820 lines
28 KiB
C++
820 lines
28 KiB
C++
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
|
|
// SOME COMMENTS ABOUT USAGE:
|
|
|
|
// This provides primarily wp<> weak pointer types and RefBase, which work
|
|
// together with sp<> from <StrongPointer.h>.
|
|
|
|
// sp<> (and wp<>) are a type of smart pointer that use a well defined protocol
|
|
// to operate. As long as the object they are templated with implements that
|
|
// protocol, these smart pointers work. In several places the platform
|
|
// instantiates sp<> with non-RefBase objects; the two are not tied to each
|
|
// other.
|
|
|
|
// RefBase is such an implementation and it supports strong pointers, weak
|
|
// pointers and some magic features for the binder.
|
|
|
|
// So, when using RefBase objects, you have the ability to use strong and weak
|
|
// pointers through sp<> and wp<>.
|
|
|
|
// Normally, when the last strong pointer goes away, the object is destroyed,
|
|
// i.e. it's destructor is called. HOWEVER, parts of its associated memory is not
|
|
// freed until the last weak pointer is released.
|
|
|
|
// Weak pointers are essentially "safe" pointers. They are always safe to
|
|
// access through promote(). They may return nullptr if the object was
|
|
// destroyed because it ran out of strong pointers. This makes them good candidates
|
|
// for keys in a cache for instance.
|
|
|
|
// Weak pointers remain valid for comparison purposes even after the underlying
|
|
// object has been destroyed. Even if object A is destroyed and its memory reused
|
|
// for B, A remaining weak pointer to A will not compare equal to one to B.
|
|
// This again makes them attractive for use as keys.
|
|
|
|
// How is this supposed / intended to be used?
|
|
|
|
// Our recommendation is to use strong references (sp<>) when there is an
|
|
// ownership relation. e.g. when an object "owns" another one, use a strong
|
|
// ref. And of course use strong refs as arguments of functions (it's extremely
|
|
// rare that a function will take a wp<>).
|
|
|
|
// Typically a newly allocated object will immediately be used to initialize
|
|
// a strong pointer, which may then be used to construct or assign to other
|
|
// strong and weak pointers.
|
|
|
|
// Use weak references when there are no ownership relation. e.g. the keys in a
|
|
// cache (you cannot use plain pointers because there is no safe way to acquire
|
|
// a strong reference from a vanilla pointer).
|
|
|
|
// This implies that two objects should never (or very rarely) have sp<> on
|
|
// each other, because they can't both own each other.
|
|
|
|
|
|
// Caveats with reference counting
|
|
|
|
// Obviously, circular strong references are a big problem; this creates leaks
|
|
// and it's hard to debug -- except it's in fact really easy because RefBase has
|
|
// tons of debugging code for that. It can basically tell you exactly where the
|
|
// leak is.
|
|
|
|
// Another problem has to do with destructors with side effects. You must
|
|
// assume that the destructor of reference counted objects can be called AT ANY
|
|
// TIME. For instance code as simple as this:
|
|
|
|
// void setStuff(const sp<Stuff>& stuff) {
|
|
// std::lock_guard<std::mutex> lock(mMutex);
|
|
// mStuff = stuff;
|
|
// }
|
|
|
|
// is very dangerous. This code WILL deadlock one day or another.
|
|
|
|
// What isn't obvious is that ~Stuff() can be called as a result of the
|
|
// assignment. And it gets called with the lock held. First of all, the lock is
|
|
// protecting mStuff, not ~Stuff(). Secondly, if ~Stuff() uses its own internal
|
|
// mutex, now you have mutex ordering issues. Even worse, if ~Stuff() is
|
|
// virtual, now you're calling into "user" code (potentially), by that, I mean,
|
|
// code you didn't even write.
|
|
|
|
// A correct way to write this code is something like:
|
|
|
|
// void setStuff(const sp<Stuff>& stuff) {
|
|
// std::unique_lock<std::mutex> lock(mMutex);
|
|
// sp<Stuff> hold = mStuff;
|
|
// mStuff = stuff;
|
|
// lock.unlock();
|
|
// }
|
|
|
|
// More importantly, reference counted objects should do as little work as
|
|
// possible in their destructor, or at least be mindful that their destructor
|
|
// could be called from very weird and unintended places.
|
|
|
|
// Other more specific restrictions for wp<> and sp<>:
|
|
|
|
// Do not construct a strong pointer to "this" in an object's constructor.
|
|
// The onFirstRef() callback would be made on an incompletely constructed
|
|
// object.
|
|
// Construction of a weak pointer to "this" in an object's constructor is also
|
|
// discouraged. But the implementation was recently changed so that, in the
|
|
// absence of extendObjectLifetime() calls, weak pointers no longer impact
|
|
// object lifetime, and hence this no longer risks premature deallocation,
|
|
// and hence usually works correctly.
|
|
|
|
// Such strong or weak pointers can be safely created in the RefBase onFirstRef()
|
|
// callback.
|
|
|
|
// Use of wp::unsafe_get() for any purpose other than debugging is almost
|
|
// always wrong. Unless you somehow know that there is a longer-lived sp<> to
|
|
// the same object, it may well return a pointer to a deallocated object that
|
|
// has since been reallocated for a different purpose. (And if you know there
|
|
// is a longer-lived sp<>, why not use an sp<> directly?) A wp<> should only be
|
|
// dereferenced by using promote().
|
|
|
|
// Any object inheriting from RefBase should always be destroyed as the result
|
|
// of a reference count decrement, not via any other means. Such objects
|
|
// should never be stack allocated, or appear directly as data members in other
|
|
// objects. Objects inheriting from RefBase should have their strong reference
|
|
// count incremented as soon as possible after construction. Usually this
|
|
// will be done via construction of an sp<> to the object, but may instead
|
|
// involve other means of calling RefBase::incStrong().
|
|
// Explicitly deleting or otherwise destroying a RefBase object with outstanding
|
|
// wp<> or sp<> pointers to it will result in an abort or heap corruption.
|
|
|
|
// It is particularly important not to mix sp<> and direct storage management
|
|
// since the sp from raw pointer constructor is implicit. Thus if a RefBase-
|
|
// -derived object of type T is managed without ever incrementing its strong
|
|
// count, and accidentally passed to f(sp<T>), a strong pointer to the object
|
|
// will be temporarily constructed and destroyed, prematurely deallocating the
|
|
// object, and resulting in heap corruption. None of this would be easily
|
|
// visible in the source. See below on
|
|
// ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION for a compile time
|
|
// option which helps avoid this case.
|
|
|
|
// Extra Features:
|
|
|
|
// RefBase::extendObjectLifetime() can be used to prevent destruction of the
|
|
// object while there are still weak references. This is really special purpose
|
|
// functionality to support Binder.
|
|
|
|
// Wp::promote(), implemented via the attemptIncStrong() member function, is
|
|
// used to try to convert a weak pointer back to a strong pointer. It's the
|
|
// normal way to try to access the fields of an object referenced only through
|
|
// a wp<>. Binder code also sometimes uses attemptIncStrong() directly.
|
|
|
|
// RefBase provides a number of additional callbacks for certain reference count
|
|
// events, as well as some debugging facilities.
|
|
|
|
// Debugging support can be enabled by turning on DEBUG_REFS in RefBase.cpp.
|
|
// Otherwise little checking is provided.
|
|
|
|
// Thread safety:
|
|
|
|
// Like std::shared_ptr, sp<> and wp<> allow concurrent accesses to DIFFERENT
|
|
// sp<> and wp<> instances that happen to refer to the same underlying object.
|
|
// They do NOT support concurrent access (where at least one access is a write)
|
|
// to THE SAME sp<> or wp<>. In effect, their thread-safety properties are
|
|
// exactly like those of T*, NOT atomic<T*>.
|
|
|
|
// Safety option: ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION
|
|
//
|
|
// This flag makes the semantics for using a RefBase object with wp<> and sp<>
|
|
// much stricter by disabling implicit conversion from raw pointers to these
|
|
// objects. In order to use this, apply this flag in Android.bp like so:
|
|
//
|
|
// cflags: [
|
|
// "-DANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION",
|
|
// ],
|
|
//
|
|
// REGARDLESS of whether this flag is on, best usage of sp<> is shown below. If
|
|
// this flag is on, no other usage is possible (directly calling RefBase methods
|
|
// is possible, but seeing code using 'incStrong' instead of 'sp<>', for
|
|
// instance, should already set off big alarm bells. With carefully constructed
|
|
// data structures, it should NEVER be necessary to directly use RefBase
|
|
// methods). Proper RefBase usage:
|
|
//
|
|
// class Foo : virtual public RefBase { ... };
|
|
//
|
|
// // always construct an sp object with sp::make
|
|
// sp<Foo> myFoo = sp<Foo>::make(/*args*/);
|
|
//
|
|
// // if you need a weak pointer, it must be constructed from a strong
|
|
// // pointer
|
|
// wp<Foo> weakFoo = myFoo; // NOT myFoo.get()
|
|
//
|
|
// // If you are inside of a method of Foo and need access to a strong
|
|
// // explicitly call this function. This documents your intention to code
|
|
// // readers, and it will give a runtime error for what otherwise would
|
|
// // be potential double ownership
|
|
// .... Foo::someMethod(...) {
|
|
// // asserts if there is a memory issue
|
|
// sp<Foo> thiz = sp<Foo>::fromExisting(this);
|
|
// }
|
|
//
|
|
|
|
#ifndef ANDROID_REF_BASE_H
|
|
#define ANDROID_REF_BASE_H
|
|
|
|
#include <atomic>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <type_traits> // for common_type.
|
|
|
|
#include <stdint.h>
|
|
#include <sys/types.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
// LightRefBase used to be declared in this header, so we have to include it
|
|
#include <utils/LightRefBase.h>
|
|
|
|
#include <utils/StrongPointer.h>
|
|
#include <utils/TypeHelpers.h>
|
|
|
|
// ---------------------------------------------------------------------------
|
|
namespace android {
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
#define COMPARE_WEAK(_op_) \
|
|
template<typename U> \
|
|
inline bool operator _op_ (const U* o) const { \
|
|
return m_ptr _op_ o; \
|
|
} \
|
|
/* Needed to handle type inference for nullptr: */ \
|
|
inline bool operator _op_ (const T* o) const { \
|
|
return m_ptr _op_ o; \
|
|
}
|
|
|
|
template<template<typename C> class comparator, typename T, typename U>
|
|
static inline bool _wp_compare_(T* a, U* b) {
|
|
return comparator<typename std::common_type<T*, U*>::type>()(a, b);
|
|
}
|
|
|
|
// Use std::less and friends to avoid undefined behavior when ordering pointers
|
|
// to different objects.
|
|
#define COMPARE_WEAK_FUNCTIONAL(_op_, _compare_) \
|
|
template<typename U> \
|
|
inline bool operator _op_ (const U* o) const { \
|
|
return _wp_compare_<_compare_>(m_ptr, o); \
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// RefererenceRenamer is pure abstract, there is no virtual method
|
|
// implementation to put in a translation unit in order to silence the
|
|
// weak vtables warning.
|
|
#if defined(__clang__)
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wweak-vtables"
|
|
#endif
|
|
|
|
class ReferenceRenamer {
|
|
protected:
|
|
// destructor is purposely not virtual so we avoid code overhead from
|
|
// subclasses; we have to make it protected to guarantee that it
|
|
// cannot be called from this base class (and to make strict compilers
|
|
// happy).
|
|
~ReferenceRenamer() { }
|
|
public:
|
|
virtual void operator()(size_t i) const = 0;
|
|
};
|
|
|
|
#if defined(__clang__)
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
class RefBase
|
|
{
|
|
public:
|
|
void incStrong(const void* id) const;
|
|
void incStrongRequireStrong(const void* id) const;
|
|
void decStrong(const void* id) const;
|
|
|
|
void forceIncStrong(const void* id) const;
|
|
|
|
//! DEBUGGING ONLY: Get current strong ref count.
|
|
int32_t getStrongCount() const;
|
|
|
|
class weakref_type
|
|
{
|
|
public:
|
|
RefBase* refBase() const;
|
|
|
|
void incWeak(const void* id);
|
|
void incWeakRequireWeak(const void* id);
|
|
void decWeak(const void* id);
|
|
|
|
// acquires a strong reference if there is already one.
|
|
bool attemptIncStrong(const void* id);
|
|
|
|
// acquires a weak reference if there is already one.
|
|
// This is not always safe. see ProcessState.cpp and BpBinder.cpp
|
|
// for proper use.
|
|
bool attemptIncWeak(const void* id);
|
|
|
|
//! DEBUGGING ONLY: Get current weak ref count.
|
|
int32_t getWeakCount() const;
|
|
|
|
//! DEBUGGING ONLY: Print references held on object.
|
|
void printRefs() const;
|
|
|
|
//! DEBUGGING ONLY: Enable tracking for this object.
|
|
// enable -- enable/disable tracking
|
|
// retain -- when tracking is enable, if true, then we save a stack trace
|
|
// for each reference and dereference; when retain == false, we
|
|
// match up references and dereferences and keep only the
|
|
// outstanding ones.
|
|
|
|
void trackMe(bool enable, bool retain);
|
|
};
|
|
|
|
weakref_type* createWeak(const void* id) const;
|
|
|
|
weakref_type* getWeakRefs() const;
|
|
|
|
//! DEBUGGING ONLY: Print references held on object.
|
|
inline void printRefs() const { getWeakRefs()->printRefs(); }
|
|
|
|
//! DEBUGGING ONLY: Enable tracking of object.
|
|
inline void trackMe(bool enable, bool retain)
|
|
{
|
|
getWeakRefs()->trackMe(enable, retain);
|
|
}
|
|
|
|
protected:
|
|
// When constructing these objects, prefer using sp::make<>. Using a RefBase
|
|
// object on the stack or with other refcount mechanisms (e.g.
|
|
// std::shared_ptr) is inherently wrong. RefBase types have an implicit
|
|
// ownership model and cannot be safely used with other ownership models.
|
|
|
|
RefBase();
|
|
virtual ~RefBase();
|
|
|
|
//! Flags for extendObjectLifetime()
|
|
enum {
|
|
OBJECT_LIFETIME_STRONG = 0x0000,
|
|
OBJECT_LIFETIME_WEAK = 0x0001,
|
|
OBJECT_LIFETIME_MASK = 0x0001
|
|
};
|
|
|
|
void extendObjectLifetime(int32_t mode);
|
|
|
|
//! Flags for onIncStrongAttempted()
|
|
enum {
|
|
FIRST_INC_STRONG = 0x0001
|
|
};
|
|
|
|
// Invoked after creation of initial strong pointer/reference.
|
|
virtual void onFirstRef();
|
|
// Invoked when either the last strong reference goes away, or we need to undo
|
|
// the effect of an unnecessary onIncStrongAttempted.
|
|
virtual void onLastStrongRef(const void* id);
|
|
// Only called in OBJECT_LIFETIME_WEAK case. Returns true if OK to promote to
|
|
// strong reference. May have side effects if it returns true.
|
|
// The first flags argument is always FIRST_INC_STRONG.
|
|
// TODO: Remove initial flag argument.
|
|
virtual bool onIncStrongAttempted(uint32_t flags, const void* id);
|
|
// Invoked in the OBJECT_LIFETIME_WEAK case when the last reference of either
|
|
// kind goes away. Unused.
|
|
// TODO: Remove.
|
|
virtual void onLastWeakRef(const void* id);
|
|
|
|
private:
|
|
friend class weakref_type;
|
|
class weakref_impl;
|
|
|
|
RefBase(const RefBase& o);
|
|
RefBase& operator=(const RefBase& o);
|
|
|
|
private:
|
|
friend class ReferenceMover;
|
|
|
|
static void renameRefs(size_t n, const ReferenceRenamer& renamer);
|
|
|
|
static void renameRefId(weakref_type* ref,
|
|
const void* old_id, const void* new_id);
|
|
|
|
static void renameRefId(RefBase* ref,
|
|
const void* old_id, const void* new_id);
|
|
|
|
weakref_impl* const mRefs;
|
|
};
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
template <typename T>
|
|
class wp
|
|
{
|
|
public:
|
|
typedef typename RefBase::weakref_type weakref_type;
|
|
|
|
inline wp() : m_ptr(nullptr), m_refs(nullptr) { }
|
|
|
|
// if nullptr, returns nullptr
|
|
//
|
|
// if a weak pointer is already available, this will retrieve it,
|
|
// otherwise, this will abort
|
|
static inline wp<T> fromExisting(T* other);
|
|
|
|
// for more information about this flag, see above
|
|
#if defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION)
|
|
wp(std::nullptr_t) : wp() {}
|
|
#else
|
|
wp(T* other); // NOLINT(implicit)
|
|
template <typename U>
|
|
wp(U* other); // NOLINT(implicit)
|
|
wp& operator=(T* other);
|
|
template <typename U>
|
|
wp& operator=(U* other);
|
|
#endif
|
|
|
|
wp(const wp<T>& other);
|
|
explicit wp(const sp<T>& other);
|
|
|
|
template<typename U> wp(const sp<U>& other); // NOLINT(implicit)
|
|
template<typename U> wp(const wp<U>& other); // NOLINT(implicit)
|
|
|
|
~wp();
|
|
|
|
// Assignment
|
|
|
|
wp& operator = (const wp<T>& other);
|
|
wp& operator = (const sp<T>& other);
|
|
|
|
template<typename U> wp& operator = (const wp<U>& other);
|
|
template<typename U> wp& operator = (const sp<U>& other);
|
|
|
|
void set_object_and_refs(T* other, weakref_type* refs);
|
|
|
|
// promotion to sp
|
|
|
|
sp<T> promote() const;
|
|
|
|
// Reset
|
|
|
|
void clear();
|
|
|
|
// Accessors
|
|
|
|
inline weakref_type* get_refs() const { return m_refs; }
|
|
|
|
inline T* unsafe_get() const { return m_ptr; }
|
|
|
|
// Operators
|
|
|
|
COMPARE_WEAK(==)
|
|
COMPARE_WEAK(!=)
|
|
COMPARE_WEAK_FUNCTIONAL(>, std::greater)
|
|
COMPARE_WEAK_FUNCTIONAL(<, std::less)
|
|
COMPARE_WEAK_FUNCTIONAL(<=, std::less_equal)
|
|
COMPARE_WEAK_FUNCTIONAL(>=, std::greater_equal)
|
|
|
|
template<typename U>
|
|
inline bool operator == (const wp<U>& o) const {
|
|
return m_refs == o.m_refs; // Implies m_ptr == o.mptr; see invariants below.
|
|
}
|
|
|
|
template<typename U>
|
|
inline bool operator == (const sp<U>& o) const {
|
|
// Just comparing m_ptr fields is often dangerous, since wp<> may refer to an older
|
|
// object at the same address.
|
|
if (o == nullptr) {
|
|
return m_ptr == nullptr;
|
|
} else {
|
|
return m_refs == o->getWeakRefs(); // Implies m_ptr == o.mptr.
|
|
}
|
|
}
|
|
|
|
template<typename U>
|
|
inline bool operator != (const sp<U>& o) const {
|
|
return !(*this == o);
|
|
}
|
|
|
|
template<typename U>
|
|
inline bool operator > (const wp<U>& o) const {
|
|
if (m_ptr == o.m_ptr) {
|
|
return _wp_compare_<std::greater>(m_refs, o.m_refs);
|
|
} else {
|
|
return _wp_compare_<std::greater>(m_ptr, o.m_ptr);
|
|
}
|
|
}
|
|
|
|
template<typename U>
|
|
inline bool operator < (const wp<U>& o) const {
|
|
if (m_ptr == o.m_ptr) {
|
|
return _wp_compare_<std::less>(m_refs, o.m_refs);
|
|
} else {
|
|
return _wp_compare_<std::less>(m_ptr, o.m_ptr);
|
|
}
|
|
}
|
|
template<typename U> inline bool operator != (const wp<U>& o) const { return !operator == (o); }
|
|
template<typename U> inline bool operator <= (const wp<U>& o) const { return !operator > (o); }
|
|
template<typename U> inline bool operator >= (const wp<U>& o) const { return !operator < (o); }
|
|
|
|
private:
|
|
template<typename Y> friend class sp;
|
|
template<typename Y> friend class wp;
|
|
|
|
T* m_ptr;
|
|
weakref_type* m_refs;
|
|
};
|
|
|
|
#undef COMPARE_WEAK
|
|
#undef COMPARE_WEAK_FUNCTIONAL
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// No user serviceable parts below here.
|
|
|
|
// Implementation invariants:
|
|
// Either
|
|
// 1) m_ptr and m_refs are both null, or
|
|
// 2) m_refs == m_ptr->mRefs, or
|
|
// 3) *m_ptr is no longer live, and m_refs points to the weakref_type object that corresponded
|
|
// to m_ptr while it was live. *m_refs remains live while a wp<> refers to it.
|
|
//
|
|
// The m_refs field in a RefBase object is allocated on construction, unique to that RefBase
|
|
// object, and never changes. Thus if two wp's have identical m_refs fields, they are either both
|
|
// null or point to the same object. If two wp's have identical m_ptr fields, they either both
|
|
// point to the same live object and thus have the same m_ref fields, or at least one of the
|
|
// objects is no longer live.
|
|
//
|
|
// Note that the above comparison operations go out of their way to provide an ordering consistent
|
|
// with ordinary pointer comparison; otherwise they could ignore m_ptr, and just compare m_refs.
|
|
|
|
template <typename T>
|
|
wp<T> wp<T>::fromExisting(T* other) {
|
|
if (!other) return nullptr;
|
|
|
|
auto refs = other->getWeakRefs();
|
|
refs->incWeakRequireWeak(other);
|
|
|
|
wp<T> ret;
|
|
ret.m_ptr = other;
|
|
ret.m_refs = refs;
|
|
return ret;
|
|
}
|
|
|
|
#if !defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION)
|
|
template<typename T>
|
|
wp<T>::wp(T* other)
|
|
: m_ptr(other)
|
|
{
|
|
m_refs = other ? m_refs = other->createWeak(this) : nullptr;
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
wp<T>::wp(U* other) : m_ptr(other) {
|
|
m_refs = other ? other->createWeak(this) : nullptr;
|
|
}
|
|
|
|
template <typename T>
|
|
wp<T>& wp<T>::operator=(T* other) {
|
|
weakref_type* newRefs = other ? other->createWeak(this) : nullptr;
|
|
if (m_ptr) m_refs->decWeak(this);
|
|
m_ptr = other;
|
|
m_refs = newRefs;
|
|
return *this;
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
wp<T>& wp<T>::operator=(U* other) {
|
|
weakref_type* newRefs = other ? other->createWeak(this) : 0;
|
|
if (m_ptr) m_refs->decWeak(this);
|
|
m_ptr = other;
|
|
m_refs = newRefs;
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
template<typename T>
|
|
wp<T>::wp(const wp<T>& other)
|
|
: m_ptr(other.m_ptr), m_refs(other.m_refs)
|
|
{
|
|
if (m_ptr) m_refs->incWeak(this);
|
|
}
|
|
|
|
template<typename T>
|
|
wp<T>::wp(const sp<T>& other)
|
|
: m_ptr(other.m_ptr)
|
|
{
|
|
m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
|
|
}
|
|
|
|
template<typename T> template<typename U>
|
|
wp<T>::wp(const wp<U>& other)
|
|
: m_ptr(other.m_ptr)
|
|
{
|
|
if (m_ptr) {
|
|
m_refs = other.m_refs;
|
|
m_refs->incWeak(this);
|
|
} else {
|
|
m_refs = nullptr;
|
|
}
|
|
}
|
|
|
|
template<typename T> template<typename U>
|
|
wp<T>::wp(const sp<U>& other)
|
|
: m_ptr(other.m_ptr)
|
|
{
|
|
m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
|
|
}
|
|
|
|
template<typename T>
|
|
wp<T>::~wp()
|
|
{
|
|
if (m_ptr) m_refs->decWeak(this);
|
|
}
|
|
|
|
template<typename T>
|
|
wp<T>& wp<T>::operator = (const wp<T>& other)
|
|
{
|
|
weakref_type* otherRefs(other.m_refs);
|
|
T* otherPtr(other.m_ptr);
|
|
if (otherPtr) otherRefs->incWeak(this);
|
|
if (m_ptr) m_refs->decWeak(this);
|
|
m_ptr = otherPtr;
|
|
m_refs = otherRefs;
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
wp<T>& wp<T>::operator = (const sp<T>& other)
|
|
{
|
|
weakref_type* newRefs =
|
|
other != nullptr ? other->createWeak(this) : nullptr;
|
|
T* otherPtr(other.m_ptr);
|
|
if (m_ptr) m_refs->decWeak(this);
|
|
m_ptr = otherPtr;
|
|
m_refs = newRefs;
|
|
return *this;
|
|
}
|
|
|
|
template<typename T> template<typename U>
|
|
wp<T>& wp<T>::operator = (const wp<U>& other)
|
|
{
|
|
weakref_type* otherRefs(other.m_refs);
|
|
U* otherPtr(other.m_ptr);
|
|
if (otherPtr) otherRefs->incWeak(this);
|
|
if (m_ptr) m_refs->decWeak(this);
|
|
m_ptr = otherPtr;
|
|
m_refs = otherRefs;
|
|
return *this;
|
|
}
|
|
|
|
template<typename T> template<typename U>
|
|
wp<T>& wp<T>::operator = (const sp<U>& other)
|
|
{
|
|
weakref_type* newRefs =
|
|
other != nullptr ? other->createWeak(this) : 0;
|
|
U* otherPtr(other.m_ptr);
|
|
if (m_ptr) m_refs->decWeak(this);
|
|
m_ptr = otherPtr;
|
|
m_refs = newRefs;
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
void wp<T>::set_object_and_refs(T* other, weakref_type* refs)
|
|
{
|
|
if (other) refs->incWeak(this);
|
|
if (m_ptr) m_refs->decWeak(this);
|
|
m_ptr = other;
|
|
m_refs = refs;
|
|
}
|
|
|
|
template<typename T>
|
|
sp<T> wp<T>::promote() const
|
|
{
|
|
sp<T> result;
|
|
if (m_ptr && m_refs->attemptIncStrong(&result)) {
|
|
result.set_pointer(m_ptr);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template<typename T>
|
|
void wp<T>::clear()
|
|
{
|
|
if (m_ptr) {
|
|
m_refs->decWeak(this);
|
|
m_refs = 0;
|
|
m_ptr = 0;
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// this class just serves as a namespace so TYPE::moveReferences can stay
|
|
// private.
|
|
class ReferenceMover {
|
|
public:
|
|
// it would be nice if we could make sure no extra code is generated
|
|
// for sp<TYPE> or wp<TYPE> when TYPE is a descendant of RefBase:
|
|
// Using a sp<RefBase> override doesn't work; it's a bit like we wanted
|
|
// a template<typename TYPE inherits RefBase> template...
|
|
|
|
template<typename TYPE> static inline
|
|
void move_references(sp<TYPE>* dest, sp<TYPE> const* src, size_t n) {
|
|
|
|
class Renamer : public ReferenceRenamer {
|
|
sp<TYPE>* d_;
|
|
sp<TYPE> const* s_;
|
|
virtual void operator()(size_t i) const {
|
|
// The id are known to be the sp<>'s this pointer
|
|
TYPE::renameRefId(d_[i].get(), &s_[i], &d_[i]);
|
|
}
|
|
public:
|
|
Renamer(sp<TYPE>* d, sp<TYPE> const* s) : d_(d), s_(s) { }
|
|
virtual ~Renamer() { }
|
|
};
|
|
|
|
memmove(dest, src, n*sizeof(sp<TYPE>));
|
|
TYPE::renameRefs(n, Renamer(dest, src));
|
|
}
|
|
|
|
|
|
template<typename TYPE> static inline
|
|
void move_references(wp<TYPE>* dest, wp<TYPE> const* src, size_t n) {
|
|
|
|
class Renamer : public ReferenceRenamer {
|
|
wp<TYPE>* d_;
|
|
wp<TYPE> const* s_;
|
|
virtual void operator()(size_t i) const {
|
|
// The id are known to be the wp<>'s this pointer
|
|
TYPE::renameRefId(d_[i].get_refs(), &s_[i], &d_[i]);
|
|
}
|
|
public:
|
|
Renamer(wp<TYPE>* rd, wp<TYPE> const* rs) : d_(rd), s_(rs) { }
|
|
virtual ~Renamer() { }
|
|
};
|
|
|
|
memmove(dest, src, n*sizeof(wp<TYPE>));
|
|
TYPE::renameRefs(n, Renamer(dest, src));
|
|
}
|
|
};
|
|
|
|
// specialization for moving sp<> and wp<> types.
|
|
// these are used by the [Sorted|Keyed]Vector<> implementations
|
|
// sp<> and wp<> need to be handled specially, because they do not
|
|
// have trivial copy operation in the general case (see RefBase.cpp
|
|
// when DEBUG ops are enabled), but can be implemented very
|
|
// efficiently in most cases.
|
|
|
|
template<typename TYPE> inline
|
|
void move_forward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
|
|
ReferenceMover::move_references(d, s, n);
|
|
}
|
|
|
|
template<typename TYPE> inline
|
|
void move_backward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
|
|
ReferenceMover::move_references(d, s, n);
|
|
}
|
|
|
|
template<typename TYPE> inline
|
|
void move_forward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
|
|
ReferenceMover::move_references(d, s, n);
|
|
}
|
|
|
|
template<typename TYPE> inline
|
|
void move_backward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
|
|
ReferenceMover::move_references(d, s, n);
|
|
}
|
|
|
|
} // namespace android
|
|
|
|
namespace libutilsinternal {
|
|
template <typename T, typename = void>
|
|
struct is_complete_type : std::false_type {};
|
|
|
|
template <typename T>
|
|
struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
|
|
} // namespace libutilsinternal
|
|
|
|
namespace std {
|
|
|
|
// Define `RefBase` specific versions of `std::make_shared` and
|
|
// `std::make_unique` to block people from using them. Using them to allocate
|
|
// `RefBase` objects results in double ownership. Use
|
|
// `sp<T>::make(...)` instead.
|
|
//
|
|
// Note: We exclude incomplete types because `std::is_base_of` is undefined in
|
|
// that case.
|
|
|
|
template <typename T, typename... Args,
|
|
typename std::enable_if<libutilsinternal::is_complete_type<T>::value, bool>::value = true,
|
|
typename std::enable_if<std::is_base_of<android::RefBase, T>::value, bool>::value = true>
|
|
shared_ptr<T> make_shared(Args...) { // SEE COMMENT ABOVE.
|
|
static_assert(!std::is_base_of<android::RefBase, T>::value, "Must use RefBase with sp<>");
|
|
}
|
|
|
|
template <typename T, typename... Args,
|
|
typename std::enable_if<libutilsinternal::is_complete_type<T>::value, bool>::value = true,
|
|
typename std::enable_if<std::is_base_of<android::RefBase, T>::value, bool>::value = true>
|
|
unique_ptr<T> make_unique(Args...) { // SEE COMMENT ABOVE.
|
|
static_assert(!std::is_base_of<android::RefBase, T>::value, "Must use RefBase with sp<>");
|
|
}
|
|
|
|
} // namespace std
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
#endif // ANDROID_REF_BASE_H
|