/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "flashing.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fastboot_device.h" #include "utility.h" using namespace android::fs_mgr; using namespace std::literals; namespace { constexpr uint32_t SPARSE_HEADER_MAGIC = 0xed26ff3a; void WipeOverlayfsForPartition(FastbootDevice* device, const std::string& partition_name) { // May be called, in the case of sparse data, multiple times so cache/skip. static std::set wiped; if (wiped.find(partition_name) != wiped.end()) return; wiped.insert(partition_name); // Following appears to have a first time 2% impact on flashing speeds. // Convert partition_name to a validated mount point and wipe. Fstab fstab; ReadDefaultFstab(&fstab); std::optional mount_metadata; for (const auto& entry : fstab) { auto partition = android::base::Basename(entry.mount_point); if ("/" == entry.mount_point) { partition = "system"; } if ((partition + device->GetCurrentSlot()) == partition_name) { mount_metadata.emplace(); fs_mgr_overlayfs_teardown(entry.mount_point.c_str()); } } } } // namespace int FlashRawDataChunk(int fd, const char* data, size_t len) { size_t ret = 0; while (ret < len) { int this_len = std::min(static_cast(1048576UL * 8), len - ret); int this_ret = write(fd, data, this_len); if (this_ret < 0) { PLOG(ERROR) << "Failed to flash data of len " << len; return -1; } data += this_ret; ret += this_ret; } return 0; } int FlashRawData(int fd, const std::vector& downloaded_data) { int ret = FlashRawDataChunk(fd, downloaded_data.data(), downloaded_data.size()); if (ret < 0) { return -errno; } return ret; } int WriteCallback(void* priv, const void* data, size_t len) { int fd = reinterpret_cast(priv); if (!data) { return lseek64(fd, len, SEEK_CUR) >= 0 ? 0 : -errno; } return FlashRawDataChunk(fd, reinterpret_cast(data), len); } int FlashSparseData(int fd, std::vector& downloaded_data) { struct sparse_file* file = sparse_file_import_buf(downloaded_data.data(), true, false); if (!file) { return -ENOENT; } return sparse_file_callback(file, false, false, WriteCallback, reinterpret_cast(fd)); } int FlashBlockDevice(int fd, std::vector& downloaded_data) { lseek64(fd, 0, SEEK_SET); if (downloaded_data.size() >= sizeof(SPARSE_HEADER_MAGIC) && *reinterpret_cast(downloaded_data.data()) == SPARSE_HEADER_MAGIC) { return FlashSparseData(fd, downloaded_data); } else { return FlashRawData(fd, downloaded_data); } } int Flash(FastbootDevice* device, const std::string& partition_name) { PartitionHandle handle; if (!OpenPartition(device, partition_name, &handle)) { return -ENOENT; } std::vector data = std::move(device->download_data()); if (data.size() == 0) { return -EINVAL; } else if (data.size() > get_block_device_size(handle.fd())) { return -EOVERFLOW; } WipeOverlayfsForPartition(device, partition_name); return FlashBlockDevice(handle.fd(), data); } bool UpdateSuper(FastbootDevice* device, const std::string& super_name, bool wipe) { std::vector data = std::move(device->download_data()); if (data.empty()) { return device->WriteFail("No data available"); } std::unique_ptr new_metadata = ReadFromImageBlob(data.data(), data.size()); if (!new_metadata) { return device->WriteFail("Data is not a valid logical partition metadata image"); } if (!FindPhysicalPartition(super_name)) { return device->WriteFail("Cannot find " + super_name + ", build may be missing broken or missing boot_devices"); } // If we are unable to read the existing metadata, then the super partition // is corrupt. In this case we reflash the whole thing using the provided // image. std::string slot_suffix = device->GetCurrentSlot(); uint32_t slot_number = SlotNumberForSlotSuffix(slot_suffix); std::unique_ptr old_metadata = ReadMetadata(super_name, slot_number); if (wipe || !old_metadata) { if (!FlashPartitionTable(super_name, *new_metadata.get())) { return device->WriteFail("Unable to flash new partition table"); } fs_mgr_overlayfs_teardown(); return device->WriteOkay("Successfully flashed partition table"); } std::set partitions_to_keep; for (const auto& partition : old_metadata->partitions) { // Preserve partitions in the other slot, but not the current slot. std::string partition_name = GetPartitionName(partition); if (!slot_suffix.empty() && GetPartitionSlotSuffix(partition_name) == slot_suffix) { continue; } std::string group_name = GetPartitionGroupName(old_metadata->groups[partition.group_index]); // Skip partitions in the COW group if (group_name == android::snapshot::kCowGroupName) { continue; } partitions_to_keep.emplace(partition_name); } // Do not preserve the scratch partition. partitions_to_keep.erase("scratch"); if (!partitions_to_keep.empty()) { std::unique_ptr builder = MetadataBuilder::New(*new_metadata.get()); if (!builder->ImportPartitions(*old_metadata.get(), partitions_to_keep)) { return device->WriteFail( "Old partitions are not compatible with the new super layout; wipe needed"); } new_metadata = builder->Export(); if (!new_metadata) { return device->WriteFail("Unable to build new partition table; wipe needed"); } } // Write the new table to every metadata slot. if (!UpdateAllPartitionMetadata(device, super_name, *new_metadata.get())) { return device->WriteFail("Unable to write new partition table"); } fs_mgr_overlayfs_teardown(); return device->WriteOkay("Successfully updated partition table"); }