android_system_core/libutils/include/utils/RefBase.h

820 lines
28 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// SOME COMMENTS ABOUT USAGE:
// This provides primarily wp<> weak pointer types and RefBase, which work
// together with sp<> from <StrongPointer.h>.
// sp<> (and wp<>) are a type of smart pointer that use a well defined protocol
// to operate. As long as the object they are templated with implements that
// protocol, these smart pointers work. In several places the platform
// instantiates sp<> with non-RefBase objects; the two are not tied to each
// other.
// RefBase is such an implementation and it supports strong pointers, weak
// pointers and some magic features for the binder.
// So, when using RefBase objects, you have the ability to use strong and weak
// pointers through sp<> and wp<>.
// Normally, when the last strong pointer goes away, the object is destroyed,
// i.e. it's destructor is called. HOWEVER, parts of its associated memory is not
// freed until the last weak pointer is released.
// Weak pointers are essentially "safe" pointers. They are always safe to
// access through promote(). They may return nullptr if the object was
// destroyed because it ran out of strong pointers. This makes them good candidates
// for keys in a cache for instance.
// Weak pointers remain valid for comparison purposes even after the underlying
// object has been destroyed. Even if object A is destroyed and its memory reused
// for B, A remaining weak pointer to A will not compare equal to one to B.
// This again makes them attractive for use as keys.
// How is this supposed / intended to be used?
// Our recommendation is to use strong references (sp<>) when there is an
// ownership relation. e.g. when an object "owns" another one, use a strong
// ref. And of course use strong refs as arguments of functions (it's extremely
// rare that a function will take a wp<>).
// Typically a newly allocated object will immediately be used to initialize
// a strong pointer, which may then be used to construct or assign to other
// strong and weak pointers.
// Use weak references when there are no ownership relation. e.g. the keys in a
// cache (you cannot use plain pointers because there is no safe way to acquire
// a strong reference from a vanilla pointer).
// This implies that two objects should never (or very rarely) have sp<> on
// each other, because they can't both own each other.
// Caveats with reference counting
// Obviously, circular strong references are a big problem; this creates leaks
// and it's hard to debug -- except it's in fact really easy because RefBase has
// tons of debugging code for that. It can basically tell you exactly where the
// leak is.
// Another problem has to do with destructors with side effects. You must
// assume that the destructor of reference counted objects can be called AT ANY
// TIME. For instance code as simple as this:
// void setStuff(const sp<Stuff>& stuff) {
// std::lock_guard<std::mutex> lock(mMutex);
// mStuff = stuff;
// }
// is very dangerous. This code WILL deadlock one day or another.
// What isn't obvious is that ~Stuff() can be called as a result of the
// assignment. And it gets called with the lock held. First of all, the lock is
// protecting mStuff, not ~Stuff(). Secondly, if ~Stuff() uses its own internal
// mutex, now you have mutex ordering issues. Even worse, if ~Stuff() is
// virtual, now you're calling into "user" code (potentially), by that, I mean,
// code you didn't even write.
// A correct way to write this code is something like:
// void setStuff(const sp<Stuff>& stuff) {
// std::unique_lock<std::mutex> lock(mMutex);
// sp<Stuff> hold = mStuff;
// mStuff = stuff;
// lock.unlock();
// }
// More importantly, reference counted objects should do as little work as
// possible in their destructor, or at least be mindful that their destructor
// could be called from very weird and unintended places.
// Other more specific restrictions for wp<> and sp<>:
// Do not construct a strong pointer to "this" in an object's constructor.
// The onFirstRef() callback would be made on an incompletely constructed
// object.
// Construction of a weak pointer to "this" in an object's constructor is also
// discouraged. But the implementation was recently changed so that, in the
// absence of extendObjectLifetime() calls, weak pointers no longer impact
// object lifetime, and hence this no longer risks premature deallocation,
// and hence usually works correctly.
// Such strong or weak pointers can be safely created in the RefBase onFirstRef()
// callback.
// Use of wp::unsafe_get() for any purpose other than debugging is almost
// always wrong. Unless you somehow know that there is a longer-lived sp<> to
// the same object, it may well return a pointer to a deallocated object that
// has since been reallocated for a different purpose. (And if you know there
// is a longer-lived sp<>, why not use an sp<> directly?) A wp<> should only be
// dereferenced by using promote().
// Any object inheriting from RefBase should always be destroyed as the result
// of a reference count decrement, not via any other means. Such objects
// should never be stack allocated, or appear directly as data members in other
// objects. Objects inheriting from RefBase should have their strong reference
// count incremented as soon as possible after construction. Usually this
// will be done via construction of an sp<> to the object, but may instead
// involve other means of calling RefBase::incStrong().
// Explicitly deleting or otherwise destroying a RefBase object with outstanding
// wp<> or sp<> pointers to it will result in an abort or heap corruption.
// It is particularly important not to mix sp<> and direct storage management
// since the sp from raw pointer constructor is implicit. Thus if a RefBase-
// -derived object of type T is managed without ever incrementing its strong
// count, and accidentally passed to f(sp<T>), a strong pointer to the object
// will be temporarily constructed and destroyed, prematurely deallocating the
// object, and resulting in heap corruption. None of this would be easily
// visible in the source. See below on
// ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION for a compile time
// option which helps avoid this case.
// Extra Features:
// RefBase::extendObjectLifetime() can be used to prevent destruction of the
// object while there are still weak references. This is really special purpose
// functionality to support Binder.
// Wp::promote(), implemented via the attemptIncStrong() member function, is
// used to try to convert a weak pointer back to a strong pointer. It's the
// normal way to try to access the fields of an object referenced only through
// a wp<>. Binder code also sometimes uses attemptIncStrong() directly.
// RefBase provides a number of additional callbacks for certain reference count
// events, as well as some debugging facilities.
// Debugging support can be enabled by turning on DEBUG_REFS in RefBase.cpp.
// Otherwise little checking is provided.
// Thread safety:
// Like std::shared_ptr, sp<> and wp<> allow concurrent accesses to DIFFERENT
// sp<> and wp<> instances that happen to refer to the same underlying object.
// They do NOT support concurrent access (where at least one access is a write)
// to THE SAME sp<> or wp<>. In effect, their thread-safety properties are
// exactly like those of T*, NOT atomic<T*>.
// Safety option: ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION
//
// This flag makes the semantics for using a RefBase object with wp<> and sp<>
// much stricter by disabling implicit conversion from raw pointers to these
// objects. In order to use this, apply this flag in Android.bp like so:
//
// cflags: [
// "-DANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION",
// ],
//
// REGARDLESS of whether this flag is on, best usage of sp<> is shown below. If
// this flag is on, no other usage is possible (directly calling RefBase methods
// is possible, but seeing code using 'incStrong' instead of 'sp<>', for
// instance, should already set off big alarm bells. With carefully constructed
// data structures, it should NEVER be necessary to directly use RefBase
// methods). Proper RefBase usage:
//
// class Foo : virtual public RefBase { ... };
//
// // always construct an sp object with sp::make
// sp<Foo> myFoo = sp<Foo>::make(/*args*/);
//
// // if you need a weak pointer, it must be constructed from a strong
// // pointer
// wp<Foo> weakFoo = myFoo; // NOT myFoo.get()
//
// // If you are inside of a method of Foo and need access to a strong
// // explicitly call this function. This documents your intention to code
// // readers, and it will give a runtime error for what otherwise would
// // be potential double ownership
// .... Foo::someMethod(...) {
// // asserts if there is a memory issue
// sp<Foo> thiz = sp<Foo>::fromExisting(this);
// }
//
#ifndef ANDROID_REF_BASE_H
#define ANDROID_REF_BASE_H
#include <atomic>
#include <functional>
#include <memory>
#include <type_traits> // for common_type.
#include <stdint.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
// LightRefBase used to be declared in this header, so we have to include it
#include <utils/LightRefBase.h>
#include <utils/StrongPointer.h>
#include <utils/TypeHelpers.h>
// ---------------------------------------------------------------------------
namespace android {
// ---------------------------------------------------------------------------
#define COMPARE_WEAK(_op_) \
template<typename U> \
inline bool operator _op_ (const U* o) const { \
return m_ptr _op_ o; \
} \
/* Needed to handle type inference for nullptr: */ \
inline bool operator _op_ (const T* o) const { \
return m_ptr _op_ o; \
}
template<template<typename C> class comparator, typename T, typename U>
static inline bool _wp_compare_(T* a, U* b) {
return comparator<typename std::common_type<T*, U*>::type>()(a, b);
}
// Use std::less and friends to avoid undefined behavior when ordering pointers
// to different objects.
#define COMPARE_WEAK_FUNCTIONAL(_op_, _compare_) \
template<typename U> \
inline bool operator _op_ (const U* o) const { \
return _wp_compare_<_compare_>(m_ptr, o); \
}
// ---------------------------------------------------------------------------
// RefererenceRenamer is pure abstract, there is no virtual method
// implementation to put in a translation unit in order to silence the
// weak vtables warning.
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wweak-vtables"
#endif
class ReferenceRenamer {
protected:
// destructor is purposely not virtual so we avoid code overhead from
// subclasses; we have to make it protected to guarantee that it
// cannot be called from this base class (and to make strict compilers
// happy).
~ReferenceRenamer() { }
public:
virtual void operator()(size_t i) const = 0;
};
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
// ---------------------------------------------------------------------------
class RefBase
{
public:
void incStrong(const void* id) const;
void incStrongRequireStrong(const void* id) const;
void decStrong(const void* id) const;
void forceIncStrong(const void* id) const;
//! DEBUGGING ONLY: Get current strong ref count.
int32_t getStrongCount() const;
class weakref_type
{
public:
RefBase* refBase() const;
void incWeak(const void* id);
void incWeakRequireWeak(const void* id);
void decWeak(const void* id);
// acquires a strong reference if there is already one.
bool attemptIncStrong(const void* id);
// acquires a weak reference if there is already one.
// This is not always safe. see ProcessState.cpp and BpBinder.cpp
// for proper use.
bool attemptIncWeak(const void* id);
//! DEBUGGING ONLY: Get current weak ref count.
int32_t getWeakCount() const;
//! DEBUGGING ONLY: Print references held on object.
void printRefs() const;
//! DEBUGGING ONLY: Enable tracking for this object.
// enable -- enable/disable tracking
// retain -- when tracking is enable, if true, then we save a stack trace
// for each reference and dereference; when retain == false, we
// match up references and dereferences and keep only the
// outstanding ones.
void trackMe(bool enable, bool retain);
};
weakref_type* createWeak(const void* id) const;
weakref_type* getWeakRefs() const;
//! DEBUGGING ONLY: Print references held on object.
inline void printRefs() const { getWeakRefs()->printRefs(); }
//! DEBUGGING ONLY: Enable tracking of object.
inline void trackMe(bool enable, bool retain)
{
getWeakRefs()->trackMe(enable, retain);
}
protected:
// When constructing these objects, prefer using sp::make<>. Using a RefBase
// object on the stack or with other refcount mechanisms (e.g.
// std::shared_ptr) is inherently wrong. RefBase types have an implicit
// ownership model and cannot be safely used with other ownership models.
RefBase();
virtual ~RefBase();
//! Flags for extendObjectLifetime()
enum {
OBJECT_LIFETIME_STRONG = 0x0000,
OBJECT_LIFETIME_WEAK = 0x0001,
OBJECT_LIFETIME_MASK = 0x0001
};
void extendObjectLifetime(int32_t mode);
//! Flags for onIncStrongAttempted()
enum {
FIRST_INC_STRONG = 0x0001
};
// Invoked after creation of initial strong pointer/reference.
virtual void onFirstRef();
// Invoked when either the last strong reference goes away, or we need to undo
// the effect of an unnecessary onIncStrongAttempted.
virtual void onLastStrongRef(const void* id);
// Only called in OBJECT_LIFETIME_WEAK case. Returns true if OK to promote to
// strong reference. May have side effects if it returns true.
// The first flags argument is always FIRST_INC_STRONG.
// TODO: Remove initial flag argument.
virtual bool onIncStrongAttempted(uint32_t flags, const void* id);
// Invoked in the OBJECT_LIFETIME_WEAK case when the last reference of either
// kind goes away. Unused.
// TODO: Remove.
virtual void onLastWeakRef(const void* id);
private:
friend class weakref_type;
class weakref_impl;
RefBase(const RefBase& o);
RefBase& operator=(const RefBase& o);
private:
friend class ReferenceMover;
static void renameRefs(size_t n, const ReferenceRenamer& renamer);
static void renameRefId(weakref_type* ref,
const void* old_id, const void* new_id);
static void renameRefId(RefBase* ref,
const void* old_id, const void* new_id);
weakref_impl* const mRefs;
};
// ---------------------------------------------------------------------------
template <typename T>
class wp
{
public:
typedef typename RefBase::weakref_type weakref_type;
inline wp() : m_ptr(nullptr), m_refs(nullptr) { }
// if nullptr, returns nullptr
//
// if a weak pointer is already available, this will retrieve it,
// otherwise, this will abort
static inline wp<T> fromExisting(T* other);
// for more information about this flag, see above
#if defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION)
wp(std::nullptr_t) : wp() {}
#else
wp(T* other); // NOLINT(implicit)
template <typename U>
wp(U* other); // NOLINT(implicit)
wp& operator=(T* other);
template <typename U>
wp& operator=(U* other);
#endif
wp(const wp<T>& other);
explicit wp(const sp<T>& other);
template<typename U> wp(const sp<U>& other); // NOLINT(implicit)
template<typename U> wp(const wp<U>& other); // NOLINT(implicit)
~wp();
// Assignment
wp& operator = (const wp<T>& other);
wp& operator = (const sp<T>& other);
template<typename U> wp& operator = (const wp<U>& other);
template<typename U> wp& operator = (const sp<U>& other);
void set_object_and_refs(T* other, weakref_type* refs);
// promotion to sp
sp<T> promote() const;
// Reset
void clear();
// Accessors
inline weakref_type* get_refs() const { return m_refs; }
inline T* unsafe_get() const { return m_ptr; }
// Operators
COMPARE_WEAK(==)
COMPARE_WEAK(!=)
COMPARE_WEAK_FUNCTIONAL(>, std::greater)
COMPARE_WEAK_FUNCTIONAL(<, std::less)
COMPARE_WEAK_FUNCTIONAL(<=, std::less_equal)
COMPARE_WEAK_FUNCTIONAL(>=, std::greater_equal)
template<typename U>
inline bool operator == (const wp<U>& o) const {
return m_refs == o.m_refs; // Implies m_ptr == o.mptr; see invariants below.
}
template<typename U>
inline bool operator == (const sp<U>& o) const {
// Just comparing m_ptr fields is often dangerous, since wp<> may refer to an older
// object at the same address.
if (o == nullptr) {
return m_ptr == nullptr;
} else {
return m_refs == o->getWeakRefs(); // Implies m_ptr == o.mptr.
}
}
template<typename U>
inline bool operator != (const sp<U>& o) const {
return !(*this == o);
}
template<typename U>
inline bool operator > (const wp<U>& o) const {
if (m_ptr == o.m_ptr) {
return _wp_compare_<std::greater>(m_refs, o.m_refs);
} else {
return _wp_compare_<std::greater>(m_ptr, o.m_ptr);
}
}
template<typename U>
inline bool operator < (const wp<U>& o) const {
if (m_ptr == o.m_ptr) {
return _wp_compare_<std::less>(m_refs, o.m_refs);
} else {
return _wp_compare_<std::less>(m_ptr, o.m_ptr);
}
}
template<typename U> inline bool operator != (const wp<U>& o) const { return !operator == (o); }
template<typename U> inline bool operator <= (const wp<U>& o) const { return !operator > (o); }
template<typename U> inline bool operator >= (const wp<U>& o) const { return !operator < (o); }
private:
template<typename Y> friend class sp;
template<typename Y> friend class wp;
T* m_ptr;
weakref_type* m_refs;
};
#undef COMPARE_WEAK
#undef COMPARE_WEAK_FUNCTIONAL
// ---------------------------------------------------------------------------
// No user serviceable parts below here.
// Implementation invariants:
// Either
// 1) m_ptr and m_refs are both null, or
// 2) m_refs == m_ptr->mRefs, or
// 3) *m_ptr is no longer live, and m_refs points to the weakref_type object that corresponded
// to m_ptr while it was live. *m_refs remains live while a wp<> refers to it.
//
// The m_refs field in a RefBase object is allocated on construction, unique to that RefBase
// object, and never changes. Thus if two wp's have identical m_refs fields, they are either both
// null or point to the same object. If two wp's have identical m_ptr fields, they either both
// point to the same live object and thus have the same m_ref fields, or at least one of the
// objects is no longer live.
//
// Note that the above comparison operations go out of their way to provide an ordering consistent
// with ordinary pointer comparison; otherwise they could ignore m_ptr, and just compare m_refs.
template <typename T>
wp<T> wp<T>::fromExisting(T* other) {
if (!other) return nullptr;
auto refs = other->getWeakRefs();
refs->incWeakRequireWeak(other);
wp<T> ret;
ret.m_ptr = other;
ret.m_refs = refs;
return ret;
}
#if !defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION)
template<typename T>
wp<T>::wp(T* other)
: m_ptr(other)
{
m_refs = other ? m_refs = other->createWeak(this) : nullptr;
}
template <typename T>
template <typename U>
wp<T>::wp(U* other) : m_ptr(other) {
m_refs = other ? other->createWeak(this) : nullptr;
}
template <typename T>
wp<T>& wp<T>::operator=(T* other) {
weakref_type* newRefs = other ? other->createWeak(this) : nullptr;
if (m_ptr) m_refs->decWeak(this);
m_ptr = other;
m_refs = newRefs;
return *this;
}
template <typename T>
template <typename U>
wp<T>& wp<T>::operator=(U* other) {
weakref_type* newRefs = other ? other->createWeak(this) : 0;
if (m_ptr) m_refs->decWeak(this);
m_ptr = other;
m_refs = newRefs;
return *this;
}
#endif
template<typename T>
wp<T>::wp(const wp<T>& other)
: m_ptr(other.m_ptr), m_refs(other.m_refs)
{
if (m_ptr) m_refs->incWeak(this);
}
template<typename T>
wp<T>::wp(const sp<T>& other)
: m_ptr(other.m_ptr)
{
m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
}
template<typename T> template<typename U>
wp<T>::wp(const wp<U>& other)
: m_ptr(other.m_ptr)
{
if (m_ptr) {
m_refs = other.m_refs;
m_refs->incWeak(this);
} else {
m_refs = nullptr;
}
}
template<typename T> template<typename U>
wp<T>::wp(const sp<U>& other)
: m_ptr(other.m_ptr)
{
m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
}
template<typename T>
wp<T>::~wp()
{
if (m_ptr) m_refs->decWeak(this);
}
template<typename T>
wp<T>& wp<T>::operator = (const wp<T>& other)
{
weakref_type* otherRefs(other.m_refs);
T* otherPtr(other.m_ptr);
if (otherPtr) otherRefs->incWeak(this);
if (m_ptr) m_refs->decWeak(this);
m_ptr = otherPtr;
m_refs = otherRefs;
return *this;
}
template<typename T>
wp<T>& wp<T>::operator = (const sp<T>& other)
{
weakref_type* newRefs =
other != nullptr ? other->createWeak(this) : nullptr;
T* otherPtr(other.m_ptr);
if (m_ptr) m_refs->decWeak(this);
m_ptr = otherPtr;
m_refs = newRefs;
return *this;
}
template<typename T> template<typename U>
wp<T>& wp<T>::operator = (const wp<U>& other)
{
weakref_type* otherRefs(other.m_refs);
U* otherPtr(other.m_ptr);
if (otherPtr) otherRefs->incWeak(this);
if (m_ptr) m_refs->decWeak(this);
m_ptr = otherPtr;
m_refs = otherRefs;
return *this;
}
template<typename T> template<typename U>
wp<T>& wp<T>::operator = (const sp<U>& other)
{
weakref_type* newRefs =
other != nullptr ? other->createWeak(this) : 0;
U* otherPtr(other.m_ptr);
if (m_ptr) m_refs->decWeak(this);
m_ptr = otherPtr;
m_refs = newRefs;
return *this;
}
template<typename T>
void wp<T>::set_object_and_refs(T* other, weakref_type* refs)
{
if (other) refs->incWeak(this);
if (m_ptr) m_refs->decWeak(this);
m_ptr = other;
m_refs = refs;
}
template<typename T>
sp<T> wp<T>::promote() const
{
sp<T> result;
if (m_ptr && m_refs->attemptIncStrong(&result)) {
result.set_pointer(m_ptr);
}
return result;
}
template<typename T>
void wp<T>::clear()
{
if (m_ptr) {
m_refs->decWeak(this);
m_refs = 0;
m_ptr = 0;
}
}
// ---------------------------------------------------------------------------
// this class just serves as a namespace so TYPE::moveReferences can stay
// private.
class ReferenceMover {
public:
// it would be nice if we could make sure no extra code is generated
// for sp<TYPE> or wp<TYPE> when TYPE is a descendant of RefBase:
// Using a sp<RefBase> override doesn't work; it's a bit like we wanted
// a template<typename TYPE inherits RefBase> template...
template<typename TYPE> static inline
void move_references(sp<TYPE>* dest, sp<TYPE> const* src, size_t n) {
class Renamer : public ReferenceRenamer {
sp<TYPE>* d_;
sp<TYPE> const* s_;
virtual void operator()(size_t i) const {
// The id are known to be the sp<>'s this pointer
TYPE::renameRefId(d_[i].get(), &s_[i], &d_[i]);
}
public:
Renamer(sp<TYPE>* d, sp<TYPE> const* s) : d_(d), s_(s) { }
virtual ~Renamer() { }
};
memmove(dest, src, n*sizeof(sp<TYPE>));
TYPE::renameRefs(n, Renamer(dest, src));
}
template<typename TYPE> static inline
void move_references(wp<TYPE>* dest, wp<TYPE> const* src, size_t n) {
class Renamer : public ReferenceRenamer {
wp<TYPE>* d_;
wp<TYPE> const* s_;
virtual void operator()(size_t i) const {
// The id are known to be the wp<>'s this pointer
TYPE::renameRefId(d_[i].get_refs(), &s_[i], &d_[i]);
}
public:
Renamer(wp<TYPE>* rd, wp<TYPE> const* rs) : d_(rd), s_(rs) { }
virtual ~Renamer() { }
};
memmove(dest, src, n*sizeof(wp<TYPE>));
TYPE::renameRefs(n, Renamer(dest, src));
}
};
// specialization for moving sp<> and wp<> types.
// these are used by the [Sorted|Keyed]Vector<> implementations
// sp<> and wp<> need to be handled specially, because they do not
// have trivial copy operation in the general case (see RefBase.cpp
// when DEBUG ops are enabled), but can be implemented very
// efficiently in most cases.
template<typename TYPE> inline
void move_forward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
ReferenceMover::move_references(d, s, n);
}
template<typename TYPE> inline
void move_backward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
ReferenceMover::move_references(d, s, n);
}
template<typename TYPE> inline
void move_forward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
ReferenceMover::move_references(d, s, n);
}
template<typename TYPE> inline
void move_backward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
ReferenceMover::move_references(d, s, n);
}
} // namespace android
namespace libutilsinternal {
template <typename T, typename = void>
struct is_complete_type : std::false_type {};
template <typename T>
struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
} // namespace libutilsinternal
namespace std {
// Define `RefBase` specific versions of `std::make_shared` and
// `std::make_unique` to block people from using them. Using them to allocate
// `RefBase` objects results in double ownership. Use
// `sp<T>::make(...)` instead.
//
// Note: We exclude incomplete types because `std::is_base_of` is undefined in
// that case.
template <typename T, typename... Args,
typename std::enable_if<libutilsinternal::is_complete_type<T>::value, bool>::value = true,
typename std::enable_if<std::is_base_of<android::RefBase, T>::value, bool>::value = true>
shared_ptr<T> make_shared(Args...) { // SEE COMMENT ABOVE.
static_assert(!std::is_base_of<android::RefBase, T>::value, "Must use RefBase with sp<>");
}
template <typename T, typename... Args,
typename std::enable_if<libutilsinternal::is_complete_type<T>::value, bool>::value = true,
typename std::enable_if<std::is_base_of<android::RefBase, T>::value, bool>::value = true>
unique_ptr<T> make_unique(Args...) { // SEE COMMENT ABOVE.
static_assert(!std::is_base_of<android::RefBase, T>::value, "Must use RefBase with sp<>");
}
} // namespace std
// ---------------------------------------------------------------------------
#endif // ANDROID_REF_BASE_H