android_system_core/libutils/RefBase_test.cpp

259 lines
8.3 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <utils/StrongPointer.h>
#include <utils/RefBase.h>
#include <thread>
#include <atomic>
#include <sched.h>
#include <errno.h>
// Enhanced version of StrongPointer_test, but using RefBase underneath.
using namespace android;
static constexpr int NITERS = 1000000;
static constexpr int INITIAL_STRONG_VALUE = 1 << 28; // Mirroring RefBase definition.
class Foo : public RefBase {
public:
Foo(bool* deleted_check) : mDeleted(deleted_check) {
*mDeleted = false;
}
~Foo() {
*mDeleted = true;
}
private:
bool* mDeleted;
};
TEST(RefBase, StrongMoves) {
bool isDeleted;
Foo* foo = new Foo(&isDeleted);
ASSERT_EQ(INITIAL_STRONG_VALUE, foo->getStrongCount());
ASSERT_FALSE(isDeleted) << "Already deleted...?";
sp<Foo> sp1(foo);
wp<Foo> wp1(sp1);
ASSERT_EQ(1, foo->getStrongCount());
// Weak count includes both strong and weak references.
ASSERT_EQ(2, foo->getWeakRefs()->getWeakCount());
{
sp<Foo> sp2 = std::move(sp1);
ASSERT_EQ(1, foo->getStrongCount())
<< "std::move failed, incremented refcnt";
ASSERT_EQ(nullptr, sp1.get()) << "std::move failed, sp1 is still valid";
// The strong count isn't increasing, let's double check the old object
// is properly reset and doesn't early delete
sp1 = std::move(sp2);
}
ASSERT_FALSE(isDeleted) << "deleted too early! still has a reference!";
{
// Now let's double check it deletes on time
sp<Foo> sp2 = std::move(sp1);
}
ASSERT_TRUE(isDeleted) << "foo was leaked!";
ASSERT_TRUE(wp1.promote().get() == nullptr);
}
TEST(RefBase, WeakCopies) {
bool isDeleted;
Foo* foo = new Foo(&isDeleted);
EXPECT_EQ(0, foo->getWeakRefs()->getWeakCount());
ASSERT_FALSE(isDeleted) << "Foo (weak) already deleted...?";
wp<Foo> wp1(foo);
EXPECT_EQ(1, foo->getWeakRefs()->getWeakCount());
{
wp<Foo> wp2 = wp1;
ASSERT_EQ(2, foo->getWeakRefs()->getWeakCount());
}
EXPECT_EQ(1, foo->getWeakRefs()->getWeakCount());
ASSERT_FALSE(isDeleted) << "deleted too early! still has a reference!";
wp1 = nullptr;
ASSERT_FALSE(isDeleted) << "Deletion on wp destruction should no longer occur";
}
// Set up a situation in which we race with visit2AndRremove() to delete
// 2 strong references. Bar destructor checks that there are no early
// deletions and prior updates are visible to destructor.
class Bar : public RefBase {
public:
Bar(std::atomic<int>* delete_count) : mVisited1(false), mVisited2(false),
mDeleteCount(delete_count) {
}
~Bar() {
EXPECT_TRUE(mVisited1);
EXPECT_TRUE(mVisited2);
(*mDeleteCount)++;
}
bool mVisited1;
bool mVisited2;
private:
std::atomic<int>* mDeleteCount;
};
static sp<Bar> buffer;
static std::atomic<bool> bufferFull(false);
// Wait until bufferFull has value val.
static inline void waitFor(bool val) {
while (bufferFull != val) {}
}
cpu_set_t otherCpus;
// Divide the cpus we're allowed to run on into myCpus and otherCpus.
// Set origCpus to the processors we were originally allowed to run on.
// Return false if origCpus doesn't include at least processors 0 and 1.
static bool setExclusiveCpus(cpu_set_t* origCpus /* out */,
cpu_set_t* myCpus /* out */, cpu_set_t* otherCpus) {
if (sched_getaffinity(0, sizeof(cpu_set_t), origCpus) != 0) {
return false;
}
if (!CPU_ISSET(0, origCpus) || !CPU_ISSET(1, origCpus)) {
return false;
}
CPU_ZERO(myCpus);
CPU_ZERO(otherCpus);
CPU_OR(myCpus, myCpus, origCpus);
CPU_OR(otherCpus, otherCpus, origCpus);
for (unsigned i = 0; i < CPU_SETSIZE; ++i) {
// I get the even cores, the other thread gets the odd ones.
if (i & 1) {
CPU_CLR(i, myCpus);
} else {
CPU_CLR(i, otherCpus);
}
}
return true;
}
static void visit2AndRemove() {
if (sched_setaffinity(0, sizeof(cpu_set_t), &otherCpus) != 0) {
FAIL() << "setaffinity returned:" << errno;
}
for (int i = 0; i < NITERS; ++i) {
waitFor(true);
buffer->mVisited2 = true;
buffer = nullptr;
bufferFull = false;
}
}
TEST(RefBase, RacingDestructors) {
cpu_set_t origCpus;
cpu_set_t myCpus;
// Restrict us and the helper thread to disjoint cpu sets.
// This prevents us from getting scheduled against each other,
// which would be atrociously slow.
if (setExclusiveCpus(&origCpus, &myCpus, &otherCpus)) {
std::thread t(visit2AndRemove);
std::atomic<int> deleteCount(0);
if (sched_setaffinity(0, sizeof(cpu_set_t), &myCpus) != 0) {
FAIL() << "setaffinity returned:" << errno;
}
for (int i = 0; i < NITERS; ++i) {
waitFor(false);
Bar* bar = new Bar(&deleteCount);
sp<Bar> sp3(bar);
buffer = sp3;
bufferFull = true;
ASSERT_TRUE(bar->getStrongCount() >= 1);
// Weak count includes strong count.
ASSERT_TRUE(bar->getWeakRefs()->getWeakCount() >= 1);
sp3->mVisited1 = true;
sp3 = nullptr;
}
t.join();
if (sched_setaffinity(0, sizeof(cpu_set_t), &origCpus) != 0) {
FAIL();
}
ASSERT_EQ(NITERS, deleteCount) << "Deletions missed!";
} // Otherwise this is slow and probably pointless on a uniprocessor.
}
static wp<Bar> wpBuffer;
static std::atomic<bool> wpBufferFull(false);
// Wait until wpBufferFull has value val.
static inline void wpWaitFor(bool val) {
while (wpBufferFull != val) {}
}
static void visit3AndRemove() {
if (sched_setaffinity(0, sizeof(cpu_set_t), &otherCpus) != 0) {
FAIL() << "setaffinity returned:" << errno;
}
for (int i = 0; i < NITERS; ++i) {
wpWaitFor(true);
{
sp<Bar> sp1 = wpBuffer.promote();
// We implicitly check that sp1 != NULL
sp1->mVisited2 = true;
}
wpBuffer = nullptr;
wpBufferFull = false;
}
}
TEST(RefBase, RacingPromotions) {
cpu_set_t origCpus;
cpu_set_t myCpus;
// Restrict us and the helper thread to disjoint cpu sets.
// This prevents us from getting scheduled against each other,
// which would be atrociously slow.
if (setExclusiveCpus(&origCpus, &myCpus, &otherCpus)) {
std::thread t(visit3AndRemove);
std::atomic<int> deleteCount(0);
if (sched_setaffinity(0, sizeof(cpu_set_t), &myCpus) != 0) {
FAIL() << "setaffinity returned:" << errno;
}
for (int i = 0; i < NITERS; ++i) {
Bar* bar = new Bar(&deleteCount);
wp<Bar> wp1(bar);
bar->mVisited1 = true;
if (i % (NITERS / 10) == 0) {
// Do this rarely, since it generates a log message.
wp1 = nullptr; // No longer destroys the object.
wp1 = bar;
}
wpBuffer = wp1;
ASSERT_EQ(bar->getWeakRefs()->getWeakCount(), 2);
wpBufferFull = true;
// Promotion races with that in visit3AndRemove.
// This may or may not succeed, but it shouldn't interfere with
// the concurrent one.
sp<Bar> sp1 = wp1.promote();
wpWaitFor(false); // Waits for other thread to drop strong pointer.
sp1 = nullptr;
// No strong pointers here.
sp1 = wp1.promote();
ASSERT_EQ(sp1.get(), nullptr) << "Dead wp promotion succeeded!";
}
t.join();
if (sched_setaffinity(0, sizeof(cpu_set_t), &origCpus) != 0) {
FAIL();
}
ASSERT_EQ(NITERS, deleteCount) << "Deletions missed!";
} // Otherwise this is slow and probably pointless on a uniprocessor.
}