dragonheart_kernel_oneplus_.../drivers/scsi/qlogicisp.c

1936 lines
53 KiB
C

/*
* QLogic ISP1020 Intelligent SCSI Processor Driver (PCI)
* Written by Erik H. Moe, ehm@cris.com
* Copyright 1995, Erik H. Moe
* Copyright 1996, 1997 Michael A. Griffith <grif@acm.org>
* Copyright 2000, Jayson C. Vantuyl <vantuyl@csc.smsu.edu>
* and Bryon W. Roche <bryon@csc.smsu.edu>
*
* 64-bit addressing added by Kanoj Sarcar <kanoj@sgi.com>
* and Leo Dagum <dagum@sgi.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/blkdev.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/unistd.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
/*
* With the qlogic interface, every queue slot can hold a SCSI
* command with up to 4 scatter/gather entries. If we need more
* than 4 entries, continuation entries can be used that hold
* another 7 entries each. Unlike for other drivers, this means
* that the maximum number of scatter/gather entries we can
* support at any given time is a function of the number of queue
* slots available. That is, host->can_queue and host->sg_tablesize
* are dynamic and _not_ independent. This all works fine because
* requests are queued serially and the scatter/gather limit is
* determined for each queue request anew.
*/
#define QLOGICISP_REQ_QUEUE_LEN 63 /* must be power of two - 1 */
#define QLOGICISP_MAX_SG(ql) (4 + ((ql) > 0) ? 7*((ql) - 1) : 0)
/* Configuration section *****************************************************/
/* Set the following macro to 1 to reload the ISP1020's firmware. This is
the latest firmware provided by QLogic. This may be an earlier/later
revision than supplied by your board. */
#define RELOAD_FIRMWARE 1
/* Set the following macro to 1 to reload the ISP1020's defaults from nvram.
If you are not sure of your settings, leave this alone, the driver will
use a set of 'safe' defaults */
#define USE_NVRAM_DEFAULTS 0
/* Macros used for debugging */
#define DEBUG_ISP1020 0
#define DEBUG_ISP1020_INTR 0
#define DEBUG_ISP1020_SETUP 0
#define TRACE_ISP 0
#define DEFAULT_LOOP_COUNT 1000000
/* End Configuration section *************************************************/
#include <linux/module.h>
#if TRACE_ISP
# define TRACE_BUF_LEN (32*1024)
struct {
u_long next;
struct {
u_long time;
u_int index;
u_int addr;
u_char * name;
} buf[TRACE_BUF_LEN];
} trace;
#define TRACE(w, i, a) \
{ \
unsigned long flags; \
\
trace.buf[trace.next].name = (w); \
trace.buf[trace.next].time = jiffies; \
trace.buf[trace.next].index = (i); \
trace.buf[trace.next].addr = (long) (a); \
trace.next = (trace.next + 1) & (TRACE_BUF_LEN - 1); \
}
#else
# define TRACE(w, i, a)
#endif
#if DEBUG_ISP1020
#define ENTER(x) printk("isp1020 : entering %s()\n", x);
#define LEAVE(x) printk("isp1020 : leaving %s()\n", x);
#define DEBUG(x) x
#else
#define ENTER(x)
#define LEAVE(x)
#define DEBUG(x)
#endif /* DEBUG_ISP1020 */
#if DEBUG_ISP1020_INTR
#define ENTER_INTR(x) printk("isp1020 : entering %s()\n", x);
#define LEAVE_INTR(x) printk("isp1020 : leaving %s()\n", x);
#define DEBUG_INTR(x) x
#else
#define ENTER_INTR(x)
#define LEAVE_INTR(x)
#define DEBUG_INTR(x)
#endif /* DEBUG ISP1020_INTR */
#define ISP1020_REV_ID 1
#define MAX_TARGETS 16
#define MAX_LUNS 8
/* host configuration and control registers */
#define HOST_HCCR 0xc0 /* host command and control */
/* pci bus interface registers */
#define PCI_ID_LOW 0x00 /* vendor id */
#define PCI_ID_HIGH 0x02 /* device id */
#define ISP_CFG0 0x04 /* configuration register #0 */
#define ISP_CFG0_HWMSK 0x000f /* Hardware revision mask */
#define ISP_CFG0_1020 0x0001 /* ISP1020 */
#define ISP_CFG0_1020A 0x0002 /* ISP1020A */
#define ISP_CFG0_1040 0x0003 /* ISP1040 */
#define ISP_CFG0_1040A 0x0004 /* ISP1040A */
#define ISP_CFG0_1040B 0x0005 /* ISP1040B */
#define ISP_CFG0_1040C 0x0006 /* ISP1040C */
#define ISP_CFG1 0x06 /* configuration register #1 */
#define ISP_CFG1_F128 0x0040 /* 128-byte FIFO threshold */
#define ISP_CFG1_F64 0x0030 /* 128-byte FIFO threshold */
#define ISP_CFG1_F32 0x0020 /* 128-byte FIFO threshold */
#define ISP_CFG1_F16 0x0010 /* 128-byte FIFO threshold */
#define ISP_CFG1_BENAB 0x0004 /* Global Bus burst enable */
#define ISP_CFG1_SXP 0x0001 /* SXP register select */
#define PCI_INTF_CTL 0x08 /* pci interface control */
#define PCI_INTF_STS 0x0a /* pci interface status */
#define PCI_SEMAPHORE 0x0c /* pci semaphore */
#define PCI_NVRAM 0x0e /* pci nvram interface */
#define CDMA_CONF 0x20 /* Command DMA Config */
#define DDMA_CONF 0x40 /* Data DMA Config */
#define DMA_CONF_SENAB 0x0008 /* SXP to DMA Data enable */
#define DMA_CONF_RIRQ 0x0004 /* RISC interrupt enable */
#define DMA_CONF_BENAB 0x0002 /* Bus burst enable */
#define DMA_CONF_DIR 0x0001 /* DMA direction (0=fifo->host 1=host->fifo) */
/* mailbox registers */
#define MBOX0 0x70 /* mailbox 0 */
#define MBOX1 0x72 /* mailbox 1 */
#define MBOX2 0x74 /* mailbox 2 */
#define MBOX3 0x76 /* mailbox 3 */
#define MBOX4 0x78 /* mailbox 4 */
#define MBOX5 0x7a /* mailbox 5 */
#define MBOX6 0x7c /* mailbox 6 */
#define MBOX7 0x7e /* mailbox 7 */
/* mailbox command complete status codes */
#define MBOX_COMMAND_COMPLETE 0x4000
#define INVALID_COMMAND 0x4001
#define HOST_INTERFACE_ERROR 0x4002
#define TEST_FAILED 0x4003
#define COMMAND_ERROR 0x4005
#define COMMAND_PARAM_ERROR 0x4006
/* async event status codes */
#define ASYNC_SCSI_BUS_RESET 0x8001
#define SYSTEM_ERROR 0x8002
#define REQUEST_TRANSFER_ERROR 0x8003
#define RESPONSE_TRANSFER_ERROR 0x8004
#define REQUEST_QUEUE_WAKEUP 0x8005
#define EXECUTION_TIMEOUT_RESET 0x8006
#ifdef CONFIG_QL_ISP_A64
#define IOCB_SEGS 2
#define CONTINUATION_SEGS 5
#define MAX_CONTINUATION_ENTRIES 254
#else
#define IOCB_SEGS 4
#define CONTINUATION_SEGS 7
#endif /* CONFIG_QL_ISP_A64 */
struct Entry_header {
u_char entry_type;
u_char entry_cnt;
u_char sys_def_1;
u_char flags;
};
/* entry header type commands */
#ifdef CONFIG_QL_ISP_A64
#define ENTRY_COMMAND 9
#define ENTRY_CONTINUATION 0xa
#else
#define ENTRY_COMMAND 1
#define ENTRY_CONTINUATION 2
#endif /* CONFIG_QL_ISP_A64 */
#define ENTRY_STATUS 3
#define ENTRY_MARKER 4
#define ENTRY_EXTENDED_COMMAND 5
/* entry header flag definitions */
#define EFLAG_CONTINUATION 1
#define EFLAG_BUSY 2
#define EFLAG_BAD_HEADER 4
#define EFLAG_BAD_PAYLOAD 8
struct dataseg {
u_int d_base;
#ifdef CONFIG_QL_ISP_A64
u_int d_base_hi;
#endif
u_int d_count;
};
struct Command_Entry {
struct Entry_header hdr;
u_int handle;
u_char target_lun;
u_char target_id;
u_short cdb_length;
u_short control_flags;
u_short rsvd;
u_short time_out;
u_short segment_cnt;
u_char cdb[12];
#ifdef CONFIG_QL_ISP_A64
u_int rsvd1;
u_int rsvd2;
#endif
struct dataseg dataseg[IOCB_SEGS];
};
/* command entry control flag definitions */
#define CFLAG_NODISC 0x01
#define CFLAG_HEAD_TAG 0x02
#define CFLAG_ORDERED_TAG 0x04
#define CFLAG_SIMPLE_TAG 0x08
#define CFLAG_TAR_RTN 0x10
#define CFLAG_READ 0x20
#define CFLAG_WRITE 0x40
struct Ext_Command_Entry {
struct Entry_header hdr;
u_int handle;
u_char target_lun;
u_char target_id;
u_short cdb_length;
u_short control_flags;
u_short rsvd;
u_short time_out;
u_short segment_cnt;
u_char cdb[44];
};
struct Continuation_Entry {
struct Entry_header hdr;
#ifndef CONFIG_QL_ISP_A64
u_int reserved;
#endif
struct dataseg dataseg[CONTINUATION_SEGS];
};
struct Marker_Entry {
struct Entry_header hdr;
u_int reserved;
u_char target_lun;
u_char target_id;
u_char modifier;
u_char rsvd;
u_char rsvds[52];
};
/* marker entry modifier definitions */
#define SYNC_DEVICE 0
#define SYNC_TARGET 1
#define SYNC_ALL 2
struct Status_Entry {
struct Entry_header hdr;
u_int handle;
u_short scsi_status;
u_short completion_status;
u_short state_flags;
u_short status_flags;
u_short time;
u_short req_sense_len;
u_int residual;
u_char rsvd[8];
u_char req_sense_data[32];
};
/* status entry completion status definitions */
#define CS_COMPLETE 0x0000
#define CS_INCOMPLETE 0x0001
#define CS_DMA_ERROR 0x0002
#define CS_TRANSPORT_ERROR 0x0003
#define CS_RESET_OCCURRED 0x0004
#define CS_ABORTED 0x0005
#define CS_TIMEOUT 0x0006
#define CS_DATA_OVERRUN 0x0007
#define CS_COMMAND_OVERRUN 0x0008
#define CS_STATUS_OVERRUN 0x0009
#define CS_BAD_MESSAGE 0x000a
#define CS_NO_MESSAGE_OUT 0x000b
#define CS_EXT_ID_FAILED 0x000c
#define CS_IDE_MSG_FAILED 0x000d
#define CS_ABORT_MSG_FAILED 0x000e
#define CS_REJECT_MSG_FAILED 0x000f
#define CS_NOP_MSG_FAILED 0x0010
#define CS_PARITY_ERROR_MSG_FAILED 0x0011
#define CS_DEVICE_RESET_MSG_FAILED 0x0012
#define CS_ID_MSG_FAILED 0x0013
#define CS_UNEXP_BUS_FREE 0x0014
#define CS_DATA_UNDERRUN 0x0015
/* status entry state flag definitions */
#define SF_GOT_BUS 0x0100
#define SF_GOT_TARGET 0x0200
#define SF_SENT_CDB 0x0400
#define SF_TRANSFERRED_DATA 0x0800
#define SF_GOT_STATUS 0x1000
#define SF_GOT_SENSE 0x2000
/* status entry status flag definitions */
#define STF_DISCONNECT 0x0001
#define STF_SYNCHRONOUS 0x0002
#define STF_PARITY_ERROR 0x0004
#define STF_BUS_RESET 0x0008
#define STF_DEVICE_RESET 0x0010
#define STF_ABORTED 0x0020
#define STF_TIMEOUT 0x0040
#define STF_NEGOTIATION 0x0080
/* interface control commands */
#define ISP_RESET 0x0001
#define ISP_EN_INT 0x0002
#define ISP_EN_RISC 0x0004
/* host control commands */
#define HCCR_NOP 0x0000
#define HCCR_RESET 0x1000
#define HCCR_PAUSE 0x2000
#define HCCR_RELEASE 0x3000
#define HCCR_SINGLE_STEP 0x4000
#define HCCR_SET_HOST_INTR 0x5000
#define HCCR_CLEAR_HOST_INTR 0x6000
#define HCCR_CLEAR_RISC_INTR 0x7000
#define HCCR_BP_ENABLE 0x8000
#define HCCR_BIOS_DISABLE 0x9000
#define HCCR_TEST_MODE 0xf000
#define RISC_BUSY 0x0004
/* mailbox commands */
#define MBOX_NO_OP 0x0000
#define MBOX_LOAD_RAM 0x0001
#define MBOX_EXEC_FIRMWARE 0x0002
#define MBOX_DUMP_RAM 0x0003
#define MBOX_WRITE_RAM_WORD 0x0004
#define MBOX_READ_RAM_WORD 0x0005
#define MBOX_MAILBOX_REG_TEST 0x0006
#define MBOX_VERIFY_CHECKSUM 0x0007
#define MBOX_ABOUT_FIRMWARE 0x0008
#define MBOX_CHECK_FIRMWARE 0x000e
#define MBOX_INIT_REQ_QUEUE 0x0010
#define MBOX_INIT_RES_QUEUE 0x0011
#define MBOX_EXECUTE_IOCB 0x0012
#define MBOX_WAKE_UP 0x0013
#define MBOX_STOP_FIRMWARE 0x0014
#define MBOX_ABORT 0x0015
#define MBOX_ABORT_DEVICE 0x0016
#define MBOX_ABORT_TARGET 0x0017
#define MBOX_BUS_RESET 0x0018
#define MBOX_STOP_QUEUE 0x0019
#define MBOX_START_QUEUE 0x001a
#define MBOX_SINGLE_STEP_QUEUE 0x001b
#define MBOX_ABORT_QUEUE 0x001c
#define MBOX_GET_DEV_QUEUE_STATUS 0x001d
#define MBOX_GET_FIRMWARE_STATUS 0x001f
#define MBOX_GET_INIT_SCSI_ID 0x0020
#define MBOX_GET_SELECT_TIMEOUT 0x0021
#define MBOX_GET_RETRY_COUNT 0x0022
#define MBOX_GET_TAG_AGE_LIMIT 0x0023
#define MBOX_GET_CLOCK_RATE 0x0024
#define MBOX_GET_ACT_NEG_STATE 0x0025
#define MBOX_GET_ASYNC_DATA_SETUP_TIME 0x0026
#define MBOX_GET_PCI_PARAMS 0x0027
#define MBOX_GET_TARGET_PARAMS 0x0028
#define MBOX_GET_DEV_QUEUE_PARAMS 0x0029
#define MBOX_SET_INIT_SCSI_ID 0x0030
#define MBOX_SET_SELECT_TIMEOUT 0x0031
#define MBOX_SET_RETRY_COUNT 0x0032
#define MBOX_SET_TAG_AGE_LIMIT 0x0033
#define MBOX_SET_CLOCK_RATE 0x0034
#define MBOX_SET_ACTIVE_NEG_STATE 0x0035
#define MBOX_SET_ASYNC_DATA_SETUP_TIME 0x0036
#define MBOX_SET_PCI_CONTROL_PARAMS 0x0037
#define MBOX_SET_TARGET_PARAMS 0x0038
#define MBOX_SET_DEV_QUEUE_PARAMS 0x0039
#define MBOX_RETURN_BIOS_BLOCK_ADDR 0x0040
#define MBOX_WRITE_FOUR_RAM_WORDS 0x0041
#define MBOX_EXEC_BIOS_IOCB 0x0042
#ifdef CONFIG_QL_ISP_A64
#define MBOX_CMD_INIT_REQUEST_QUEUE_64 0x0052
#define MBOX_CMD_INIT_RESPONSE_QUEUE_64 0x0053
#endif /* CONFIG_QL_ISP_A64 */
#include "qlogicisp_asm.c"
#define PACKB(a, b) (((a)<<4)|(b))
static const u_char mbox_param[] = {
PACKB(1, 1), /* MBOX_NO_OP */
PACKB(5, 5), /* MBOX_LOAD_RAM */
PACKB(2, 0), /* MBOX_EXEC_FIRMWARE */
PACKB(5, 5), /* MBOX_DUMP_RAM */
PACKB(3, 3), /* MBOX_WRITE_RAM_WORD */
PACKB(2, 3), /* MBOX_READ_RAM_WORD */
PACKB(6, 6), /* MBOX_MAILBOX_REG_TEST */
PACKB(2, 3), /* MBOX_VERIFY_CHECKSUM */
PACKB(1, 3), /* MBOX_ABOUT_FIRMWARE */
PACKB(0, 0), /* 0x0009 */
PACKB(0, 0), /* 0x000a */
PACKB(0, 0), /* 0x000b */
PACKB(0, 0), /* 0x000c */
PACKB(0, 0), /* 0x000d */
PACKB(1, 2), /* MBOX_CHECK_FIRMWARE */
PACKB(0, 0), /* 0x000f */
PACKB(5, 5), /* MBOX_INIT_REQ_QUEUE */
PACKB(6, 6), /* MBOX_INIT_RES_QUEUE */
PACKB(4, 4), /* MBOX_EXECUTE_IOCB */
PACKB(2, 2), /* MBOX_WAKE_UP */
PACKB(1, 6), /* MBOX_STOP_FIRMWARE */
PACKB(4, 4), /* MBOX_ABORT */
PACKB(2, 2), /* MBOX_ABORT_DEVICE */
PACKB(3, 3), /* MBOX_ABORT_TARGET */
PACKB(2, 2), /* MBOX_BUS_RESET */
PACKB(2, 3), /* MBOX_STOP_QUEUE */
PACKB(2, 3), /* MBOX_START_QUEUE */
PACKB(2, 3), /* MBOX_SINGLE_STEP_QUEUE */
PACKB(2, 3), /* MBOX_ABORT_QUEUE */
PACKB(2, 4), /* MBOX_GET_DEV_QUEUE_STATUS */
PACKB(0, 0), /* 0x001e */
PACKB(1, 3), /* MBOX_GET_FIRMWARE_STATUS */
PACKB(1, 2), /* MBOX_GET_INIT_SCSI_ID */
PACKB(1, 2), /* MBOX_GET_SELECT_TIMEOUT */
PACKB(1, 3), /* MBOX_GET_RETRY_COUNT */
PACKB(1, 2), /* MBOX_GET_TAG_AGE_LIMIT */
PACKB(1, 2), /* MBOX_GET_CLOCK_RATE */
PACKB(1, 2), /* MBOX_GET_ACT_NEG_STATE */
PACKB(1, 2), /* MBOX_GET_ASYNC_DATA_SETUP_TIME */
PACKB(1, 3), /* MBOX_GET_PCI_PARAMS */
PACKB(2, 4), /* MBOX_GET_TARGET_PARAMS */
PACKB(2, 4), /* MBOX_GET_DEV_QUEUE_PARAMS */
PACKB(0, 0), /* 0x002a */
PACKB(0, 0), /* 0x002b */
PACKB(0, 0), /* 0x002c */
PACKB(0, 0), /* 0x002d */
PACKB(0, 0), /* 0x002e */
PACKB(0, 0), /* 0x002f */
PACKB(2, 2), /* MBOX_SET_INIT_SCSI_ID */
PACKB(2, 2), /* MBOX_SET_SELECT_TIMEOUT */
PACKB(3, 3), /* MBOX_SET_RETRY_COUNT */
PACKB(2, 2), /* MBOX_SET_TAG_AGE_LIMIT */
PACKB(2, 2), /* MBOX_SET_CLOCK_RATE */
PACKB(2, 2), /* MBOX_SET_ACTIVE_NEG_STATE */
PACKB(2, 2), /* MBOX_SET_ASYNC_DATA_SETUP_TIME */
PACKB(3, 3), /* MBOX_SET_PCI_CONTROL_PARAMS */
PACKB(4, 4), /* MBOX_SET_TARGET_PARAMS */
PACKB(4, 4), /* MBOX_SET_DEV_QUEUE_PARAMS */
PACKB(0, 0), /* 0x003a */
PACKB(0, 0), /* 0x003b */
PACKB(0, 0), /* 0x003c */
PACKB(0, 0), /* 0x003d */
PACKB(0, 0), /* 0x003e */
PACKB(0, 0), /* 0x003f */
PACKB(1, 2), /* MBOX_RETURN_BIOS_BLOCK_ADDR */
PACKB(6, 1), /* MBOX_WRITE_FOUR_RAM_WORDS */
PACKB(2, 3) /* MBOX_EXEC_BIOS_IOCB */
#ifdef CONFIG_QL_ISP_A64
,PACKB(0, 0), /* 0x0043 */
PACKB(0, 0), /* 0x0044 */
PACKB(0, 0), /* 0x0045 */
PACKB(0, 0), /* 0x0046 */
PACKB(0, 0), /* 0x0047 */
PACKB(0, 0), /* 0x0048 */
PACKB(0, 0), /* 0x0049 */
PACKB(0, 0), /* 0x004a */
PACKB(0, 0), /* 0x004b */
PACKB(0, 0), /* 0x004c */
PACKB(0, 0), /* 0x004d */
PACKB(0, 0), /* 0x004e */
PACKB(0, 0), /* 0x004f */
PACKB(0, 0), /* 0x0050 */
PACKB(0, 0), /* 0x0051 */
PACKB(8, 8), /* MBOX_CMD_INIT_REQUEST_QUEUE_64 (0x0052) */
PACKB(8, 8) /* MBOX_CMD_INIT_RESPONSE_QUEUE_64 (0x0053) */
#endif /* CONFIG_QL_ISP_A64 */
};
#define MAX_MBOX_COMMAND (sizeof(mbox_param)/sizeof(u_short))
struct host_param {
u_short fifo_threshold;
u_short host_adapter_enable;
u_short initiator_scsi_id;
u_short bus_reset_delay;
u_short retry_count;
u_short retry_delay;
u_short async_data_setup_time;
u_short req_ack_active_negation;
u_short data_line_active_negation;
u_short data_dma_burst_enable;
u_short command_dma_burst_enable;
u_short tag_aging;
u_short selection_timeout;
u_short max_queue_depth;
};
/*
* Device Flags:
*
* Bit Name
* ---------
* 7 Disconnect Privilege
* 6 Parity Checking
* 5 Wide Data Transfers
* 4 Synchronous Data Transfers
* 3 Tagged Queuing
* 2 Automatic Request Sense
* 1 Stop Queue on Check Condition
* 0 Renegotiate on Error
*/
struct dev_param {
u_short device_flags;
u_short execution_throttle;
u_short synchronous_period;
u_short synchronous_offset;
u_short device_enable;
u_short reserved; /* pad */
};
/*
* The result queue can be quite a bit smaller since continuation entries
* do not show up there:
*/
#define RES_QUEUE_LEN ((QLOGICISP_REQ_QUEUE_LEN + 1) / 8 - 1)
#define QUEUE_ENTRY_LEN 64
#define QSIZE(entries) (((entries) + 1) * QUEUE_ENTRY_LEN)
struct isp_queue_entry {
char __opaque[QUEUE_ENTRY_LEN];
};
struct isp1020_hostdata {
void __iomem *memaddr;
u_char revision;
struct host_param host_param;
struct dev_param dev_param[MAX_TARGETS];
struct pci_dev *pci_dev;
struct isp_queue_entry *res_cpu; /* CPU-side address of response queue. */
struct isp_queue_entry *req_cpu; /* CPU-size address of request queue. */
/* result and request queues (shared with isp1020): */
u_int req_in_ptr; /* index of next request slot */
u_int res_out_ptr; /* index of next result slot */
/* this is here so the queues are nicely aligned */
long send_marker; /* do we need to send a marker? */
/* The cmd->handle has a fixed size, and is only 32-bits. We
* need to take care to handle 64-bit systems correctly thus what
* we actually place in cmd->handle is an index to the following
* table. Kudos to Matt Jacob for the technique. -DaveM
*/
Scsi_Cmnd *cmd_slots[QLOGICISP_REQ_QUEUE_LEN + 1];
dma_addr_t res_dma; /* PCI side view of response queue */
dma_addr_t req_dma; /* PCI side view of request queue */
};
/* queue length's _must_ be power of two: */
#define QUEUE_DEPTH(in, out, ql) ((in - out) & (ql))
#define REQ_QUEUE_DEPTH(in, out) QUEUE_DEPTH(in, out, \
QLOGICISP_REQ_QUEUE_LEN)
#define RES_QUEUE_DEPTH(in, out) QUEUE_DEPTH(in, out, RES_QUEUE_LEN)
static void isp1020_enable_irqs(struct Scsi_Host *);
static void isp1020_disable_irqs(struct Scsi_Host *);
static int isp1020_init(struct Scsi_Host *);
static int isp1020_reset_hardware(struct Scsi_Host *);
static int isp1020_set_defaults(struct Scsi_Host *);
static int isp1020_load_parameters(struct Scsi_Host *);
static int isp1020_mbox_command(struct Scsi_Host *, u_short []);
static int isp1020_return_status(struct Status_Entry *);
static void isp1020_intr_handler(int, void *, struct pt_regs *);
static irqreturn_t do_isp1020_intr_handler(int, void *, struct pt_regs *);
#if USE_NVRAM_DEFAULTS
static int isp1020_get_defaults(struct Scsi_Host *);
static int isp1020_verify_nvram(struct Scsi_Host *);
static u_short isp1020_read_nvram_word(struct Scsi_Host *, u_short);
#endif
#if DEBUG_ISP1020
static void isp1020_print_scsi_cmd(Scsi_Cmnd *);
#endif
#if DEBUG_ISP1020_INTR
static void isp1020_print_status_entry(struct Status_Entry *);
#endif
/* memaddr should be used to determine if memmapped port i/o is being used
* non-null memaddr == mmap'd
* JV 7-Jan-2000
*/
static inline u_short isp_inw(struct Scsi_Host *host, long offset)
{
struct isp1020_hostdata *h = (struct isp1020_hostdata *)host->hostdata;
if (h->memaddr)
return readw(h->memaddr + offset);
else
return inw(host->io_port + offset);
}
static inline void isp_outw(u_short val, struct Scsi_Host *host, long offset)
{
struct isp1020_hostdata *h = (struct isp1020_hostdata *)host->hostdata;
if (h->memaddr)
writew(val, h->memaddr + offset);
else
outw(val, host->io_port + offset);
}
static inline void isp1020_enable_irqs(struct Scsi_Host *host)
{
isp_outw(ISP_EN_INT|ISP_EN_RISC, host, PCI_INTF_CTL);
}
static inline void isp1020_disable_irqs(struct Scsi_Host *host)
{
isp_outw(0x0, host, PCI_INTF_CTL);
}
static int isp1020_detect(Scsi_Host_Template *tmpt)
{
int hosts = 0;
struct Scsi_Host *host;
struct isp1020_hostdata *hostdata;
struct pci_dev *pdev = NULL;
ENTER("isp1020_detect");
tmpt->proc_name = "isp1020";
while ((pdev = pci_find_device(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP1020, pdev)))
{
if (pci_enable_device(pdev))
continue;
host = scsi_register(tmpt, sizeof(struct isp1020_hostdata));
if (!host)
continue;
hostdata = (struct isp1020_hostdata *) host->hostdata;
memset(hostdata, 0, sizeof(struct isp1020_hostdata));
hostdata->pci_dev = pdev;
scsi_set_device(host, &pdev->dev);
if (isp1020_init(host))
goto fail_and_unregister;
if (isp1020_reset_hardware(host)
#if USE_NVRAM_DEFAULTS
|| isp1020_get_defaults(host)
#else
|| isp1020_set_defaults(host)
#endif /* USE_NVRAM_DEFAULTS */
|| isp1020_load_parameters(host)) {
goto fail_uninit;
}
host->this_id = hostdata->host_param.initiator_scsi_id;
host->max_sectors = 64;
if (request_irq(host->irq, do_isp1020_intr_handler, SA_INTERRUPT | SA_SHIRQ,
"qlogicisp", host))
{
printk("qlogicisp : interrupt %d already in use\n",
host->irq);
goto fail_uninit;
}
isp_outw(0x0, host, PCI_SEMAPHORE);
isp_outw(HCCR_CLEAR_RISC_INTR, host, HOST_HCCR);
isp1020_enable_irqs(host);
hosts++;
continue;
fail_uninit:
iounmap(hostdata->memaddr);
release_region(host->io_port, 0xff);
fail_and_unregister:
if (hostdata->res_cpu)
pci_free_consistent(hostdata->pci_dev,
QSIZE(RES_QUEUE_LEN),
hostdata->res_cpu,
hostdata->res_dma);
if (hostdata->req_cpu)
pci_free_consistent(hostdata->pci_dev,
QSIZE(QLOGICISP_REQ_QUEUE_LEN),
hostdata->req_cpu,
hostdata->req_dma);
scsi_unregister(host);
}
LEAVE("isp1020_detect");
return hosts;
}
static int isp1020_release(struct Scsi_Host *host)
{
struct isp1020_hostdata *hostdata;
ENTER("isp1020_release");
hostdata = (struct isp1020_hostdata *) host->hostdata;
isp_outw(0x0, host, PCI_INTF_CTL);
free_irq(host->irq, host);
iounmap(hostdata->memaddr);
release_region(host->io_port, 0xff);
LEAVE("isp1020_release");
return 0;
}
static const char *isp1020_info(struct Scsi_Host *host)
{
static char buf[80];
struct isp1020_hostdata *hostdata;
ENTER("isp1020_info");
hostdata = (struct isp1020_hostdata *) host->hostdata;
sprintf(buf,
"QLogic ISP1020 SCSI on PCI bus %02x device %02x irq %d %s base 0x%lx",
hostdata->pci_dev->bus->number, hostdata->pci_dev->devfn, host->irq,
(hostdata->memaddr ? "MEM" : "I/O"),
(hostdata->memaddr ? (unsigned long)hostdata->memaddr : host->io_port));
LEAVE("isp1020_info");
return buf;
}
/*
* The middle SCSI layer ensures that queuecommand never gets invoked
* concurrently with itself or the interrupt handler (though the
* interrupt handler may call this routine as part of
* request-completion handling).
*/
static int isp1020_queuecommand(Scsi_Cmnd *Cmnd, void (*done)(Scsi_Cmnd *))
{
int i, n, num_free;
u_int in_ptr, out_ptr;
struct dataseg * ds;
struct scatterlist *sg;
struct Command_Entry *cmd;
struct Continuation_Entry *cont;
struct Scsi_Host *host;
struct isp1020_hostdata *hostdata;
dma_addr_t dma_addr;
ENTER("isp1020_queuecommand");
host = Cmnd->device->host;
hostdata = (struct isp1020_hostdata *) host->hostdata;
Cmnd->scsi_done = done;
DEBUG(isp1020_print_scsi_cmd(Cmnd));
out_ptr = isp_inw(host, + MBOX4);
in_ptr = hostdata->req_in_ptr;
DEBUG(printk("qlogicisp : request queue depth %d\n",
REQ_QUEUE_DEPTH(in_ptr, out_ptr)));
cmd = (struct Command_Entry *) &hostdata->req_cpu[in_ptr];
in_ptr = (in_ptr + 1) & QLOGICISP_REQ_QUEUE_LEN;
if (in_ptr == out_ptr) {
printk("qlogicisp : request queue overflow\n");
return 1;
}
if (hostdata->send_marker) {
struct Marker_Entry *marker;
TRACE("queue marker", in_ptr, 0);
DEBUG(printk("qlogicisp : adding marker entry\n"));
marker = (struct Marker_Entry *) cmd;
memset(marker, 0, sizeof(struct Marker_Entry));
marker->hdr.entry_type = ENTRY_MARKER;
marker->hdr.entry_cnt = 1;
marker->modifier = SYNC_ALL;
hostdata->send_marker = 0;
if (((in_ptr + 1) & QLOGICISP_REQ_QUEUE_LEN) == out_ptr) {
isp_outw(in_ptr, host, MBOX4);
hostdata->req_in_ptr = in_ptr;
printk("qlogicisp : request queue overflow\n");
return 1;
}
cmd = (struct Command_Entry *) &hostdata->req_cpu[in_ptr];
in_ptr = (in_ptr + 1) & QLOGICISP_REQ_QUEUE_LEN;
}
TRACE("queue command", in_ptr, Cmnd);
memset(cmd, 0, sizeof(struct Command_Entry));
cmd->hdr.entry_type = ENTRY_COMMAND;
cmd->hdr.entry_cnt = 1;
cmd->target_lun = Cmnd->device->lun;
cmd->target_id = Cmnd->device->id;
cmd->cdb_length = cpu_to_le16(Cmnd->cmd_len);
cmd->control_flags = cpu_to_le16(CFLAG_READ | CFLAG_WRITE);
cmd->time_out = cpu_to_le16(30);
memcpy(cmd->cdb, Cmnd->cmnd, Cmnd->cmd_len);
if (Cmnd->use_sg) {
int sg_count;
sg = (struct scatterlist *) Cmnd->request_buffer;
ds = cmd->dataseg;
sg_count = pci_map_sg(hostdata->pci_dev, sg, Cmnd->use_sg,
Cmnd->sc_data_direction);
cmd->segment_cnt = cpu_to_le16(sg_count);
/* fill in first four sg entries: */
n = sg_count;
if (n > IOCB_SEGS)
n = IOCB_SEGS;
for (i = 0; i < n; i++) {
dma_addr = sg_dma_address(sg);
ds[i].d_base = cpu_to_le32((u32) dma_addr);
#ifdef CONFIG_QL_ISP_A64
ds[i].d_base_hi = cpu_to_le32((u32) (dma_addr>>32));
#endif /* CONFIG_QL_ISP_A64 */
ds[i].d_count = cpu_to_le32(sg_dma_len(sg));
++sg;
}
sg_count -= IOCB_SEGS;
while (sg_count > 0) {
++cmd->hdr.entry_cnt;
cont = (struct Continuation_Entry *)
&hostdata->req_cpu[in_ptr];
in_ptr = (in_ptr + 1) & QLOGICISP_REQ_QUEUE_LEN;
if (in_ptr == out_ptr) {
printk("isp1020: unexpected request queue "
"overflow\n");
return 1;
}
TRACE("queue continuation", in_ptr, 0);
cont->hdr.entry_type = ENTRY_CONTINUATION;
cont->hdr.entry_cnt = 0;
cont->hdr.sys_def_1 = 0;
cont->hdr.flags = 0;
#ifndef CONFIG_QL_ISP_A64
cont->reserved = 0;
#endif
ds = cont->dataseg;
n = sg_count;
if (n > CONTINUATION_SEGS)
n = CONTINUATION_SEGS;
for (i = 0; i < n; ++i) {
dma_addr = sg_dma_address(sg);
ds[i].d_base = cpu_to_le32((u32) dma_addr);
#ifdef CONFIG_QL_ISP_A64
ds[i].d_base_hi = cpu_to_le32((u32)(dma_addr>>32));
#endif /* CONFIG_QL_ISP_A64 */
ds[i].d_count = cpu_to_le32(sg_dma_len(sg));
++sg;
}
sg_count -= n;
}
} else if (Cmnd->request_bufflen) {
/*Cmnd->SCp.ptr = (char *)(unsigned long)*/
dma_addr = pci_map_single(hostdata->pci_dev,
Cmnd->request_buffer,
Cmnd->request_bufflen,
Cmnd->sc_data_direction);
Cmnd->SCp.ptr = (char *)(unsigned long) dma_addr;
cmd->dataseg[0].d_base =
cpu_to_le32((u32) dma_addr);
#ifdef CONFIG_QL_ISP_A64
cmd->dataseg[0].d_base_hi =
cpu_to_le32((u32) (dma_addr>>32));
#endif /* CONFIG_QL_ISP_A64 */
cmd->dataseg[0].d_count =
cpu_to_le32((u32)Cmnd->request_bufflen);
cmd->segment_cnt = cpu_to_le16(1);
} else {
cmd->dataseg[0].d_base = 0;
#ifdef CONFIG_QL_ISP_A64
cmd->dataseg[0].d_base_hi = 0;
#endif /* CONFIG_QL_ISP_A64 */
cmd->dataseg[0].d_count = 0;
cmd->segment_cnt = cpu_to_le16(1); /* Shouldn't this be 0? */
}
/* Committed, record Scsi_Cmd so we can find it later. */
cmd->handle = in_ptr;
hostdata->cmd_slots[in_ptr] = Cmnd;
isp_outw(in_ptr, host, MBOX4);
hostdata->req_in_ptr = in_ptr;
num_free = QLOGICISP_REQ_QUEUE_LEN - REQ_QUEUE_DEPTH(in_ptr, out_ptr);
host->can_queue = host->host_busy + num_free;
host->sg_tablesize = QLOGICISP_MAX_SG(num_free);
LEAVE("isp1020_queuecommand");
return 0;
}
#define ASYNC_EVENT_INTERRUPT 0x01
irqreturn_t do_isp1020_intr_handler(int irq, void *dev_id, struct pt_regs *regs)
{
struct Scsi_Host *host = dev_id;
unsigned long flags;
spin_lock_irqsave(host->host_lock, flags);
isp1020_intr_handler(irq, dev_id, regs);
spin_unlock_irqrestore(host->host_lock, flags);
return IRQ_HANDLED;
}
void isp1020_intr_handler(int irq, void *dev_id, struct pt_regs *regs)
{
Scsi_Cmnd *Cmnd;
struct Status_Entry *sts;
struct Scsi_Host *host = dev_id;
struct isp1020_hostdata *hostdata;
u_int in_ptr, out_ptr;
u_short status;
ENTER_INTR("isp1020_intr_handler");
hostdata = (struct isp1020_hostdata *) host->hostdata;
DEBUG_INTR(printk("qlogicisp : interrupt on line %d\n", irq));
if (!(isp_inw(host, PCI_INTF_STS) & 0x04)) {
/* spurious interrupts can happen legally */
DEBUG_INTR(printk("qlogicisp: got spurious interrupt\n"));
return;
}
in_ptr = isp_inw(host, MBOX5);
isp_outw(HCCR_CLEAR_RISC_INTR, host, HOST_HCCR);
if ((isp_inw(host, PCI_SEMAPHORE) & ASYNC_EVENT_INTERRUPT)) {
status = isp_inw(host, MBOX0);
DEBUG_INTR(printk("qlogicisp : mbox completion status: %x\n",
status));
switch (status) {
case ASYNC_SCSI_BUS_RESET:
case EXECUTION_TIMEOUT_RESET:
hostdata->send_marker = 1;
break;
case INVALID_COMMAND:
case HOST_INTERFACE_ERROR:
case COMMAND_ERROR:
case COMMAND_PARAM_ERROR:
printk("qlogicisp : bad mailbox return status\n");
break;
}
isp_outw(0x0, host, PCI_SEMAPHORE);
}
out_ptr = hostdata->res_out_ptr;
DEBUG_INTR(printk("qlogicisp : response queue update\n"));
DEBUG_INTR(printk("qlogicisp : response queue depth %d\n",
QUEUE_DEPTH(in_ptr, out_ptr, RES_QUEUE_LEN)));
while (out_ptr != in_ptr) {
u_int cmd_slot;
sts = (struct Status_Entry *) &hostdata->res_cpu[out_ptr];
out_ptr = (out_ptr + 1) & RES_QUEUE_LEN;
cmd_slot = sts->handle;
Cmnd = hostdata->cmd_slots[cmd_slot];
hostdata->cmd_slots[cmd_slot] = NULL;
TRACE("done", out_ptr, Cmnd);
if (le16_to_cpu(sts->completion_status) == CS_RESET_OCCURRED
|| le16_to_cpu(sts->completion_status) == CS_ABORTED
|| (le16_to_cpu(sts->status_flags) & STF_BUS_RESET))
hostdata->send_marker = 1;
if (le16_to_cpu(sts->state_flags) & SF_GOT_SENSE)
memcpy(Cmnd->sense_buffer, sts->req_sense_data,
sizeof(Cmnd->sense_buffer));
DEBUG_INTR(isp1020_print_status_entry(sts));
if (sts->hdr.entry_type == ENTRY_STATUS)
Cmnd->result = isp1020_return_status(sts);
else
Cmnd->result = DID_ERROR << 16;
if (Cmnd->use_sg)
pci_unmap_sg(hostdata->pci_dev,
(struct scatterlist *)Cmnd->buffer,
Cmnd->use_sg,
Cmnd->sc_data_direction);
else if (Cmnd->request_bufflen)
pci_unmap_single(hostdata->pci_dev,
#ifdef CONFIG_QL_ISP_A64
(dma_addr_t)((long)Cmnd->SCp.ptr),
#else
(u32)((long)Cmnd->SCp.ptr),
#endif
Cmnd->request_bufflen,
Cmnd->sc_data_direction);
isp_outw(out_ptr, host, MBOX5);
(*Cmnd->scsi_done)(Cmnd);
}
hostdata->res_out_ptr = out_ptr;
LEAVE_INTR("isp1020_intr_handler");
}
static int isp1020_return_status(struct Status_Entry *sts)
{
int host_status = DID_ERROR;
#if DEBUG_ISP1020_INTR
static char *reason[] = {
"DID_OK",
"DID_NO_CONNECT",
"DID_BUS_BUSY",
"DID_TIME_OUT",
"DID_BAD_TARGET",
"DID_ABORT",
"DID_PARITY",
"DID_ERROR",
"DID_RESET",
"DID_BAD_INTR"
};
#endif /* DEBUG_ISP1020_INTR */
ENTER("isp1020_return_status");
DEBUG(printk("qlogicisp : completion status = 0x%04x\n",
le16_to_cpu(sts->completion_status)));
switch(le16_to_cpu(sts->completion_status)) {
case CS_COMPLETE:
host_status = DID_OK;
break;
case CS_INCOMPLETE:
if (!(le16_to_cpu(sts->state_flags) & SF_GOT_BUS))
host_status = DID_NO_CONNECT;
else if (!(le16_to_cpu(sts->state_flags) & SF_GOT_TARGET))
host_status = DID_BAD_TARGET;
else if (!(le16_to_cpu(sts->state_flags) & SF_SENT_CDB))
host_status = DID_ERROR;
else if (!(le16_to_cpu(sts->state_flags) & SF_TRANSFERRED_DATA))
host_status = DID_ERROR;
else if (!(le16_to_cpu(sts->state_flags) & SF_GOT_STATUS))
host_status = DID_ERROR;
else if (!(le16_to_cpu(sts->state_flags) & SF_GOT_SENSE))
host_status = DID_ERROR;
break;
case CS_DMA_ERROR:
case CS_TRANSPORT_ERROR:
host_status = DID_ERROR;
break;
case CS_RESET_OCCURRED:
host_status = DID_RESET;
break;
case CS_ABORTED:
host_status = DID_ABORT;
break;
case CS_TIMEOUT:
host_status = DID_TIME_OUT;
break;
case CS_DATA_OVERRUN:
case CS_COMMAND_OVERRUN:
case CS_STATUS_OVERRUN:
case CS_BAD_MESSAGE:
case CS_NO_MESSAGE_OUT:
case CS_EXT_ID_FAILED:
case CS_IDE_MSG_FAILED:
case CS_ABORT_MSG_FAILED:
case CS_NOP_MSG_FAILED:
case CS_PARITY_ERROR_MSG_FAILED:
case CS_DEVICE_RESET_MSG_FAILED:
case CS_ID_MSG_FAILED:
case CS_UNEXP_BUS_FREE:
host_status = DID_ERROR;
break;
case CS_DATA_UNDERRUN:
host_status = DID_OK;
break;
default:
printk("qlogicisp : unknown completion status 0x%04x\n",
le16_to_cpu(sts->completion_status));
host_status = DID_ERROR;
break;
}
DEBUG_INTR(printk("qlogicisp : host status (%s) scsi status %x\n",
reason[host_status], le16_to_cpu(sts->scsi_status)));
LEAVE("isp1020_return_status");
return (le16_to_cpu(sts->scsi_status) & STATUS_MASK) | (host_status << 16);
}
static int isp1020_biosparam(struct scsi_device *sdev, struct block_device *n,
sector_t capacity, int ip[])
{
int size = capacity;
ENTER("isp1020_biosparam");
ip[0] = 64;
ip[1] = 32;
ip[2] = size >> 11;
if (ip[2] > 1024) {
ip[0] = 255;
ip[1] = 63;
ip[2] = size / (ip[0] * ip[1]);
#if 0
if (ip[2] > 1023)
ip[2] = 1023;
#endif
}
LEAVE("isp1020_biosparam");
return 0;
}
static int isp1020_reset_hardware(struct Scsi_Host *host)
{
u_short param[6];
int loop_count;
ENTER("isp1020_reset_hardware");
isp_outw(ISP_RESET, host, PCI_INTF_CTL);
udelay(100);
isp_outw(HCCR_RESET, host, HOST_HCCR);
udelay(100);
isp_outw(HCCR_RELEASE, host, HOST_HCCR);
isp_outw(HCCR_BIOS_DISABLE, host, HOST_HCCR);
loop_count = DEFAULT_LOOP_COUNT;
while (--loop_count && isp_inw(host, HOST_HCCR) == RISC_BUSY) {
barrier();
cpu_relax();
}
if (!loop_count)
printk("qlogicisp: reset_hardware loop timeout\n");
isp_outw(0, host, ISP_CFG1);
#if DEBUG_ISP1020
printk("qlogicisp : mbox 0 0x%04x \n", isp_inw(host, MBOX0));
printk("qlogicisp : mbox 1 0x%04x \n", isp_inw(host, MBOX1));
printk("qlogicisp : mbox 2 0x%04x \n", isp_inw(host, MBOX2));
printk("qlogicisp : mbox 3 0x%04x \n", isp_inw(host, MBOX3));
printk("qlogicisp : mbox 4 0x%04x \n", isp_inw(host, MBOX4));
printk("qlogicisp : mbox 5 0x%04x \n", isp_inw(host, MBOX5));
#endif /* DEBUG_ISP1020 */
param[0] = MBOX_NO_OP;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : NOP test failed\n");
return 1;
}
DEBUG(printk("qlogicisp : loading risc ram\n"));
#if RELOAD_FIRMWARE
for (loop_count = 0; loop_count < risc_code_length01; loop_count++) {
param[0] = MBOX_WRITE_RAM_WORD;
param[1] = risc_code_addr01 + loop_count;
param[2] = risc_code01[loop_count];
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : firmware load failure at %d\n",
loop_count);
return 1;
}
}
#endif /* RELOAD_FIRMWARE */
DEBUG(printk("qlogicisp : verifying checksum\n"));
param[0] = MBOX_VERIFY_CHECKSUM;
param[1] = risc_code_addr01;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : ram checksum failure\n");
return 1;
}
DEBUG(printk("qlogicisp : executing firmware\n"));
param[0] = MBOX_EXEC_FIRMWARE;
param[1] = risc_code_addr01;
isp1020_mbox_command(host, param);
param[0] = MBOX_ABOUT_FIRMWARE;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : about firmware failure\n");
return 1;
}
DEBUG(printk("qlogicisp : firmware major revision %d\n", param[1]));
DEBUG(printk("qlogicisp : firmware minor revision %d\n", param[2]));
LEAVE("isp1020_reset_hardware");
return 0;
}
static int isp1020_init(struct Scsi_Host *sh)
{
u_long io_base, mem_base, io_flags, mem_flags;
struct isp1020_hostdata *hostdata;
u_char revision;
u_int irq;
u_short command;
struct pci_dev *pdev;
ENTER("isp1020_init");
hostdata = (struct isp1020_hostdata *) sh->hostdata;
pdev = hostdata->pci_dev;
if (pci_read_config_word(pdev, PCI_COMMAND, &command)
|| pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision))
{
printk("qlogicisp : error reading PCI configuration\n");
return 1;
}
io_base = pci_resource_start(pdev, 0);
mem_base = pci_resource_start(pdev, 1);
io_flags = pci_resource_flags(pdev, 0);
mem_flags = pci_resource_flags(pdev, 1);
irq = pdev->irq;
if (pdev->vendor != PCI_VENDOR_ID_QLOGIC) {
printk("qlogicisp : 0x%04x is not QLogic vendor ID\n",
pdev->vendor);
return 1;
}
if (pdev->device != PCI_DEVICE_ID_QLOGIC_ISP1020) {
printk("qlogicisp : 0x%04x does not match ISP1020 device id\n",
pdev->device);
return 1;
}
#ifdef __alpha__
/* Force ALPHA to use bus I/O and not bus MEM.
This is to avoid having to use HAE_MEM registers,
which is broken on some platforms and with SMP. */
command &= ~PCI_COMMAND_MEMORY;
#endif
sh->io_port = io_base;
if (!request_region(sh->io_port, 0xff, "qlogicisp")) {
printk("qlogicisp : i/o region 0x%lx-0x%lx already "
"in use\n",
sh->io_port, sh->io_port + 0xff);
return 1;
}
if ((command & PCI_COMMAND_MEMORY) &&
((mem_flags & 1) == 0)) {
hostdata->memaddr = ioremap(mem_base, PAGE_SIZE);
if (!hostdata->memaddr) {
printk("qlogicisp : i/o remapping failed.\n");
goto out_release;
}
} else {
if (command & PCI_COMMAND_IO && (io_flags & 3) != 1) {
printk("qlogicisp : i/o mapping is disabled\n");
goto out_release;
}
hostdata->memaddr = NULL; /* zero to signify no i/o mapping */
mem_base = 0;
}
if (revision != ISP1020_REV_ID)
printk("qlogicisp : new isp1020 revision ID (%d)\n", revision);
if (isp_inw(sh, PCI_ID_LOW) != PCI_VENDOR_ID_QLOGIC
|| isp_inw(sh, PCI_ID_HIGH) != PCI_DEVICE_ID_QLOGIC_ISP1020)
{
printk("qlogicisp : can't decode %s address space 0x%lx\n",
(io_base ? "I/O" : "MEM"),
(io_base ? io_base : mem_base));
goto out_unmap;
}
hostdata->revision = revision;
sh->irq = irq;
sh->max_id = MAX_TARGETS;
sh->max_lun = MAX_LUNS;
hostdata->res_cpu = pci_alloc_consistent(hostdata->pci_dev,
QSIZE(RES_QUEUE_LEN),
&hostdata->res_dma);
if (hostdata->res_cpu == NULL) {
printk("qlogicisp : can't allocate response queue\n");
goto out_unmap;
}
hostdata->req_cpu = pci_alloc_consistent(hostdata->pci_dev,
QSIZE(QLOGICISP_REQ_QUEUE_LEN),
&hostdata->req_dma);
if (hostdata->req_cpu == NULL) {
pci_free_consistent(hostdata->pci_dev,
QSIZE(RES_QUEUE_LEN),
hostdata->res_cpu,
hostdata->res_dma);
printk("qlogicisp : can't allocate request queue\n");
goto out_unmap;
}
pci_set_master(pdev);
LEAVE("isp1020_init");
return 0;
out_unmap:
iounmap(hostdata->memaddr);
out_release:
release_region(sh->io_port, 0xff);
return 1;
}
#if USE_NVRAM_DEFAULTS
static int isp1020_get_defaults(struct Scsi_Host *host)
{
int i;
u_short value;
struct isp1020_hostdata *hostdata =
(struct isp1020_hostdata *) host->hostdata;
ENTER("isp1020_get_defaults");
if (!isp1020_verify_nvram(host)) {
printk("qlogicisp : nvram checksum failure\n");
printk("qlogicisp : attempting to use default parameters\n");
return isp1020_set_defaults(host);
}
value = isp1020_read_nvram_word(host, 2);
hostdata->host_param.fifo_threshold = (value >> 8) & 0x03;
hostdata->host_param.host_adapter_enable = (value >> 11) & 0x01;
hostdata->host_param.initiator_scsi_id = (value >> 12) & 0x0f;
value = isp1020_read_nvram_word(host, 3);
hostdata->host_param.bus_reset_delay = value & 0xff;
hostdata->host_param.retry_count = value >> 8;
value = isp1020_read_nvram_word(host, 4);
hostdata->host_param.retry_delay = value & 0xff;
hostdata->host_param.async_data_setup_time = (value >> 8) & 0x0f;
hostdata->host_param.req_ack_active_negation = (value >> 12) & 0x01;
hostdata->host_param.data_line_active_negation = (value >> 13) & 0x01;
hostdata->host_param.data_dma_burst_enable = (value >> 14) & 0x01;
hostdata->host_param.command_dma_burst_enable = (value >> 15);
value = isp1020_read_nvram_word(host, 5);
hostdata->host_param.tag_aging = value & 0xff;
value = isp1020_read_nvram_word(host, 6);
hostdata->host_param.selection_timeout = value & 0xffff;
value = isp1020_read_nvram_word(host, 7);
hostdata->host_param.max_queue_depth = value & 0xffff;
#if DEBUG_ISP1020_SETUP
printk("qlogicisp : fifo threshold=%d\n",
hostdata->host_param.fifo_threshold);
printk("qlogicisp : initiator scsi id=%d\n",
hostdata->host_param.initiator_scsi_id);
printk("qlogicisp : bus reset delay=%d\n",
hostdata->host_param.bus_reset_delay);
printk("qlogicisp : retry count=%d\n",
hostdata->host_param.retry_count);
printk("qlogicisp : retry delay=%d\n",
hostdata->host_param.retry_delay);
printk("qlogicisp : async data setup time=%d\n",
hostdata->host_param.async_data_setup_time);
printk("qlogicisp : req/ack active negation=%d\n",
hostdata->host_param.req_ack_active_negation);
printk("qlogicisp : data line active negation=%d\n",
hostdata->host_param.data_line_active_negation);
printk("qlogicisp : data DMA burst enable=%d\n",
hostdata->host_param.data_dma_burst_enable);
printk("qlogicisp : command DMA burst enable=%d\n",
hostdata->host_param.command_dma_burst_enable);
printk("qlogicisp : tag age limit=%d\n",
hostdata->host_param.tag_aging);
printk("qlogicisp : selection timeout limit=%d\n",
hostdata->host_param.selection_timeout);
printk("qlogicisp : max queue depth=%d\n",
hostdata->host_param.max_queue_depth);
#endif /* DEBUG_ISP1020_SETUP */
for (i = 0; i < MAX_TARGETS; i++) {
value = isp1020_read_nvram_word(host, 14 + i * 3);
hostdata->dev_param[i].device_flags = value & 0xff;
hostdata->dev_param[i].execution_throttle = value >> 8;
value = isp1020_read_nvram_word(host, 15 + i * 3);
hostdata->dev_param[i].synchronous_period = value & 0xff;
hostdata->dev_param[i].synchronous_offset = (value >> 8) & 0x0f;
hostdata->dev_param[i].device_enable = (value >> 12) & 0x01;
#if DEBUG_ISP1020_SETUP
printk("qlogicisp : target 0x%02x\n", i);
printk("qlogicisp : device flags=0x%02x\n",
hostdata->dev_param[i].device_flags);
printk("qlogicisp : execution throttle=%d\n",
hostdata->dev_param[i].execution_throttle);
printk("qlogicisp : synchronous period=%d\n",
hostdata->dev_param[i].synchronous_period);
printk("qlogicisp : synchronous offset=%d\n",
hostdata->dev_param[i].synchronous_offset);
printk("qlogicisp : device enable=%d\n",
hostdata->dev_param[i].device_enable);
#endif /* DEBUG_ISP1020_SETUP */
}
LEAVE("isp1020_get_defaults");
return 0;
}
#define ISP1020_NVRAM_LEN 0x40
#define ISP1020_NVRAM_SIG1 0x5349
#define ISP1020_NVRAM_SIG2 0x2050
static int isp1020_verify_nvram(struct Scsi_Host *host)
{
int i;
u_short value;
u_char checksum = 0;
for (i = 0; i < ISP1020_NVRAM_LEN; i++) {
value = isp1020_read_nvram_word(host, i);
switch (i) {
case 0:
if (value != ISP1020_NVRAM_SIG1) return 0;
break;
case 1:
if (value != ISP1020_NVRAM_SIG2) return 0;
break;
case 2:
if ((value & 0xff) != 0x02) return 0;
break;
}
checksum += value & 0xff;
checksum += value >> 8;
}
return (checksum == 0);
}
#define NVRAM_DELAY() udelay(2) /* 2 microsecond delay */
u_short isp1020_read_nvram_word(struct Scsi_Host *host, u_short byte)
{
int i;
u_short value, output, input;
byte &= 0x3f; byte |= 0x0180;
for (i = 8; i >= 0; i--) {
output = ((byte >> i) & 0x1) ? 0x4 : 0x0;
isp_outw(output | 0x2, host, PCI_NVRAM); NVRAM_DELAY();
isp_outw(output | 0x3, host, PCI_NVRAM); NVRAM_DELAY();
isp_outw(output | 0x2, host, PCI_NVRAM); NVRAM_DELAY();
}
for (i = 0xf, value = 0; i >= 0; i--) {
value <<= 1;
isp_outw(0x3, host, PCI_NVRAM); NVRAM_DELAY();
input = isp_inw(host, PCI_NVRAM); NVRAM_DELAY();
isp_outw(0x2, host, PCI_NVRAM); NVRAM_DELAY();
if (input & 0x8) value |= 1;
}
isp_outw(0x0, host, PCI_NVRAM); NVRAM_DELAY();
return value;
}
#endif /* USE_NVRAM_DEFAULTS */
static int isp1020_set_defaults(struct Scsi_Host *host)
{
struct isp1020_hostdata *hostdata =
(struct isp1020_hostdata *) host->hostdata;
int i;
ENTER("isp1020_set_defaults");
hostdata->host_param.fifo_threshold = 2;
hostdata->host_param.host_adapter_enable = 1;
hostdata->host_param.initiator_scsi_id = 7;
hostdata->host_param.bus_reset_delay = 3;
hostdata->host_param.retry_count = 0;
hostdata->host_param.retry_delay = 1;
hostdata->host_param.async_data_setup_time = 6;
hostdata->host_param.req_ack_active_negation = 1;
hostdata->host_param.data_line_active_negation = 1;
hostdata->host_param.data_dma_burst_enable = 1;
hostdata->host_param.command_dma_burst_enable = 1;
hostdata->host_param.tag_aging = 8;
hostdata->host_param.selection_timeout = 250;
hostdata->host_param.max_queue_depth = 256;
for (i = 0; i < MAX_TARGETS; i++) {
hostdata->dev_param[i].device_flags = 0xfd;
hostdata->dev_param[i].execution_throttle = 16;
hostdata->dev_param[i].synchronous_period = 25;
hostdata->dev_param[i].synchronous_offset = 12;
hostdata->dev_param[i].device_enable = 1;
}
LEAVE("isp1020_set_defaults");
return 0;
}
static int isp1020_load_parameters(struct Scsi_Host *host)
{
int i, k;
#ifdef CONFIG_QL_ISP_A64
u_long queue_addr;
u_short param[8];
#else
u_int queue_addr;
u_short param[6];
#endif
u_short isp_cfg1, hwrev;
struct isp1020_hostdata *hostdata =
(struct isp1020_hostdata *) host->hostdata;
ENTER("isp1020_load_parameters");
hwrev = isp_inw(host, ISP_CFG0) & ISP_CFG0_HWMSK;
isp_cfg1 = ISP_CFG1_F64 | ISP_CFG1_BENAB;
if (hwrev == ISP_CFG0_1040A) {
/* Busted fifo, says mjacob. */
isp_cfg1 &= ISP_CFG1_BENAB;
}
isp_outw(isp_inw(host, ISP_CFG1) | isp_cfg1, host, ISP_CFG1);
isp_outw(isp_inw(host, CDMA_CONF) | DMA_CONF_BENAB, host, CDMA_CONF);
isp_outw(isp_inw(host, DDMA_CONF) | DMA_CONF_BENAB, host, DDMA_CONF);
param[0] = MBOX_SET_INIT_SCSI_ID;
param[1] = hostdata->host_param.initiator_scsi_id;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set initiator id failure\n");
return 1;
}
param[0] = MBOX_SET_RETRY_COUNT;
param[1] = hostdata->host_param.retry_count;
param[2] = hostdata->host_param.retry_delay;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set retry count failure\n");
return 1;
}
param[0] = MBOX_SET_ASYNC_DATA_SETUP_TIME;
param[1] = hostdata->host_param.async_data_setup_time;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : async data setup time failure\n");
return 1;
}
param[0] = MBOX_SET_ACTIVE_NEG_STATE;
param[1] = (hostdata->host_param.req_ack_active_negation << 4)
| (hostdata->host_param.data_line_active_negation << 5);
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set active negation state failure\n");
return 1;
}
param[0] = MBOX_SET_PCI_CONTROL_PARAMS;
param[1] = hostdata->host_param.data_dma_burst_enable << 1;
param[2] = hostdata->host_param.command_dma_burst_enable << 1;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set pci control parameter failure\n");
return 1;
}
param[0] = MBOX_SET_TAG_AGE_LIMIT;
param[1] = hostdata->host_param.tag_aging;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set tag age limit failure\n");
return 1;
}
param[0] = MBOX_SET_SELECT_TIMEOUT;
param[1] = hostdata->host_param.selection_timeout;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set selection timeout failure\n");
return 1;
}
for (i = 0; i < MAX_TARGETS; i++) {
if (!hostdata->dev_param[i].device_enable)
continue;
param[0] = MBOX_SET_TARGET_PARAMS;
param[1] = i << 8;
param[2] = hostdata->dev_param[i].device_flags << 8;
param[3] = (hostdata->dev_param[i].synchronous_offset << 8)
| hostdata->dev_param[i].synchronous_period;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set target parameter failure\n");
return 1;
}
for (k = 0; k < MAX_LUNS; k++) {
param[0] = MBOX_SET_DEV_QUEUE_PARAMS;
param[1] = (i << 8) | k;
param[2] = hostdata->host_param.max_queue_depth;
param[3] = hostdata->dev_param[i].execution_throttle;
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set device queue "
"parameter failure\n");
return 1;
}
}
}
queue_addr = hostdata->res_dma;
#ifdef CONFIG_QL_ISP_A64
param[0] = MBOX_CMD_INIT_RESPONSE_QUEUE_64;
#else
param[0] = MBOX_INIT_RES_QUEUE;
#endif
param[1] = RES_QUEUE_LEN + 1;
param[2] = (u_short) (queue_addr >> 16);
param[3] = (u_short) (queue_addr & 0xffff);
param[4] = 0;
param[5] = 0;
#ifdef CONFIG_QL_ISP_A64
param[6] = (u_short) (queue_addr >> 48);
param[7] = (u_short) (queue_addr >> 32);
#endif
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set response queue failure\n");
return 1;
}
queue_addr = hostdata->req_dma;
#ifdef CONFIG_QL_ISP_A64
param[0] = MBOX_CMD_INIT_REQUEST_QUEUE_64;
#else
param[0] = MBOX_INIT_REQ_QUEUE;
#endif
param[1] = QLOGICISP_REQ_QUEUE_LEN + 1;
param[2] = (u_short) (queue_addr >> 16);
param[3] = (u_short) (queue_addr & 0xffff);
param[4] = 0;
#ifdef CONFIG_QL_ISP_A64
param[5] = 0;
param[6] = (u_short) (queue_addr >> 48);
param[7] = (u_short) (queue_addr >> 32);
#endif
isp1020_mbox_command(host, param);
if (param[0] != MBOX_COMMAND_COMPLETE) {
printk("qlogicisp : set request queue failure\n");
return 1;
}
LEAVE("isp1020_load_parameters");
return 0;
}
/*
* currently, this is only called during initialization or abort/reset,
* at which times interrupts are disabled, so polling is OK, I guess...
*/
static int isp1020_mbox_command(struct Scsi_Host *host, u_short param[])
{
int loop_count;
if (mbox_param[param[0]] == 0)
return 1;
loop_count = DEFAULT_LOOP_COUNT;
while (--loop_count && isp_inw(host, HOST_HCCR) & 0x0080) {
barrier();
cpu_relax();
}
if (!loop_count)
printk("qlogicisp: mbox_command loop timeout #1\n");
switch(mbox_param[param[0]] >> 4) {
case 8: isp_outw(param[7], host, MBOX7);
case 7: isp_outw(param[6], host, MBOX6);
case 6: isp_outw(param[5], host, MBOX5);
case 5: isp_outw(param[4], host, MBOX4);
case 4: isp_outw(param[3], host, MBOX3);
case 3: isp_outw(param[2], host, MBOX2);
case 2: isp_outw(param[1], host, MBOX1);
case 1: isp_outw(param[0], host, MBOX0);
}
isp_outw(0x0, host, PCI_SEMAPHORE);
isp_outw(HCCR_CLEAR_RISC_INTR, host, HOST_HCCR);
isp_outw(HCCR_SET_HOST_INTR, host, HOST_HCCR);
loop_count = DEFAULT_LOOP_COUNT;
while (--loop_count && !(isp_inw(host, PCI_INTF_STS) & 0x04)) {
barrier();
cpu_relax();
}
if (!loop_count)
printk("qlogicisp: mbox_command loop timeout #2\n");
loop_count = DEFAULT_LOOP_COUNT;
while (--loop_count && isp_inw(host, MBOX0) == 0x04) {
barrier();
cpu_relax();
}
if (!loop_count)
printk("qlogicisp: mbox_command loop timeout #3\n");
switch(mbox_param[param[0]] & 0xf) {
case 8: param[7] = isp_inw(host, MBOX7);
case 7: param[6] = isp_inw(host, MBOX6);
case 6: param[5] = isp_inw(host, MBOX5);
case 5: param[4] = isp_inw(host, MBOX4);
case 4: param[3] = isp_inw(host, MBOX3);
case 3: param[2] = isp_inw(host, MBOX2);
case 2: param[1] = isp_inw(host, MBOX1);
case 1: param[0] = isp_inw(host, MBOX0);
}
isp_outw(0x0, host, PCI_SEMAPHORE);
isp_outw(HCCR_CLEAR_RISC_INTR, host, HOST_HCCR);
return 0;
}
#if DEBUG_ISP1020_INTR
void isp1020_print_status_entry(struct Status_Entry *status)
{
int i;
printk("qlogicisp : entry count = 0x%02x, type = 0x%02x, flags = 0x%02x\n",
status->hdr.entry_cnt, status->hdr.entry_type, status->hdr.flags);
printk("qlogicisp : scsi status = 0x%04x, completion status = 0x%04x\n",
le16_to_cpu(status->scsi_status), le16_to_cpu(status->completion_status));
printk("qlogicisp : state flags = 0x%04x, status flags = 0x%04x\n",
le16_to_cpu(status->state_flags), le16_to_cpu(status->status_flags));
printk("qlogicisp : time = 0x%04x, request sense length = 0x%04x\n",
le16_to_cpu(status->time), le16_to_cpu(status->req_sense_len));
printk("qlogicisp : residual transfer length = 0x%08x\n",
le32_to_cpu(status->residual));
for (i = 0; i < le16_to_cpu(status->req_sense_len); i++)
printk("qlogicisp : sense data = 0x%02x\n", status->req_sense_data[i]);
}
#endif /* DEBUG_ISP1020_INTR */
#if DEBUG_ISP1020
void isp1020_print_scsi_cmd(Scsi_Cmnd *cmd)
{
int i;
printk("qlogicisp : target = 0x%02x, lun = 0x%02x, cmd_len = 0x%02x\n",
cmd->target, cmd->lun, cmd->cmd_len);
printk("qlogicisp : command = ");
for (i = 0; i < cmd->cmd_len; i++)
printk("0x%02x ", cmd->cmnd[i]);
printk("\n");
}
#endif /* DEBUG_ISP1020 */
MODULE_LICENSE("GPL");
static Scsi_Host_Template driver_template = {
.detect = isp1020_detect,
.release = isp1020_release,
.info = isp1020_info,
.queuecommand = isp1020_queuecommand,
.bios_param = isp1020_biosparam,
.can_queue = QLOGICISP_REQ_QUEUE_LEN,
.this_id = -1,
.sg_tablesize = QLOGICISP_MAX_SG(QLOGICISP_REQ_QUEUE_LEN),
.cmd_per_lun = 1,
.use_clustering = DISABLE_CLUSTERING,
};
#include "scsi_module.c"