dragonheart_kernel_oneplus_.../drivers/spmi/viospmi-pmic-arb.c

841 lines
21 KiB
C

/*
* Copyright (c) 2019-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/irq.h>
#include <linux/of_irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spmi.h>
#include <linux/mutex.h>
#include <linux/virtio.h>
#include <linux/virtio_spmi.h>
#include <linux/scatterlist.h>
/* Mapping Table */
#define PMIC_ARB_MAX_PPID BIT(12) /* PPID is 12bit */
#define PMIC_ARB_APID_VALID BIT(15)
/* Command Opcodes */
enum pmic_arb_cmd_op_code {
PMIC_ARB_OP_EXT_WRITEL = 0,
PMIC_ARB_OP_EXT_READL = 1,
PMIC_ARB_OP_EXT_WRITE = 2,
PMIC_ARB_OP_RESET = 3,
PMIC_ARB_OP_SLEEP = 4,
PMIC_ARB_OP_SHUTDOWN = 5,
PMIC_ARB_OP_WAKEUP = 6,
PMIC_ARB_OP_AUTHENTICATE = 7,
PMIC_ARB_OP_MSTR_READ = 8,
PMIC_ARB_OP_MSTR_WRITE = 9,
PMIC_ARB_OP_EXT_READ = 13,
PMIC_ARB_OP_WRITE = 14,
PMIC_ARB_OP_READ = 15,
PMIC_ARB_OP_ZERO_WRITE = 16,
};
/* Maximum number of support PMIC peripherals */
#define PMIC_ARB_MAX_PERIPHS 512
#define PMIC_ARB_MAX_TRANS_BYTES (8)
#define PMIC_ARB_APID_MASK 0xFF
#define PMIC_ARB_PPID_MASK 0xFFF
/* interrupt enable bit */
#define SPMI_PIC_ACC_ENABLE_BIT BIT(0)
#define spec_to_hwirq(slave_id, periph_id, irq_id, apid) \
((((slave_id) & 0xF) << 28) | \
(((periph_id) & 0xFF) << 20) | \
(((irq_id) & 0x7) << 16) | \
(((apid) & 0x1FF) << 0))
#define hwirq_to_sid(hwirq) (((hwirq) >> 28) & 0xF)
#define hwirq_to_per(hwirq) (((hwirq) >> 20) & 0xFF)
#define hwirq_to_irq(hwirq) (((hwirq) >> 16) & 0x7)
#define hwirq_to_apid(hwirq) (((hwirq) >> 0) & 0x1FF)
struct pmic_arb_ver_ops;
struct apid_data {
u16 ppid;
struct irq_desc *desc;
};
struct virtio_spmi {
struct virtio_device *vdev;
struct virtqueue *txq;
struct virtqueue *rxq;
spinlock_t txlock;
spinlock_t rxlock;
struct spmi_pmic_arb *pa;
struct virtio_spmi_config config;
struct virtio_spmi_msg txmsg;
struct virtio_spmi_msg rxmsgs[4];
};
/**
* spmi_pmic_arb - SPMI PMIC Arbiter object
*
* @irq: PMIC ARB interrupt.
* @ee: the current Execution Environment
* @min_apid: minimum APID (used for bounding IRQ search)
* @max_apid: maximum APID
* @domain: irq domain object for PMIC IRQ domain
* @spmic: SPMI controller object
* @ver_ops: version dependent operations.
* @ppid_to_apid in-memory copy of PPID -> APID mapping table.
*/
struct spmi_pmic_arb {
int irq;
u8 ee;
u16 min_apid;
u16 max_apid;
struct irq_domain *domain;
struct spmi_controller *spmic;
struct virtio_spmi *vs;
const struct pmic_arb_ver_ops *ver_ops;
u16 *ppid_to_apid;
struct apid_data apid_data[PMIC_ARB_MAX_PERIPHS];
};
/**
* pmic_arb_ver: version dependent functionality.
*
* @ver_str: version string.
* @ppid_to_apid: finds the apid for a given ppid.
* @fmt_cmd: formats a GENI/SPMI command.
*/
struct pmic_arb_ver_ops {
const char *ver_str;
int (*ppid_to_apid)(struct spmi_pmic_arb *pa, u16 ppid);
u32 (*fmt_cmd)(u8 opc, u8 sid, u16 addr, u8 bc);
};
static int
vspmi_pmic_arb_xfer(struct spmi_pmic_arb *pa)
{
struct virtio_spmi *vs = pa->vs;
struct virtio_spmi_msg *msg = &vs->txmsg;
struct virtio_spmi_msg *rsp;
struct scatterlist sg[1];
unsigned int len;
unsigned long flags;
int rc = 0;
sg_init_one(sg, msg, sizeof(*msg));
spin_lock_irqsave(&vs->txlock, flags);
rc = virtqueue_add_outbuf(vs->txq, sg, 1, msg, GFP_ATOMIC);
if (rc) {
dev_err(&vs->vdev->dev, "fail to add output buffer\n");
goto out;
}
virtqueue_kick(vs->txq);
do {
rsp = virtqueue_get_buf(vs->txq, &len);
} while (!rsp);
rc = virtio32_to_cpu(vs->vdev, rsp->res);
out:
spin_unlock_irqrestore(&vs->txlock, flags);
return rc;
}
static struct virtio_spmi_msg *vspmi_fill_txmsg(struct spmi_pmic_arb *pa,
u32 type, u32 cmd, u16 ppid, u32 regval)
{
struct virtio_spmi *vs = pa->vs;
struct virtio_spmi_msg *msg = &vs->txmsg;
memset(msg, 0x0, sizeof(*msg));
if (type > VIO_SPMI_BUS_CMDMAX) {
msg->payload.irqd.ppid =
cpu_to_virtio16(vs->vdev, ppid);
msg->payload.irqd.regval =
cpu_to_virtio32(vs->vdev, regval);
} else {
msg->payload.cmdd.cmd =
cpu_to_virtio32(vs->vdev, cmd);
}
msg->type = cpu_to_virtio32(vs->vdev, type);
return msg;
}
static void vspmi_queue_rxmsg(struct virtio_spmi *vspmi,
struct virtio_spmi_msg *msg)
{
struct scatterlist sg[1];
memset(msg, 0x0, sizeof(*msg));
sg_init_one(sg, msg, sizeof(*msg));
virtqueue_add_inbuf(vspmi->rxq, sg, 1, msg, GFP_ATOMIC);
}
static void vspmi_fill_rxmsgs(struct virtio_spmi *vs)
{
unsigned long flags;
int i, size;
spin_lock_irqsave(&vs->rxlock, flags);
size = virtqueue_get_vring_size(vs->rxq);
if (size > ARRAY_SIZE(vs->rxmsgs))
size = ARRAY_SIZE(vs->rxmsgs);
for (i = 0; i < size; i++)
vspmi_queue_rxmsg(vs, &vs->rxmsgs[i]);
virtqueue_kick(vs->rxq);
spin_unlock_irqrestore(&vs->rxlock, flags);
}
static int pmic_arb_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid,
u16 addr, u8 *buf, size_t len)
{
struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl);
struct virtio_spmi *vs = pa->vs;
struct virtio_spmi_msg *msg;
u8 bc = len - 1;
u32 data, cmd;
int rc;
if (bc >= PMIC_ARB_MAX_TRANS_BYTES) {
dev_err(&ctrl->dev,
"pmic-arb supports 1..%d bytes per trans, but:%zu requested",
PMIC_ARB_MAX_TRANS_BYTES, len);
return -EINVAL;
}
/* Check the opcode */
if (opc >= 0x60 && opc <= 0x7F)
opc = PMIC_ARB_OP_READ;
else if (opc >= 0x20 && opc <= 0x2F)
opc = PMIC_ARB_OP_EXT_READ;
else if (opc >= 0x38 && opc <= 0x3F)
opc = PMIC_ARB_OP_EXT_READL;
else
return -EINVAL;
cmd = pa->ver_ops->fmt_cmd(opc, sid, addr, bc);
msg = vspmi_fill_txmsg(pa, VIO_SPMI_BUS_READ, cmd, 0, 0);
rc = vspmi_pmic_arb_xfer(pa);
if (rc)
goto out;
data = virtio32_to_cpu(vs->vdev,
msg->payload.cmdd.data[0]);
memcpy(buf, &data, (bc & 3) + 1);
if (bc > 3) {
data = virtio32_to_cpu(vs->vdev,
msg->payload.cmdd.data[1]);
memcpy((buf + 4), &data, ((bc - 4) & 3) + 1);
}
out:
return rc;
}
static int pmic_arb_write_cmd(struct spmi_controller *ctrl, u8 opc,
u8 sid, u16 addr, const u8 *buf, size_t len)
{
struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl);
struct virtio_spmi *vs = pa->vs;
struct virtio_spmi_msg *msg;
u8 bc = len - 1;
u32 data, cmd;
int rc;
if (bc >= PMIC_ARB_MAX_TRANS_BYTES) {
dev_err(&ctrl->dev,
"pmic-arb supports 1..%d bytes per trans, but:%zu requested",
PMIC_ARB_MAX_TRANS_BYTES, len);
return -EINVAL;
}
/* Check the opcode */
if (opc >= 0x40 && opc <= 0x5F)
opc = PMIC_ARB_OP_WRITE;
else if (opc <= 0x0F)
opc = PMIC_ARB_OP_EXT_WRITE;
else if (opc >= 0x30 && opc <= 0x37)
opc = PMIC_ARB_OP_EXT_WRITEL;
else if (opc >= 0x80)
opc = PMIC_ARB_OP_ZERO_WRITE;
else
return -EINVAL;
cmd = pa->ver_ops->fmt_cmd(opc, sid, addr, bc);
msg = vspmi_fill_txmsg(pa, VIO_SPMI_BUS_WRITE, cmd, 0, 0);
memcpy(&data, buf, (bc & 3) + 1);
msg->payload.cmdd.data[0] = cpu_to_virtio32(vs->vdev, data);
if (bc > 3) {
memcpy(&data, (buf + 4), ((bc - 4) & 3) + 1);
msg->payload.cmdd.data[1] =
cpu_to_virtio32(vs->vdev, data);
}
rc = vspmi_pmic_arb_xfer(pa);
return rc;
}
enum qpnpint_regs {
QPNPINT_REG_RT_STS = 0x10,
QPNPINT_REG_SET_TYPE = 0x11,
QPNPINT_REG_POLARITY_HIGH = 0x12,
QPNPINT_REG_POLARITY_LOW = 0x13,
QPNPINT_REG_LATCHED_CLR = 0x14,
QPNPINT_REG_EN_SET = 0x15,
QPNPINT_REG_EN_CLR = 0x16,
QPNPINT_REG_LATCHED_STS = 0x18,
};
struct spmi_pmic_arb_qpnpint_type {
u8 type; /* 1 -> edge */
u8 polarity_high;
u8 polarity_low;
} __packed;
/* Simplified accessor functions for irqchip callbacks */
static void qpnpint_spmi_write(struct irq_data *d, u8 reg, void *buf,
size_t len)
{
struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d);
u8 sid = hwirq_to_sid(d->hwirq);
u8 per = hwirq_to_per(d->hwirq);
if (pmic_arb_write_cmd(pa->spmic, SPMI_CMD_EXT_WRITEL, sid,
(per << 8) + reg, buf, len))
dev_err_ratelimited(&pa->spmic->dev,
"failed irqchip transaction on %x\n", d->irq);
}
static void qpnpint_spmi_read(struct irq_data *d, u8 reg, void *buf, size_t len)
{
struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d);
u8 sid = hwirq_to_sid(d->hwirq);
u8 per = hwirq_to_per(d->hwirq);
if (pmic_arb_read_cmd(pa->spmic, SPMI_CMD_EXT_READL, sid,
(per << 8) + reg, buf, len))
dev_err_ratelimited(&pa->spmic->dev,
"failed irqchip transaction on %x\n", d->irq);
}
static void periph_interrupt(struct spmi_pmic_arb *pa, u16 apid)
{
unsigned int irq;
u32 id = 0;
u8 sid = (pa->apid_data[apid].ppid >> 8) & 0xF;
u8 per = pa->apid_data[apid].ppid & 0xFF;
irq = irq_find_mapping(pa->domain,
spec_to_hwirq(sid, per, id, apid));
generic_handle_irq(irq);
}
static void pmic_arb_chained_irq(struct virtio_spmi *vs,
struct virtio_spmi_msg *msg)
{
struct spmi_pmic_arb *pa = vs->pa;
struct apid_data *apidd = pa->apid_data;
u16 ppid = virtio16_to_cpu(vs->vdev, msg->payload.irqd.ppid);
u16 apid = pa->ver_ops->ppid_to_apid(pa, ppid);
struct irq_desc *desc = apidd[apid].desc;
struct irq_chip *chip = irq_desc_get_chip(desc);
chained_irq_enter(chip, desc);
dev_dbg(&pa->spmic->dev,
"Dispatching IRQ for apid=%x ppid=%x\n",
apid, ppid);
periph_interrupt(pa, apid);
chained_irq_exit(chip, desc);
}
static void qpnpint_irq_ack(struct irq_data *d)
{
struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d);
u8 irq = hwirq_to_irq(d->hwirq);
u16 apid = hwirq_to_apid(d->hwirq);
u16 ppid = pa->apid_data[apid].ppid;
u8 data;
vspmi_fill_txmsg(pa, VIO_IRQ_CLEAR, 0, ppid, BIT(irq));
vspmi_pmic_arb_xfer(pa);
data = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &data, 1);
}
static void qpnpint_irq_mask(struct irq_data *d)
{
u8 irq = hwirq_to_irq(d->hwirq);
u8 data = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &data, 1);
}
static void qpnpint_irq_unmask(struct irq_data *d)
{
struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d);
u8 irq = hwirq_to_irq(d->hwirq);
u16 apid = hwirq_to_apid(d->hwirq);
u16 ppid = pa->apid_data[apid].ppid;
struct apid_data *apidd = pa->apid_data;
u8 buf[2];
apidd[apid].desc = irq_data_to_desc(d);
vspmi_fill_txmsg(pa, VIO_ACC_ENABLE_WR, 0,
ppid, SPMI_PIC_ACC_ENABLE_BIT);
vspmi_pmic_arb_xfer(pa);
qpnpint_spmi_read(d, QPNPINT_REG_EN_SET, &buf[0], 1);
if (!(buf[0] & BIT(irq))) {
/*
* Since the interrupt is currently disabled, write to both the
* LATCHED_CLR and EN_SET registers so that a spurious interrupt
* cannot be triggered when the interrupt is enabled
*/
buf[0] = BIT(irq);
buf[1] = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 2);
}
}
static int qpnpint_irq_set_type(struct irq_data *d, unsigned int flow_type)
{
struct spmi_pmic_arb_qpnpint_type type;
irq_flow_handler_t flow_handler;
u8 irq = hwirq_to_irq(d->hwirq);
qpnpint_spmi_read(d, QPNPINT_REG_SET_TYPE, &type, sizeof(type));
if (flow_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) {
type.type |= BIT(irq);
if (flow_type & IRQF_TRIGGER_RISING)
type.polarity_high |= BIT(irq);
else
type.polarity_high &= ~BIT(irq);
if (flow_type & IRQF_TRIGGER_FALLING)
type.polarity_low |= BIT(irq);
else
type.polarity_low &= ~BIT(irq);
flow_handler = handle_edge_irq;
} else {
if ((flow_type & (IRQF_TRIGGER_HIGH)) &&
(flow_type & (IRQF_TRIGGER_LOW)))
return -EINVAL;
type.type &= ~BIT(irq); /* level trig */
if (flow_type & IRQF_TRIGGER_HIGH) {
type.polarity_high |= BIT(irq);
type.polarity_low &= ~BIT(irq);
} else {
type.polarity_low |= BIT(irq);
type.polarity_high &= ~BIT(irq);
}
flow_handler = handle_level_irq;
}
qpnpint_spmi_write(d, QPNPINT_REG_SET_TYPE, &type, sizeof(type));
irq_set_handler_locked(d, flow_handler);
return 0;
}
static int qpnpint_irq_set_wake(struct irq_data *d, unsigned int on)
{
struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d);
return irq_set_irq_wake(pa->irq, on);
}
static int qpnpint_get_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which,
bool *state)
{
u8 irq = hwirq_to_irq(d->hwirq);
u8 status = 0;
if (which != IRQCHIP_STATE_LINE_LEVEL)
return -EINVAL;
qpnpint_spmi_read(d, QPNPINT_REG_RT_STS, &status, 1);
*state = !!(status & BIT(irq));
return 0;
}
static int qpnpint_irq_request_resources(struct irq_data *d)
{
return 0;
}
static struct irq_chip pmic_arb_irqchip = {
.name = "pmic_arb",
.irq_ack = qpnpint_irq_ack,
.irq_mask = qpnpint_irq_mask,
.irq_unmask = qpnpint_irq_unmask,
.irq_set_type = qpnpint_irq_set_type,
.irq_set_wake = qpnpint_irq_set_wake,
.irq_get_irqchip_state = qpnpint_get_irqchip_state,
.irq_request_resources = qpnpint_irq_request_resources,
.flags = IRQCHIP_MASK_ON_SUSPEND,
};
static void qpnpint_irq_domain_activate(struct irq_domain *domain,
struct irq_data *d)
{
u8 irq = hwirq_to_irq(d->hwirq);
u8 buf;
buf = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &buf, 1);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 1);
}
static int qpnpint_irq_domain_dt_translate(struct irq_domain *d,
struct device_node *controller,
const u32 *intspec,
unsigned int intsize,
unsigned long *out_hwirq,
unsigned int *out_type)
{
struct spmi_pmic_arb *pa = d->host_data;
u16 apid, ppid;
int rc;
dev_dbg(&pa->spmic->dev,
"intspec[0] 0x%1x intspec[1] 0x%02x intspec[2] 0x%02x\n",
intspec[0], intspec[1], intspec[2]);
if (irq_domain_get_of_node(d) != controller)
return -EINVAL;
if (intsize != 4)
return -EINVAL;
if (intspec[0] > 0xF || intspec[1] > 0xFF || intspec[2] > 0x7)
return -EINVAL;
ppid = intspec[0] << 8 | intspec[1];
rc = pa->ver_ops->ppid_to_apid(pa, ppid);
if (rc < 0) {
dev_err(&pa->spmic->dev,
"failed to xlate sid = %#x, periph = %#x, irq = %u rc = %d\n",
intspec[0], intspec[1], intspec[2], rc);
return rc;
}
apid = rc;
/* Keep track of {max,min}_apid for bounding search during interrupt */
if (apid > pa->max_apid)
pa->max_apid = apid;
if (apid < pa->min_apid)
pa->min_apid = apid;
*out_hwirq = spec_to_hwirq(intspec[0], intspec[1], intspec[2], apid);
*out_type = intspec[3] & IRQ_TYPE_SENSE_MASK;
dev_dbg(&pa->spmic->dev, "out_hwirq = %lu\n", *out_hwirq);
return 0;
}
static int qpnpint_irq_domain_map(struct irq_domain *d,
unsigned int virq,
irq_hw_number_t hwirq)
{
struct spmi_pmic_arb *pa = d->host_data;
dev_dbg(&pa->spmic->dev, "virq = %u, hwirq = %lu\n", virq, hwirq);
irq_set_chip_and_handler(virq, &pmic_arb_irqchip, handle_level_irq);
irq_set_chip_data(virq, d->host_data);
irq_set_noprobe(virq);
return 0;
}
static int pmic_arb_read_apid_map_v5(struct spmi_pmic_arb *pa)
{
struct virtio_spmi *vs = pa->vs;
struct apid_data *apidd = pa->apid_data;
u16 apid, ppid;
u16 i;
for (i = 0; i < VM_MAX_PERIPHS; i++) {
ppid = vs->config.ppid_allowed[i];
if (!ppid)
break;
apid = i;
pa->ppid_to_apid[ppid] = apid | PMIC_ARB_APID_VALID;
pa->apid_data[apid].ppid = ppid;
pa->apid_data[apid].desc = NULL;
}
/* Dump the mapping table for debug purposes. */
dev_dbg(&pa->spmic->dev, "PPID APID IRQ-DESC\n");
for (ppid = 0; ppid < PMIC_ARB_MAX_PPID; ppid++) {
apid = pa->ppid_to_apid[ppid];
if (apid & PMIC_ARB_APID_VALID) {
apid &= ~PMIC_ARB_APID_VALID;
dev_dbg(&pa->spmic->dev, "%#03X %3u %llx\n",
ppid, apid, apidd[apid].desc);
}
}
return 0;
}
static int pmic_arb_ppid_to_apid_v5(struct spmi_pmic_arb *pa, u16 ppid)
{
if (!(pa->ppid_to_apid[ppid] & PMIC_ARB_APID_VALID))
return -ENODEV;
return pa->ppid_to_apid[ppid] & ~PMIC_ARB_APID_VALID;
}
static u32 pmic_arb_fmt_cmd_v1(u8 opc, u8 sid, u16 addr, u8 bc)
{
return (opc << 27) | ((sid & 0xf) << 20) | (addr << 4) | (bc & 0x7);
}
static const struct pmic_arb_ver_ops pmic_arb_v5 = {
.ver_str = "v5",
.ppid_to_apid = pmic_arb_ppid_to_apid_v5,
.fmt_cmd = pmic_arb_fmt_cmd_v1,
};
static const struct irq_domain_ops pmic_arb_irq_domain_ops = {
.map = qpnpint_irq_domain_map,
.xlate = qpnpint_irq_domain_dt_translate,
.activate = qpnpint_irq_domain_activate,
};
static void viospmi_rx_isr(struct virtqueue *vq)
{
struct virtio_spmi *vs = vq->vdev->priv;
struct virtio_spmi_msg *msg;
unsigned long flags;
unsigned int len;
spin_lock_irqsave(&vs->rxlock, flags);
while ((msg = virtqueue_get_buf(vs->rxq, &len)) != NULL) {
spin_unlock_irqrestore(&vs->rxlock, flags);
pmic_arb_chained_irq(vs, msg);
spin_lock_irqsave(&vs->rxlock, flags);
vspmi_queue_rxmsg(vs, msg);
}
virtqueue_kick(vs->rxq);
spin_unlock_irqrestore(&vs->rxlock, flags);
}
static int virtio_spmi_init_vqs(struct virtio_spmi *vspmi)
{
struct virtqueue *vqs[2];
vq_callback_t *cbs[] = { NULL, viospmi_rx_isr };
static const char * const names[] = { "vs.tx", "vs.rx" };
int rc;
rc = virtio_find_vqs(vspmi->vdev, 2, vqs, cbs, names, NULL);
if (rc)
return rc;
vspmi->txq = vqs[0];
vspmi->rxq = vqs[1];
return 0;
}
static void virtio_spmi_del_vqs(struct virtio_spmi *vspmi)
{
vspmi->vdev->config->del_vqs(vspmi->vdev);
}
static int virtio_spmi_probe(struct virtio_device *vdev)
{
struct virtio_spmi *vs;
int i;
int ret = 0;
u32 val;
struct spmi_pmic_arb *pa;
struct spmi_controller *ctrl;
int err;
if (!virtio_has_feature(vdev, VIRTIO_F_VERSION_1))
return -ENODEV;
vs = devm_kzalloc(&vdev->dev, sizeof(*vs), GFP_KERNEL);
if (!vs)
return -ENOMEM;
vdev->priv = vs;
vs->vdev = vdev;
spin_lock_init(&vs->txlock);
spin_lock_init(&vs->rxlock);
ret = virtio_spmi_init_vqs(vs);
if (ret)
goto err_init_vq;
ctrl = spmi_controller_alloc(&vdev->dev, sizeof(*pa));
if (!ctrl)
return -ENOMEM;
pa = vs->pa = spmi_controller_get_drvdata(ctrl);
pa->spmic = ctrl;
pa->vs = vs;
pa->ver_ops = &pmic_arb_v5;
dev_info(&ctrl->dev, "Virtio PMIC arbiter\n");
pa->ppid_to_apid = devm_kcalloc(&ctrl->dev, PMIC_ARB_MAX_PPID,
sizeof(*pa->ppid_to_apid),
GFP_KERNEL);
if (!pa->ppid_to_apid) {
err = -ENOMEM;
goto err_put_ctrl;
}
/* Initialize max_apid/min_apid to the opposite bounds, during
* the irq domain translation, we are sure to update these
*/
pa->max_apid = 0;
pa->min_apid = PMIC_ARB_MAX_PERIPHS - 1;
ctrl->read_cmd = pmic_arb_read_cmd;
ctrl->write_cmd = pmic_arb_write_cmd;
ctrl->dev.of_node = (vdev->dev.parent)->of_node;
pa->irq = of_irq_get_byname(ctrl->dev.of_node, "periph_irq");
if (pa->irq < 0) {
err = pa->irq;
goto err_put_ctrl;
}
virtio_device_ready(vdev);
vspmi_fill_rxmsgs(vs);
memset(&vs->config, 0x0, sizeof(vs->config));
for (i = 0; i < VM_MAX_PERIPHS; i += 2) {
val = virtio_cread32(vdev,
offsetof(struct virtio_spmi_config, ppid_allowed[i]));
vs->config.ppid_allowed[i] = val & PMIC_ARB_PPID_MASK;
vs->config.ppid_allowed[i + 1] =
(val >> 16) & PMIC_ARB_PPID_MASK;
if ((!vs->config.ppid_allowed[i]) ||
!(vs->config.ppid_allowed[i + 1]))
break;
}
err = pmic_arb_read_apid_map_v5(pa);
if (err) {
dev_err(&vdev->dev, "could not read APID->PPID mapping table, rc= %d\n",
err);
goto err_put_ctrl;
}
dev_dbg(&vdev->dev, "adding irq domain\n");
pa->domain = irq_domain_add_tree(ctrl->dev.of_node,
&pmic_arb_irq_domain_ops, pa);
if (!pa->domain) {
dev_err(&vdev->dev, "unable to create irq_domain\n");
err = -ENOMEM;
goto err_put_ctrl;
}
err = spmi_controller_add(ctrl);
if (err)
goto err_domain_remove;
return 0;
err_domain_remove:
irq_domain_remove(pa->domain);
err_put_ctrl:
spmi_controller_put(ctrl);
return err;
err_init_vq:
virtio_spmi_del_vqs(vs);
devm_kfree(&vdev->dev, vs);
return ret;
}
static void virtio_spmi_remove(struct virtio_device *vdev)
{
struct virtio_spmi *vs = vdev->priv;
vdev->config->reset(vdev);
vdev->config->del_vqs(vdev);
devm_kfree(&vdev->dev, vs);
}
static unsigned int features[] = {
VIRTIO_SPMI_F_INT,
};
static struct virtio_device_id id_table[] = {
{ VIRTIO_ID_SPMI, VIRTIO_DEV_ANY_ID },
{ 0 },
};
static struct virtio_driver virtio_spmi_driver = {
.feature_table = features,
.feature_table_size = ARRAY_SIZE(features),
.driver.name = KBUILD_MODNAME,
.driver.owner = THIS_MODULE,
.id_table = id_table,
.probe = virtio_spmi_probe,
.remove = virtio_spmi_remove,
};
static int __init virtio_spmi_init(void)
{
return register_virtio_driver(&virtio_spmi_driver);
}
static void __exit virtio_spmi_exit(void)
{
unregister_virtio_driver(&virtio_spmi_driver);
}
arch_initcall(virtio_spmi_init);
module_exit(virtio_spmi_exit);
MODULE_DEVICE_TABLE(virtio, id_table);
MODULE_DESCRIPTION("virtio spmi_pmic_arb frontend driver");
MODULE_LICENSE("GPL v2");