_str());
}
}
}
} // namespace
int FlashRawDataChunk(int fd, const char* data, size_t len) {
size_t ret = 0;
while (ret < len) {
int this_len = std::min(static_cast<size_t>(1048576UL * 8), len - ret);
int this_ret = write(fd, data, this_len);
if (this_ret < 0) {
PLOG(ERROR) << "Failed to flash data of len " << len;
return -1;
}
data += this_ret;
ret += this_ret;
}
return 0;
}
int FlashRawData(int fd, const std::vector<char>& downloaded_data) {
int ret = FlashRawDataChunk(fd, downloaded_data.data(), downloaded_data.size());
if (ret < 0) {
return -errno;
}
return ret;
}
int WriteCallback(void* priv, const void* data, size_t len) {
int fd = reinterpret_cast<long long>(priv);
if (!data) {
return lseek64(fd, len, SEEK_CUR) >= 0 ? 0 : -errno;
}
return FlashRawDataChunk(fd, reinterpret_cast<const char*>(data), len);
}
int FlashSparseData(int fd, std::vector<char>& downloaded_data) {
struct sparse_file* file = sparse_file_import_buf(downloaded_data.data(), true, false);
if (!file) {
return -ENOENT;
}
return sparse_file_callback(file, false, false, WriteCallback, reinterpret_cast<void*>(fd));
}
int FlashBlockDevice(int fd, std::vector<char>& downloaded_data) {
lseek64(fd, 0, SEEK_SET);
if (downloaded_data.size() >= sizeof(SPARSE_HEADER_MAGIC) &&
*reinterpret_cast<uint32_t*>(downloaded_data.data()) == SPARSE_HEADER_MAGIC) {
return FlashSparseData(fd, downloaded_data);
} else {
return FlashRawData(fd, downloaded_data);
}
}
int Flash(FastbootDevice* device, const std::string& partition_name) {
PartitionHandle handle;
if (!OpenPartition(device, partition_name, &handle)) {
return -ENOENT;
}
std::vector<char> data = std::move(device->download_data());
if (data.size() == 0) {
return -EINVAL;
} else if (data.size() > get_block_device_size(handle.fd())) {
return -EOVERFLOW;
}
WipeOverlayfsForPartition(device, partition_name);
return FlashBlockDevice(handle.fd(), data);
}
bool UpdateSuper(FastbootDevice* device, const std::string& super_name, bool wipe) {
std::vector<char> data = std::move(device->download_data());
if (data.empty()) {
return device->WriteFail("No data available");
}
std::unique_ptr<LpMetadata> new_metadata = ReadFromImageBlob(data.data(), data.size());
if (!new_metadata) {
return device->WriteFail("Data is not a valid logical partition metadata image");
}
if (!FindPhysicalPartition(super_name)) {
return device->WriteFail("Cannot find " + super_name +
", build may be missing broken or missing boot_devices");
}
// If we are unable to read the existing metadata, then the super partition
// is corrupt. In this case we reflash the whole thing using the provided
// image.
std::string slot_suffix = device->GetCurrentSlot();
uint32_t slot_number = SlotNumberForSlotSuffix(slot_suffix);
std::unique_ptr<LpMetadata> old_metadata = ReadMetadata(super_name, slot_number);
if (wipe || !old_metadata) {
if (!FlashPartitionTable(super_name, *new_metadata.get())) {
return device->WriteFail("Unable to flash new partition table");
}
fs_mgr_overlayfs_teardown();
return device->WriteOkay("Successfully flashed partition table");
}
std::set<std::string> partitions_to_keep;
for (const auto& partition : old_metadata->partitions) {
// Preserve partitions in the other slot, but not the current slot.
std::string partition_name = GetPartitionName(partition);
if (!slot_suffix.empty() && GetPartitionSlotSuffix(partition_name) == slot_suffix) {
continue;
}
std::string group_name = GetPartitionGroupName(old_metadata->groups[partition.group_index]);
// Skip partitions in the COW group
if (group_name == android::snapshot::kCowGroupName) {
continue;
}
partitions_to_keep.emplace(partition_name);
}
// Do not preserve the scratch partition.
partitions_to_keep.erase("scratch");
if (!partitions_to_keep.empty()) {
std::unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(*new_metadata.get());
if (!builder->ImportPartitions(*old_metadata.get(), partitions_to_keep)) {
return device->WriteFail(
"Old partitions are not compatible with the new super layout; wipe needed");
}
new_metadata = builder->Export();
if (!new_metadata) {
return device->WriteFail("Unable to build new partition table; wipe needed");
}
}
// Write the new table to every metadata slot.
if (!UpdateAllPartitionMetadata(device, super_name, *new_metadata.get())) {
return device->WriteFail("Unable to write new partition table");
}
fs_mgr_overlayfs_teardown();
return device->WriteOkay("Successfully updated partition table");
}