android_system_core/fastboot/fuzzy_fastboot/main.cpp

1919 lines
84 KiB
C++

/*
* Copyright (C) 2018 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <errno.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <chrono>
#include <cstdlib>
#include <fstream>
#include <map>
#include <random>
#include <regex>
#include <set>
#include <thread>
#include <vector>
#include <android-base/file.h>
#include <android-base/parseint.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <gtest/gtest.h>
#include <sparse/sparse.h>
#include "fastboot_driver.h"
#include "usb.h"
#include "extensions.h"
#include "fixtures.h"
#include "test_utils.h"
#include "transport_sniffer.h"
namespace fastboot {
extension::Configuration config; // The parsed XML config
std::string SEARCH_PATH;
std::string OUTPUT_PATH;
// gtest's INSTANTIATE_TEST_CASE_P() must be at global scope,
// so our autogenerated tests must be as well
std::vector<std::pair<std::string, extension::Configuration::GetVar>> GETVAR_XML_TESTS;
std::vector<std::tuple<std::string, bool, extension::Configuration::CommandTest>> OEM_XML_TESTS;
std::vector<std::pair<std::string, extension::Configuration::PartitionInfo>> PARTITION_XML_TESTS;
std::vector<std::pair<std::string, extension::Configuration::PartitionInfo>>
PARTITION_XML_WRITEABLE;
std::vector<std::pair<std::string, extension::Configuration::PartitionInfo>>
PARTITION_XML_WRITE_HASHABLE;
std::vector<std::pair<std::string, extension::Configuration::PartitionInfo>>
PARTITION_XML_WRITE_PARSED;
std::vector<std::pair<std::string, extension::Configuration::PartitionInfo>>
PARTITION_XML_WRITE_HASH_NONPARSED;
std::vector<std::pair<std::string, extension::Configuration::PartitionInfo>>
PARTITION_XML_USERDATA_CHECKSUM_WRITEABLE;
std::vector<std::pair<std::string, extension::Configuration::PackedInfoTest>>
PACKED_XML_SUCCESS_TESTS;
std::vector<std::pair<std::string, extension::Configuration::PackedInfoTest>> PACKED_XML_FAIL_TESTS;
// This only has 1 or zero elements so it will disappear from gtest when empty
std::vector<std::pair<std::string, extension::Configuration::PartitionInfo>>
SINGLE_PARTITION_XML_WRITE_HASHABLE;
const std::string DEFAULT_OUPUT_NAME = "out.img";
// const char scratch_partition[] = "userdata";
const std::vector<std::string> CMDS{"boot", "continue", "download:", "erase:", "flash:",
"getvar:", "reboot", "set_active:", "upload"};
// For pretty printing we need all these overloads
::std::ostream& operator<<(::std::ostream& os, const RetCode& ret) {
return os << FastBootDriver::RCString(ret);
}
bool PartitionHash(FastBootDriver* fb, const std::string& part, std::string* hash, int* retcode,
std::string* err_msg) {
if (config.checksum.empty()) {
return -1;
}
std::string resp;
std::vector<std::string> info;
const std::string cmd = config.checksum + ' ' + part;
RetCode ret;
if ((ret = fb->RawCommand(cmd, &resp, &info)) != SUCCESS) {
*err_msg =
android::base::StringPrintf("Hashing partition with command '%s' failed with: %s",
cmd.c_str(), fb->RCString(ret).c_str());
return false;
}
std::stringstream imploded;
std::copy(info.begin(), info.end(), std::ostream_iterator<std::string>(imploded, "\n"));
// If payload, we validate that as well
const std::vector<std::string> args = SplitBySpace(config.checksum_parser);
std::vector<std::string> prog_args(args.begin() + 1, args.end());
prog_args.push_back(resp); // Pass in the full command
prog_args.push_back(SEARCH_PATH + imploded.str()); // Pass in the save location
int pipe;
pid_t pid = StartProgram(args[0], prog_args, &pipe);
if (pid <= 0) {
*err_msg = android::base::StringPrintf("Launching hash parser '%s' failed with: %s",
config.checksum_parser.c_str(), strerror(errno));
return false;
}
*retcode = WaitProgram(pid, pipe, hash);
if (*retcode) {
// In this case the stderr pipe is a log message
*err_msg = android::base::StringPrintf("Hash parser '%s' failed with: %s",
config.checksum_parser.c_str(), hash->c_str());
return false;
}
return true;
}
bool SparseToBuf(sparse_file* sf, std::vector<char>* out, bool with_crc = false) {
int64_t len = sparse_file_len(sf, true, with_crc);
if (len <= 0) {
return false;
}
out->clear();
auto cb = [](void* priv, const void* data, size_t len) {
auto vec = static_cast<std::vector<char>*>(priv);
const char* cbuf = static_cast<const char*>(data);
vec->insert(vec->end(), cbuf, cbuf + len);
return 0;
};
return !sparse_file_callback(sf, true, with_crc, cb, out);
}
// Only allow alphanumeric, _, -, and .
const auto not_allowed = [](char c) -> int {
return !(isalnum(c) || c == '_' || c == '-' || c == '.');
};
// Test that USB even works
TEST(USBFunctionality, USBConnect) {
const auto matcher = [](usb_ifc_info* info) -> int {
return FastBootTest::MatchFastboot(info, fastboot::FastBootTest::device_serial);
};
Transport* transport = nullptr;
for (int i = 0; i < FastBootTest::MAX_USB_TRIES && !transport; i++) {
transport = usb_open(matcher);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
ASSERT_NE(transport, nullptr) << "Could not find the fastboot device after: "
<< 10 * FastBootTest::MAX_USB_TRIES << "ms";
if (transport) {
transport->Close();
delete transport;
}
}
// Test commands related to super partition
TEST_F(LogicalPartitionCompliance, SuperPartition) {
ASSERT_TRUE(UserSpaceFastboot());
std::string partition_type;
// getvar partition-type:super must fail for retrofit devices because the
// partition does not exist.
if (fb->GetVar("partition-type:super", &partition_type) == SUCCESS) {
std::string is_logical;
EXPECT_EQ(fb->GetVar("is-logical:super", &is_logical), SUCCESS)
<< "getvar is-logical:super failed";
EXPECT_EQ(is_logical, "no") << "super must not be a logical partition";
std::string super_name;
EXPECT_EQ(fb->GetVar("super-partition-name", &super_name), SUCCESS)
<< "'getvar super-partition-name' failed";
EXPECT_EQ(super_name, "super") << "'getvar super-partition-name' must return 'super' for "
"device with a super partition";
}
}
// Test 'fastboot getvar is-logical'
TEST_F(LogicalPartitionCompliance, GetVarIsLogical) {
ASSERT_TRUE(UserSpaceFastboot());
std::string has_slot;
EXPECT_EQ(fb->GetVar("has-slot:system", &has_slot), SUCCESS) << "getvar has-slot:system failed";
std::string is_logical_cmd_system = "is-logical:system";
std::string is_logical_cmd_vendor = "is-logical:vendor";
std::string is_logical_cmd_boot = "is-logical:boot";
if (has_slot == "yes") {
std::string current_slot;
ASSERT_EQ(fb->GetVar("current-slot", &current_slot), SUCCESS)
<< "getvar current-slot failed";
std::string slot_suffix = "_" + current_slot;
is_logical_cmd_system += slot_suffix;
is_logical_cmd_vendor += slot_suffix;
is_logical_cmd_boot += slot_suffix;
}
std::string is_logical;
EXPECT_EQ(fb->GetVar(is_logical_cmd_system, &is_logical), SUCCESS)
<< "system must be a logical partition";
EXPECT_EQ(is_logical, "yes");
EXPECT_EQ(fb->GetVar(is_logical_cmd_vendor, &is_logical), SUCCESS)
<< "vendor must be a logical partition";
EXPECT_EQ(is_logical, "yes");
EXPECT_EQ(fb->GetVar(is_logical_cmd_boot, &is_logical), SUCCESS)
<< "boot must not be logical partition";
EXPECT_EQ(is_logical, "no");
}
TEST_F(LogicalPartitionCompliance, FastbootRebootTest) {
ASSERT_TRUE(UserSpaceFastboot());
GTEST_LOG_(INFO) << "Rebooting back to fastbootd mode";
fb->RebootTo("fastboot");
ReconnectFastbootDevice();
ASSERT_TRUE(UserSpaceFastboot());
}
// Testing creation/resize/delete of logical partitions
TEST_F(LogicalPartitionCompliance, CreateResizeDeleteLP) {
ASSERT_TRUE(UserSpaceFastboot());
std::string test_partition_name = "test_partition";
std::string slot_count;
// Add suffix to test_partition_name if device is slotted.
EXPECT_EQ(fb->GetVar("slot-count", &slot_count), SUCCESS) << "getvar slot-count failed";
int32_t num_slots = strtol(slot_count.c_str(), nullptr, 10);
if (num_slots > 0) {
std::string current_slot;
EXPECT_EQ(fb->GetVar("current-slot", &current_slot), SUCCESS)
<< "getvar current-slot failed";
std::string slot_suffix = "_" + current_slot;
test_partition_name += slot_suffix;
}
GTEST_LOG_(INFO) << "Testing 'fastboot create-logical-partition' command";
EXPECT_EQ(fb->CreatePartition(test_partition_name, "0"), SUCCESS)
<< "create-logical-partition failed";
GTEST_LOG_(INFO) << "Testing 'fastboot resize-logical-partition' command";
EXPECT_EQ(fb->ResizePartition(test_partition_name, "4096"), SUCCESS)
<< "resize-logical-partition failed";
std::vector<char> buf(4096);
GTEST_LOG_(INFO) << "Flashing a logical partition..";
EXPECT_EQ(fb->FlashPartition(test_partition_name, buf), SUCCESS)
<< "flash logical -partition failed";
GTEST_LOG_(INFO) << "Testing 'fastboot delete-logical-partition' command";
EXPECT_EQ(fb->DeletePartition(test_partition_name), SUCCESS)
<< "delete logical-partition failed";
}
// Conformance tests
TEST_F(Conformance, GetVar) {
std::string product;
EXPECT_EQ(fb->GetVar("product", &product), SUCCESS) << "getvar:product failed";
EXPECT_NE(product, "") << "getvar:product response was empty string";
EXPECT_EQ(std::count_if(product.begin(), product.end(), not_allowed), 0)
<< "getvar:product response contained illegal chars";
EXPECT_LE(product.size(), FB_RESPONSE_SZ - 4) << "getvar:product response was too large";
}
TEST_F(Conformance, GetVarVersionBootloader) {
std::string var;
EXPECT_EQ(fb->GetVar("version-bootloader", &var), SUCCESS)
<< "getvar:version-bootloader failed";
EXPECT_NE(var, "") << "getvar:version-bootloader response was empty string";
EXPECT_EQ(std::count_if(var.begin(), var.end(), not_allowed), 0)
<< "getvar:version-bootloader response contained illegal chars";
EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:version-bootloader response was too large";
}
TEST_F(Conformance, GetVarVersionBaseband) {
std::string var;
EXPECT_EQ(fb->GetVar("version-baseband", &var), SUCCESS) << "getvar:version-baseband failed";
EXPECT_NE(var, "") << "getvar:version-baseband response was empty string";
EXPECT_EQ(std::count_if(var.begin(), var.end(), not_allowed), 0)
<< "getvar:version-baseband response contained illegal chars";
EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:version-baseband response was too large";
}
TEST_F(Conformance, GetVarSerialNo) {
std::string var;
EXPECT_EQ(fb->GetVar("serialno", &var), SUCCESS) << "getvar:serialno failed";
EXPECT_NE(var, "") << "getvar:serialno can not be empty string";
EXPECT_EQ(std::count_if(var.begin(), var.end(), isalnum), var.size())
<< "getvar:serialno must be alpha-numeric";
EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:serialno response is too long";
}
TEST_F(Conformance, GetVarSecure) {
std::string var;
EXPECT_EQ(fb->GetVar("secure", &var), SUCCESS);
EXPECT_TRUE(var == "yes" || var == "no");
}
TEST_F(Conformance, GetVarOffModeCharge) {
std::string var;
EXPECT_EQ(fb->GetVar("off-mode-charge", &var), SUCCESS) << "getvar:off-mode-charge failed";
EXPECT_TRUE(var == "0" || var == "1") << "getvar:off-mode-charge response must be '0' or '1'";
}
TEST_F(Conformance, GetVarVariant) {
std::string var;
EXPECT_EQ(fb->GetVar("variant", &var), SUCCESS) << "getvar:variant failed";
EXPECT_NE(var, "") << "getvar:variant response can not be empty";
EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:variant response is too large";
}
TEST_F(Conformance, GetVarRevision) {
std::string var;
EXPECT_EQ(fb->GetVar("hw-revision", &var), SUCCESS) << "getvar:hw-revision failed";
EXPECT_NE(var, "") << "getvar:battery-voltage response was empty";
EXPECT_EQ(std::count_if(var.begin(), var.end(), not_allowed), 0)
<< "getvar:hw-revision contained illegal ASCII chars";
EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4) << "getvar:hw-revision response was too large";
}
TEST_F(Conformance, GetVarBattVoltage) {
std::string var;
EXPECT_EQ(fb->GetVar("battery-voltage", &var), SUCCESS) << "getvar:battery-voltage failed";
EXPECT_NE(var, "") << "getvar:battery-voltage response was empty";
EXPECT_EQ(std::count_if(var.begin(), var.end(), not_allowed), 0)
<< "getvar:battery-voltage response contains illegal ASCII chars";
EXPECT_LE(var.size(), FB_RESPONSE_SZ - 4)
<< "getvar:battery-voltage response is too large: " + var;
}
TEST_F(Conformance, GetVarBattVoltageOk) {
std::string var;
EXPECT_EQ(fb->GetVar("battery-soc-ok", &var), SUCCESS) << "getvar:battery-soc-ok failed";
EXPECT_TRUE(var == "yes" || var == "no") << "getvar:battery-soc-ok must be 'yes' or 'no'";
}
void AssertHexUint32(const std::string& name, const std::string& var) {
ASSERT_NE(var, "") << "getvar:" << name << " responded with empty string";
// This must start with 0x
ASSERT_FALSE(isspace(var.front()))
<< "getvar:" << name << " responded with a string with leading whitespace";
ASSERT_FALSE(var.compare(0, 2, "0x"))
<< "getvar:" << name << " responded with a string that does not start with 0x...";
int64_t size = strtoll(var.c_str(), nullptr, 16);
ASSERT_GT(size, 0) << "'" + var + "' is not a valid response from getvar:" << name;
// At most 32-bits
ASSERT_LE(size, std::numeric_limits<uint32_t>::max())
<< "getvar:" << name << " must fit in a uint32_t";
ASSERT_LE(var.size(), FB_RESPONSE_SZ - 4)
<< "getvar:" << name << " responded with too large of string: " + var;
}
TEST_F(Conformance, GetVarDownloadSize) {
std::string var;
EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed";
AssertHexUint32("max-download-size", var);
}
// If fetch is supported, getvar:max-fetch-size must return a hex string.
TEST_F(Conformance, GetVarFetchSize) {
std::string var;
if (SUCCESS != fb->GetVar("max-fetch-size", &var)) {
GTEST_SKIP() << "getvar:max-fetch-size failed";
}
AssertHexUint32("max-fetch-size", var);
}
TEST_F(Conformance, GetVarAll) {
std::vector<std::string> vars;
EXPECT_EQ(fb->GetVarAll(&vars), SUCCESS) << "getvar:all failed";
EXPECT_GT(vars.size(), 0) << "getvar:all did not respond with any INFO responses";
for (const auto& s : vars) {
EXPECT_LE(s.size(), FB_RESPONSE_SZ - 4)
<< "getvar:all included an INFO response: 'INFO" + s << "' which is too long";
}
}
TEST_F(Conformance, UnlockAbility) {
std::string resp;
std::vector<std::string> info;
// Userspace fastboot implementations do not have a way to get this
// information.
if (UserSpaceFastboot()) {
GTEST_LOG_(INFO) << "This test is skipped for userspace fastboot.";
return;
}
EXPECT_EQ(fb->RawCommand("flashing get_unlock_ability", &resp, &info), SUCCESS)
<< "'flashing get_unlock_ability' failed";
// There are two ways this can be reported, through info or the actual response
char last;
if (!resp.empty()) { // must be in the response
last = resp.back();
} else { // else must be in info
ASSERT_FALSE(info.empty()) << "'flashing get_unlock_ability' returned empty response";
ASSERT_FALSE(info.back().empty()) << "Expected non-empty info response";
last = info.back().back();
}
ASSERT_TRUE(last == '1' || last == '0') << "Unlock ability must report '0' or '1' in response";
}
TEST_F(Conformance, PartitionInfo) {
std::vector<std::tuple<std::string, uint64_t>> parts;
EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed";
EXPECT_GT(parts.size(), 0)
<< "getvar:all did not report any partition-size: through INFO responses";
std::set<std::string> allowed{"ext4", "f2fs", "raw"};
for (const auto& p : parts) {
EXPECT_GE(std::get<1>(p), 0);
std::string part(std::get<0>(p));
std::set<std::string> allowed{"ext4", "f2fs", "raw"};
std::string resp;
EXPECT_EQ(fb->GetVar("partition-type:" + part, &resp), SUCCESS);
EXPECT_NE(allowed.find(resp), allowed.end()) << "getvar:partition-type:" + part << " was '"
<< resp << "' this is not a valid type";
const std::string cmd = "partition-size:" + part;
EXPECT_EQ(fb->GetVar(cmd, &resp), SUCCESS);
// This must start with 0x
EXPECT_FALSE(isspace(resp.front()))
<< cmd + " responded with a string with leading whitespace";
EXPECT_FALSE(resp.compare(0, 2, "0x"))
<< cmd + "responded with a string that does not start with 0x...";
uint64_t size;
ASSERT_TRUE(android::base::ParseUint(resp, &size))
<< "'" + resp + "' is not a valid response from " + cmd;
}
}
TEST_F(Conformance, Slots) {
std::string var;
ASSERT_EQ(fb->GetVar("slot-count", &var), SUCCESS) << "getvar:slot-count failed";
ASSERT_EQ(std::count_if(var.begin(), var.end(), isdigit), var.size())
<< "'" << var << "' is not all digits which it should be for getvar:slot-count";
int32_t num_slots = strtol(var.c_str(), nullptr, 10);
// Can't run out of alphabet letters...
ASSERT_LE(num_slots, 26) << "What?! You can't have more than 26 slots";
std::vector<std::tuple<std::string, uint64_t>> parts;
EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed";
std::map<std::string, std::set<char>> part_slots;
if (num_slots > 0) {
EXPECT_EQ(fb->GetVar("current-slot", &var), SUCCESS) << "getvar:current-slot failed";
for (const auto& p : parts) {
std::string part(std::get<0>(p));
std::regex reg("([[:graph:]]*)_([[:lower:]])");
std::smatch sm;
if (std::regex_match(part, sm, reg)) { // This partition has slots
std::string part_base(sm[1]);
std::string slot(sm[2]);
EXPECT_EQ(fb->GetVar("has-slot:" + part_base, &var), SUCCESS)
<< "'getvar:has-slot:" << part_base << "' failed";
EXPECT_EQ(var, "yes") << "'getvar:has-slot:" << part_base << "' was not 'yes'";
EXPECT_TRUE(islower(slot.front()))
<< "'" << slot.front() << "' is an invalid slot-suffix for " << part_base;
std::set<char> tmp{slot.front()};
part_slots.emplace(part_base, tmp);
part_slots.at(part_base).insert(slot.front());
} else {
EXPECT_EQ(fb->GetVar("has-slot:" + part, &var), SUCCESS)
<< "'getvar:has-slot:" << part << "' failed";
EXPECT_EQ(var, "no") << "'getvar:has-slot:" << part << "' should be no";
}
}
// Ensure each partition has the correct slot suffix
for (const auto& iter : part_slots) {
const std::set<char>& char_set = iter.second;
std::string chars;
for (char c : char_set) {
chars += c;
chars += ',';
}
EXPECT_EQ(char_set.size(), num_slots)
<< "There should only be slot suffixes from a to " << 'a' + num_slots - 1
<< " instead encountered: " << chars;
for (const char c : char_set) {
EXPECT_GE(c, 'a') << "Encountered invalid slot suffix of '" << c << "'";
EXPECT_LT(c, 'a' + num_slots) << "Encountered invalid slot suffix of '" << c << "'";
}
}
}
}
TEST_F(Conformance, SetActive) {
std::string var;
ASSERT_EQ(fb->GetVar("slot-count", &var), SUCCESS) << "getvar:slot-count failed";
ASSERT_EQ(std::count_if(var.begin(), var.end(), isdigit), var.size())
<< "'" << var << "' is not all digits which it should be for getvar:slot-count";
int32_t num_slots = strtol(var.c_str(), nullptr, 10);
// Can't run out of alphabet letters...
ASSERT_LE(num_slots, 26) << "You can't have more than 26 slots";
for (char c = 'a'; c < 'a' + num_slots; c++) {
const std::string slot(&c, &c + 1);
ASSERT_EQ(fb->SetActive(slot), SUCCESS) << "Set active for slot '" << c << "' failed";
ASSERT_EQ(fb->GetVar("current-slot", &var), SUCCESS) << "getvar:current-slot failed";
EXPECT_EQ(var, slot) << "getvar:current-slot repots incorrect slot after setting it";
}
}
TEST_F(Conformance, LockAndUnlockPrompt) {
std::string resp;
ASSERT_EQ(fb->GetVar("unlocked", &resp), SUCCESS) << "getvar:unlocked failed";
ASSERT_TRUE(resp == "yes" || resp == "no")
<< "Device did not respond with 'yes' or 'no' for getvar:unlocked";
bool curr = resp == "yes";
if (UserSpaceFastboot()) {
GTEST_LOG_(INFO) << "This test is skipped for userspace fastboot.";
return;
}
for (int i = 0; i < 2; i++) {
std::string action = !curr ? "unlock" : "lock";
printf("Device should prompt to '%s' bootloader, select 'no'\n", action.c_str());
SetLockState(!curr, false);
ASSERT_EQ(fb->GetVar("unlocked", &resp), SUCCESS) << "getvar:unlocked failed";
ASSERT_EQ(resp, curr ? "yes" : "no") << "The locked/unlocked state of the bootloader "
"incorrectly changed after selecting no";
printf("Device should prompt to '%s' bootloader, select 'yes'\n", action.c_str());
SetLockState(!curr, true);
ASSERT_EQ(fb->GetVar("unlocked", &resp), SUCCESS) << "getvar:unlocked failed";
ASSERT_EQ(resp, !curr ? "yes" : "no") << "The locked/unlocked state of the bootloader "
"failed to change after selecting yes";
curr = !curr;
}
}
TEST_F(Conformance, SparseBlockSupport0) {
// The sparse block size can be any multiple of 4
std::string var;
EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed";
int64_t size = strtoll(var.c_str(), nullptr, 16);
// It is reasonable to expect it to handle a single dont care block equal to its DL size
for (int64_t bs = 4; bs < size; bs <<= 1) {
SparseWrapper sparse(bs, bs);
ASSERT_TRUE(*sparse) << "Sparse file creation failed on: " << bs;
EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep();
EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep();
}
}
TEST_F(Conformance, SparseBlockSupport1) {
// The sparse block size can be any multiple of 4
std::string var;
EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed";
int64_t size = strtoll(var.c_str(), nullptr, 16);
// handle a packed block to half its max download size block
for (int64_t bs = 4; bs < size / 2; bs <<= 1) {
SparseWrapper sparse(bs, bs);
ASSERT_TRUE(*sparse) << "Sparse file creation failed on: " << bs;
std::vector<char> buf = RandomBuf(bs);
ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 0), 0)
<< "Adding data failed to sparse file: " << sparse.Rep();
EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep();
EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep();
}
}
// A single don't care download
TEST_F(Conformance, SparseDownload0) {
SparseWrapper sparse(4096, 4096);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep();
EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep();
}
TEST_F(Conformance, SparseDownload1) {
SparseWrapper sparse(4096, 10 * 4096);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
std::vector<char> buf = RandomBuf(4096);
ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 9), 0)
<< "Adding data failed to sparse file: " << sparse.Rep();
EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep();
EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep();
}
TEST_F(Conformance, SparseDownload2) {
SparseWrapper sparse(4096, 4097);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
std::vector<char> buf = RandomBuf(4096);
ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 0), 0)
<< "Adding data failed to sparse file: " << sparse.Rep();
std::vector<char> buf2 = RandomBuf(1);
ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 1), 0)
<< "Adding data failed to sparse file: " << sparse.Rep();
EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep();
EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep();
}
TEST_F(Conformance, SparseDownload3) {
std::string var;
EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed";
int size = strtoll(var.c_str(), nullptr, 16);
SparseWrapper sparse(4096, size);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
// Don't want this to take forever
unsigned num_chunks = std::min(1000, size / (2 * 4096));
for (int i = 0; i < num_chunks; i++) {
std::vector<char> buf;
int r = random_int(0, 2);
// Three cases
switch (r) {
case 0:
break; // Dont Care chunnk
case 1: // Buffer
buf = RandomBuf(4096);
ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), i), 0)
<< "Adding data failed to sparse file: " << sparse.Rep();
break;
case 2: // fill
ASSERT_EQ(sparse_file_add_fill(*sparse, 0xdeadbeef, 4096, i), 0)
<< "Adding fill to sparse file failed: " << sparse.Rep();
break;
}
}
EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep();
EXPECT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed: " << sparse.Rep();
}
TEST_F(Conformance, SparseVersionCheck) {
SparseWrapper sparse(4096, 4096);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
std::vector<char> buf;
ASSERT_TRUE(SparseToBuf(*sparse, &buf)) << "Sparse buffer creation failed";
// Invalid, right after magic
buf[4] = 0xff;
ASSERT_EQ(DownloadCommand(buf.size()), SUCCESS) << "Device rejected download command";
ASSERT_EQ(SendBuffer(buf), SUCCESS) << "Downloading payload failed";
// It can either reject this download or reject it during flash
if (HandleResponse() != DEVICE_FAIL) {
EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL)
<< "Flashing an invalid sparse version should fail " << sparse.Rep();
}
}
TEST_F(UnlockPermissions, Download) {
std::vector<char> buf{'a', 'o', 's', 'p'};
EXPECT_EQ(fb->Download(buf), SUCCESS) << "Download 4-byte payload failed";
}
TEST_F(UnlockPermissions, DownloadFlash) {
std::vector<char> buf{'a', 'o', 's', 'p'};
EXPECT_EQ(fb->Download(buf), SUCCESS) << "Download failed in unlocked mode";
;
std::vector<std::tuple<std::string, uint64_t>> parts;
EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed in unlocked mode";
}
// If the implementation supports getvar:max-fetch-size, it must also support fetch:vendor_boot*.
TEST_F(UnlockPermissions, FetchVendorBoot) {
std::string var;
uint64_t fetch_size;
if (fb->GetVar("max-fetch-size", &var) != SUCCESS) {
GTEST_SKIP() << "This test is skipped because fetch is not supported.";
}
ASSERT_FALSE(var.empty());
ASSERT_TRUE(android::base::ParseUint(var, &fetch_size)) << var << " is not an integer";
std::vector<std::tuple<std::string, uint64_t>> parts;
EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed";
for (const auto& [partition, partition_size] : parts) {
if (!android::base::StartsWith(partition, "vendor_boot")) continue;
TemporaryFile fetched;
uint64_t offset = 0;
while (offset < partition_size) {
uint64_t chunk_size = std::min(fetch_size, partition_size - offset);
auto ret = fb->FetchToFd(partition, fetched.fd, offset, chunk_size);
ASSERT_EQ(fastboot::RetCode::SUCCESS, ret)
<< "Unable to fetch " << partition << " (offset=" << offset
<< ", size=" << chunk_size << ")";
offset += chunk_size;
}
}
}
TEST_F(LockPermissions, DownloadFlash) {
std::vector<char> buf{'a', 'o', 's', 'p'};
EXPECT_EQ(fb->Download(buf), SUCCESS) << "Download failed in locked mode";
std::vector<std::tuple<std::string, uint64_t>> parts;
EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed in locked mode";
std::string resp;
for (const auto& tup : parts) {
EXPECT_EQ(fb->Flash(std::get<0>(tup), &resp), DEVICE_FAIL)
<< "Device did not respond with FAIL when trying to flash '" << std::get<0>(tup)
<< "' in locked mode";
EXPECT_GT(resp.size(), 0)
<< "Device sent empty error message after FAIL"; // meaningful error message
}
}
TEST_F(LockPermissions, Erase) {
std::vector<std::tuple<std::string, uint64_t>> parts;
EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed";
std::string resp;
for (const auto& tup : parts) {
EXPECT_EQ(fb->Erase(std::get<0>(tup), &resp), DEVICE_FAIL)
<< "Device did not respond with FAIL when trying to erase '" << std::get<0>(tup)
<< "' in locked mode";
EXPECT_GT(resp.size(), 0) << "Device sent empty error message after FAIL";
}
}
TEST_F(LockPermissions, SetActive) {
std::vector<std::tuple<std::string, uint64_t>> parts;
EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed";
std::string resp;
EXPECT_EQ(fb->GetVar("slot-count", &resp), SUCCESS) << "getvar:slot-count failed";
int32_t num_slots = strtol(resp.c_str(), nullptr, 10);
for (const auto& tup : parts) {
std::string part(std::get<0>(tup));
std::regex reg("([[:graph:]]*)_([[:lower:]])");
std::smatch sm;
if (std::regex_match(part, sm, reg)) { // This partition has slots
std::string part_base(sm[1]);
for (char c = 'a'; c < 'a' + num_slots; c++) {
// We should not be able to SetActive any of these
EXPECT_EQ(fb->SetActive(part_base + '_' + c, &resp), DEVICE_FAIL)
<< "set:active:" << part_base + '_' + c << " did not fail in locked mode";
}
}
}
}
TEST_F(LockPermissions, Boot) {
std::vector<char> buf;
buf.resize(1000);
EXPECT_EQ(fb->Download(buf), SUCCESS) << "A 1000 byte download failed";
std::string resp;
ASSERT_EQ(fb->Boot(&resp), DEVICE_FAIL)
<< "The device did not respond with failure for 'boot' when locked";
EXPECT_GT(resp.size(), 0) << "No error message was returned by device after FAIL";
}
TEST_F(LockPermissions, FetchVendorBoot) {
std::vector<std::tuple<std::string, uint64_t>> parts;
EXPECT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed";
for (const auto& [partition, _] : parts) {
TemporaryFile fetched;
ASSERT_EQ(fb->FetchToFd(partition, fetched.fd, 0, 0), DEVICE_FAIL)
<< "fetch:" << partition << ":0:0 did not fail in locked mode";
}
}
TEST_F(Fuzz, DownloadSize) {
std::string var;
EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS) << "getvar:max-download-size failed";
int64_t size = strtoll(var.c_str(), nullptr, 0);
EXPECT_GT(size, 0) << '\'' << var << "' is not a valid response for getvar:max-download-size";
EXPECT_EQ(DownloadCommand(size + 1), DEVICE_FAIL)
<< "Device reported max-download-size as '" << size
<< "' but did not reject a download of " << size + 1;
std::vector<char> buf(size);
EXPECT_EQ(fb->Download(buf), SUCCESS) << "Device reported max-download-size as '" << size
<< "' but downloading a payload of this size failed";
ASSERT_TRUE(UsbStillAvailible()) << USB_PORT_GONE;
}
TEST_F(Fuzz, DownloadPartialBuf) {
std::vector<char> buf{'a', 'o', 's', 'p'};
ASSERT_EQ(DownloadCommand(buf.size() + 1), SUCCESS)
<< "Download command for " << buf.size() + 1 << " bytes failed";
std::string resp;
RetCode ret = SendBuffer(buf);
EXPECT_EQ(ret, SUCCESS) << "Device did not accept partial payload download";
// Send the partial buffer, then cancel it with a reset
EXPECT_EQ(transport->Reset(), 0) << "USB reset failed";
ASSERT_TRUE(UsbStillAvailible()) << USB_PORT_GONE;
// The device better still work after all that if we unplug and replug
EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS) << "getvar:product failed";
}
TEST_F(Fuzz, DownloadOverRun) {
std::vector<char> buf(1000, 'F');
ASSERT_EQ(DownloadCommand(10), SUCCESS) << "Device rejected download request for 10 bytes";
// There are two ways to handle this
// Accept download, but send error response
// Reject the download outright
std::string resp;
RetCode ret = SendBuffer(buf);
if (ret == SUCCESS) {
// If it accepts the buffer, it better send back an error response
EXPECT_EQ(HandleResponse(&resp), DEVICE_FAIL)
<< "After sending too large of a payload for a download command, device accepted "
"payload and did not respond with FAIL";
} else {
EXPECT_EQ(ret, IO_ERROR) << "After sending too large of a payload for a download command, "
"device did not return error";
}
ASSERT_TRUE(UsbStillAvailible()) << USB_PORT_GONE;
// The device better still work after all that if we unplug and replug
EXPECT_EQ(transport->Reset(), 0) << "USB reset failed";
EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS)
<< "Device did not respond with SUCCESS to getvar:product.";
}
TEST_F(Fuzz, DownloadInvalid1) {
EXPECT_EQ(DownloadCommand(0), DEVICE_FAIL)
<< "Device did not respond with FAIL for malformed download command 'download:0'";
}
TEST_F(Fuzz, DownloadInvalid2) {
std::string cmd("download:1");
EXPECT_EQ(fb->RawCommand("download:1"), DEVICE_FAIL)
<< "Device did not respond with FAIL for malformed download command '" << cmd << "'";
}
TEST_F(Fuzz, DownloadInvalid3) {
std::string cmd("download:-1");
EXPECT_EQ(fb->RawCommand("download:-1"), DEVICE_FAIL)
<< "Device did not respond with FAIL for malformed download command '" << cmd << "'";
}
TEST_F(Fuzz, DownloadInvalid4) {
std::string cmd("download:-01000000");
EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL)
<< "Device did not respond with FAIL for malformed download command '" << cmd << "'";
}
TEST_F(Fuzz, DownloadInvalid5) {
std::string cmd("download:-0100000");
EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL)
<< "Device did not respond with FAIL for malformed download command '" << cmd << "'";
}
TEST_F(Fuzz, DownloadInvalid6) {
std::string cmd("download:");
EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL)
<< "Device did not respond with FAIL for malformed download command '" << cmd << "'";
}
TEST_F(Fuzz, DownloadInvalid7) {
std::string cmd("download:01000000\0999", sizeof("download:01000000\0999"));
EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL)
<< "Device did not respond with FAIL for malformed download command '" << cmd << "'";
}
TEST_F(Fuzz, DownloadInvalid8) {
std::string cmd("download:01000000\0dkjfvijafdaiuybgidabgybr",
sizeof("download:01000000\0dkjfvijafdaiuybgidabgybr"));
EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL)
<< "Device did not respond with FAIL for malformed download command '" << cmd << "'";
}
TEST_F(Fuzz, DownloadInvalid9) {
std::string cmd("download:2PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP");
EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL)
<< "Device did not respond with FAIL for malformed download command '" << cmd << "'";
}
TEST_F(Fuzz, GetVarAllSpam) {
auto start = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed;
unsigned i = 1;
do {
std::vector<std::string> vars;
ASSERT_EQ(fb->GetVarAll(&vars), SUCCESS) << "Device did not respond with success after "
<< i << "getvar:all commands in a row";
ASSERT_GT(vars.size(), 0)
<< "Device did not send any INFO responses after getvar:all command";
elapsed = std::chrono::high_resolution_clock::now() - start;
} while (i++, elapsed.count() < 5);
}
TEST_F(Fuzz, BadCommandTooLarge) {
std::string s = RandomString(FB_COMMAND_SZ + 1, rand_legal);
RetCode ret = fb->RawCommand(s);
EXPECT_TRUE(ret == DEVICE_FAIL || ret == IO_ERROR)
<< "Device did not respond with failure after sending length " << s.size()
<< " string of random ASCII chars";
if (ret == IO_ERROR) EXPECT_EQ(transport->Reset(), 0) << "USB reset failed";
std::string s1 = RandomString(10000, rand_legal);
ret = fb->RawCommand(s1);
EXPECT_TRUE(ret == DEVICE_FAIL || ret == IO_ERROR)
<< "Device did not respond with failure after sending length " << s1.size()
<< " string of random ASCII chars";
if (ret == IO_ERROR) EXPECT_EQ(transport->Reset(), 0) << "USB reset failed";
std::string s2 = RandomString(10000, rand_illegal);
ret = fb->RawCommand(s2);
EXPECT_TRUE(ret == DEVICE_FAIL || ret == IO_ERROR)
<< "Device did not respond with failure after sending length " << s2.size()
<< " string of random non-ASCII chars";
if (ret == IO_ERROR) EXPECT_EQ(transport->Reset(), 0) << "USB reset failed";
std::string s3 = RandomString(10000, rand_char);
ret = fb->RawCommand(s3);
EXPECT_TRUE(ret == DEVICE_FAIL || ret == IO_ERROR)
<< "Device did not respond with failure after sending length " << s3.size()
<< " string of random chars";
if (ret == IO_ERROR) EXPECT_EQ(transport->Reset(), 0) << "USB reset failed";
std::string s4 = RandomString(10 * 1024 * 1024, rand_legal);
ret = fb->RawCommand(s);
EXPECT_TRUE(ret == DEVICE_FAIL || ret == IO_ERROR)
<< "Device did not respond with failure after sending length " << s4.size()
<< " string of random ASCII chars ";
if (ret == IO_ERROR) EXPECT_EQ(transport->Reset(), 0) << "USB reset failed";
ASSERT_TRUE(UsbStillAvailible()) << USB_PORT_GONE;
std::string resp;
EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS)
<< "Device is unresponsive to getvar command";
}
TEST_F(Fuzz, CommandTooLarge) {
for (const std::string& s : CMDS) {
std::string rs = RandomString(10000, rand_char);
RetCode ret;
ret = fb->RawCommand(s + rs);
EXPECT_TRUE(ret == DEVICE_FAIL || ret == IO_ERROR)
<< "Device did not respond with failure " << ret << "after '" << s + rs << "'";
if (ret == IO_ERROR) EXPECT_EQ(transport->Reset(), 0) << "USB reset failed";
ASSERT_TRUE(UsbStillAvailible()) << USB_PORT_GONE;
std::string resp;
EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS)
<< "Device is unresponsive to getvar command";
}
}
TEST_F(Fuzz, CommandMissingArgs) {
for (const std::string& s : CMDS) {
if (s.back() == ':') {
EXPECT_EQ(fb->RawCommand(s), DEVICE_FAIL)
<< "Device did not respond with failure after '" << s << "'";
std::string sub(s.begin(), s.end() - 1);
EXPECT_EQ(fb->RawCommand(sub), DEVICE_FAIL)
<< "Device did not respond with failure after '" << sub << "'";
} else {
std::string rs = RandomString(10, rand_illegal);
EXPECT_EQ(fb->RawCommand(rs + s), DEVICE_FAIL)
<< "Device did not respond with failure after '" << rs + s << "'";
}
std::string resp;
EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS)
<< "Device is unresponsive to getvar command";
}
}
TEST_F(Fuzz, SparseZeroLength) {
SparseWrapper sparse(4096, 0);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
RetCode ret = fb->Download(*sparse);
// Two ways to handle it
if (ret != DEVICE_FAIL) { // if lazily parsed it better fail on a flash
EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL)
<< "Flashing zero length sparse image did not fail: " << sparse.Rep();
}
ret = fb->Download(*sparse, true);
if (ret != DEVICE_FAIL) { // if lazily parsed it better fail on a flash
EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL)
<< "Flashing zero length sparse image did not fail " << sparse.Rep();
}
}
TEST_F(Fuzz, SparseZeroBlkSize) {
// handcrafted malform sparse file with zero as block size
const std::vector<char> buf = {
'\x3a', '\xff', '\x26', '\xed', '\x01', '\x00', '\x00', '\x00', '\x1c', '\x00', '\x0c', '\x00',
'\x00', '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00',
'\x00', '\x00', '\x00', '\x00', '\xc2', '\xca', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00',
'\x10', '\x00', '\x00', '\x00', '\x11', '\x22', '\x33', '\x44'
};
ASSERT_EQ(DownloadCommand(buf.size()), SUCCESS) << "Device rejected download command";
ASSERT_EQ(SendBuffer(buf), SUCCESS) << "Downloading payload failed";
// It can either reject this download or reject it during flash
if (HandleResponse() != DEVICE_FAIL) {
EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL)
<< "Flashing a zero block size in sparse file should fail";
}
}
TEST_F(Fuzz, SparseVeryLargeBlkSize) {
// handcrafted sparse file with block size of ~4GB and divisible 4
const std::vector<char> buf = {
'\x3a', '\xff', '\x26', '\xed', '\x01', '\x00', '\x00', '\x00',
'\x1c', '\x00', '\x0c', '\x00', '\xF0', '\xFF', '\xFF', '\xFF',
'\x01', '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00',
'\x00', '\x00', '\x00', '\x00', '\xc3', '\xca', '\x00', '\x00',
'\x01', '\x00', '\x00', '\x00', '\x0c', '\x00', '\x00', '\x00',
'\x11', '\x22', '\x33', '\x44'
};
ASSERT_EQ(DownloadCommand(buf.size()), SUCCESS) << "Device rejected download command";
ASSERT_EQ(SendBuffer(buf), SUCCESS) << "Downloading payload failed";
ASSERT_EQ(HandleResponse(), SUCCESS) << "Not receive okay";
ASSERT_EQ(fb->Flash("userdata"), SUCCESS) << "Flashing sparse failed";
}
TEST_F(Fuzz, SparseTrimmed) {
// handcrafted malform sparse file which is trimmed
const std::vector<char> buf = {
'\x3a', '\xff', '\x26', '\xed', '\x01', '\x00', '\x00', '\x00', '\x1c', '\x00', '\x0c', '\x00',
'\x00', '\x10', '\x00', '\x00', '\x00', '\x00', '\x08', '\x00', '\x01', '\x00', '\x00', '\x00',
'\x00', '\x00', '\x00', '\x00', '\xc1', '\xca', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00',
'\x00', '\x00', '\x00', '\x80', '\x11', '\x22', '\x33', '\x44'
};
ASSERT_EQ(DownloadCommand(buf.size()), SUCCESS) << "Device rejected download command";
ASSERT_EQ(SendBuffer(buf), SUCCESS) << "Downloading payload failed";
// It can either reject this download or reject it during flash
if (HandleResponse() != DEVICE_FAIL) {
EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL)
<< "Flashing a trimmed sparse file should fail";
}
}
TEST_F(Fuzz, SparseInvalidChurk) {
// handcrafted malform sparse file with invalid churk
const std::vector<char> buf = {
'\x3a', '\xff', '\x26', '\xed', '\x01', '\x00', '\x00', '\x00', '\x1c', '\x00', '\x0c', '\x00',
'\x00', '\x10', '\x00', '\x00', '\x00', '\x00', '\x08', '\x00', '\x01', '\x00', '\x00', '\x00',
'\x00', '\x00', '\x00', '\x00', '\xc1', '\xca', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00',
'\x10', '\x00', '\x00', '\x00', '\x11', '\x22', '\x33', '\x44'
};
ASSERT_EQ(DownloadCommand(buf.size()), SUCCESS) << "Device rejected download command";
ASSERT_EQ(SendBuffer(buf), SUCCESS) << "Downloading payload failed";
// It can either reject this download or reject it during flash
if (HandleResponse() != DEVICE_FAIL) {
EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL)
<< "Flashing a sparse file with invalid churk should fail";
}
}
TEST_F(Fuzz, SparseTooManyChunks) {
SparseWrapper sparse(4096, 4096); // 1 block, but we send two chunks that will use 2 blocks
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
std::vector<char> buf = RandomBuf(4096);
ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 0), 0)
<< "Adding data failed to sparse file: " << sparse.Rep();
// We take advantage of the fact the sparse library does not check this
ASSERT_EQ(sparse_file_add_fill(*sparse, 0xdeadbeef, 4096, 1), 0)
<< "Adding fill to sparse file failed: " << sparse.Rep();
RetCode ret = fb->Download(*sparse);
// Two ways to handle it
if (ret != DEVICE_FAIL) { // if lazily parsed it better fail on a flash
EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL)
<< "Flashing sparse image with 'total_blks' in header 1 too small did not fail "
<< sparse.Rep();
}
ret = fb->Download(*sparse, true);
if (ret != DEVICE_FAIL) { // if lazily parsed it better fail on a flash
EXPECT_EQ(fb->Flash("userdata"), DEVICE_FAIL)
<< "Flashing sparse image with 'total_blks' in header 1 too small did not fail "
<< sparse.Rep();
}
}
TEST_F(Fuzz, USBResetSpam) {
auto start = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed;
int i = 0;
do {
ASSERT_EQ(transport->Reset(), 0) << "USB Reset failed after " << i << " resets in a row";
elapsed = std::chrono::high_resolution_clock::now() - start;
} while (i++, elapsed.count() < 5);
std::string resp;
EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS)
<< "getvar failed after " << i << " USB reset(s) in a row";
}
TEST_F(Fuzz, USBResetCommandSpam) {
auto start = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed;
do {
std::string resp;
std::vector<std::string> all;
ASSERT_EQ(transport->Reset(), 0) << "USB Reset failed";
EXPECT_EQ(fb->GetVarAll(&all), SUCCESS) << "getvar:all failed after USB reset";
EXPECT_EQ(fb->GetVar("product", &resp), SUCCESS) << "getvar:product failed";
elapsed = std::chrono::high_resolution_clock::now() - start;
} while (elapsed.count() < 10);
}
TEST_F(Fuzz, USBResetAfterDownload) {
std::vector<char> buf;
buf.resize(1000000);
EXPECT_EQ(DownloadCommand(buf.size()), SUCCESS) << "Download command failed";
EXPECT_EQ(transport->Reset(), 0) << "USB Reset failed";
std::vector<std::string> all;
EXPECT_EQ(fb->GetVarAll(&all), SUCCESS) << "getvar:all failed after USB reset.";
}
// Getvar XML tests
TEST_P(ExtensionsGetVarConformance, VarExists) {
std::string resp;
EXPECT_EQ(fb->GetVar(GetParam().first, &resp), SUCCESS);
}
TEST_P(ExtensionsGetVarConformance, VarMatchesRegex) {
std::string resp;
ASSERT_EQ(fb->GetVar(GetParam().first, &resp), SUCCESS);
std::smatch sm;
std::regex_match(resp, sm, GetParam().second.regex);
EXPECT_FALSE(sm.empty()) << "The regex did not match";
}
INSTANTIATE_TEST_CASE_P(XMLGetVar, ExtensionsGetVarConformance,
::testing::ValuesIn(GETVAR_XML_TESTS));
TEST_P(AnyPartition, ReportedGetVarAll) {
// As long as the partition is reported in INFO, it would be tested by generic Conformance
std::vector<std::tuple<std::string, uint64_t>> parts;
ASSERT_EQ(fb->Partitions(&parts), SUCCESS) << "getvar:all failed";
const std::string name = GetParam().first;
if (GetParam().second.slots) {
auto matcher = [&](const std::tuple<std::string, uint32_t>& tup) {
return std::get<0>(tup) == name + "_a";
};
EXPECT_NE(std::find_if(parts.begin(), parts.end(), matcher), parts.end())
<< "partition '" + name + "_a' not reported in getvar:all";
} else {
auto matcher = [&](const std::tuple<std::string, uint32_t>& tup) {
return std::get<0>(tup) == name;
};
EXPECT_NE(std::find_if(parts.begin(), parts.end(), matcher), parts.end())
<< "partition '" + name + "' not reported in getvar:all";
}
}
TEST_P(AnyPartition, Hashable) {
const std::string name = GetParam().first;
if (!config.checksum.empty()) { // We can use hash to validate
for (const auto& part_name : real_parts) {
// Get hash
std::string hash;
int retcode;
std::string err_msg;
if (GetParam().second.hashable) {
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg))
<< err_msg;
EXPECT_EQ(retcode, 0) << err_msg;
} else { // Make sure it fails
const std::string cmd = config.checksum + ' ' + part_name;
EXPECT_EQ(fb->RawCommand(cmd), DEVICE_FAIL)
<< part_name + " is marked as non-hashable, but hashing did not fail";
}
}
}
}
TEST_P(WriteablePartition, FlashCheck) {
const std::string name = GetParam().first;
auto part_info = GetParam().second;
for (const auto& part_name : real_parts) {
std::vector<char> buf = RandomBuf(max_flash, rand_char);
EXPECT_EQ(fb->FlashPartition(part_name, buf), part_info.parsed ? DEVICE_FAIL : SUCCESS)
<< "A partition with an image parsed by the bootloader should reject random "
"garbage "
"otherwise it should succeed";
}
}
TEST_P(WriteablePartition, EraseCheck) {
const std::string name = GetParam().first;
for (const auto& part_name : real_parts) {
ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed";
}
}
TEST_P(WriteHashNonParsedPartition, EraseZerosData) {
const std::string name = GetParam().first;
for (const auto& part_name : real_parts) {
std::string err_msg;
int retcode;
const std::vector<char> buf = RandomBuf(max_flash, rand_char);
// Partition is too big to write to entire thing
// This can eventually be supported by using sparse images if too large
if (max_flash < part_size) {
std::string hash_before, hash_after;
ASSERT_EQ(fb->FlashPartition(part_name, buf), SUCCESS);
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_NE(hash_before, hash_after)
<< "The partition hash for " + part_name +
" did not change after erasing a known value";
} else {
std::string hash_zeros, hash_ones, hash_middle, hash_after;
const std::vector<char> buf_zeros(max_flash, 0);
const std::vector<char> buf_ones(max_flash, -1); // All bits are set to 1
ASSERT_EQ(fb->FlashPartition(part_name, buf_zeros), SUCCESS);
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_zeros, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
ASSERT_EQ(fb->FlashPartition(part_name, buf_ones), SUCCESS);
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_ones, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
ASSERT_NE(hash_zeros, hash_ones)
<< "Hashes of partion should not be the same when all bytes are 0xFF or 0x00";
ASSERT_EQ(fb->FlashPartition(part_name, buf), SUCCESS);
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_middle, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
ASSERT_NE(hash_zeros, hash_middle)
<< "Hashes of partion are the same when all bytes are 0x00 or test payload";
ASSERT_NE(hash_ones, hash_middle)
<< "Hashes of partion are the same when all bytes are 0xFF or test payload";
ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_TRUE(hash_zeros == hash_after || hash_ones == hash_after)
<< "Erasing " + part_name + " should set all the bytes to 0xFF or 0x00";
}
}
}
// Only partitions that we can write and hash (name, fixture), TEST_P is (Fixture, test_name)
INSTANTIATE_TEST_CASE_P(XMLPartitionsWriteHashNonParsed, WriteHashNonParsedPartition,
::testing::ValuesIn(PARTITION_XML_WRITE_HASH_NONPARSED));
INSTANTIATE_TEST_CASE_P(XMLPartitionsWriteHashable, WriteHashablePartition,
::testing::ValuesIn(PARTITION_XML_WRITE_HASHABLE));
// only partitions writeable
INSTANTIATE_TEST_CASE_P(XMLPartitionsWriteable, WriteablePartition,
::testing::ValuesIn(PARTITION_XML_WRITEABLE));
// Every partition
INSTANTIATE_TEST_CASE_P(XMLPartitionsAll, AnyPartition, ::testing::ValuesIn(PARTITION_XML_TESTS));
// Partition Fuzz tests
TEST_P(FuzzWriteablePartition, BoundsCheck) {
const std::string name = GetParam().first;
auto part_info = GetParam().second;
for (const auto& part_name : real_parts) {
// try and flash +1 too large, first erase and get a hash, make sure it does not change
std::vector<char> buf = RandomBuf(max_flash + 1); // One too large
if (part_info.hashable) {
std::string hash_before, hash_after, err_msg;
int retcode;
ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "Flashing an image 1 byte too large to " + part_name + " did not fail";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(hash_before, hash_after)
<< "Flashing too large of an image resulted in a changed partition hash for " +
part_name;
} else {
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "Flashing an image 1 byte too large to " + part_name + " did not fail";
}
}
}
INSTANTIATE_TEST_CASE_P(XMLFuzzPartitionsWriteable, FuzzWriteablePartition,
::testing::ValuesIn(PARTITION_XML_WRITEABLE));
// A parsed partition should have magic and such that is checked by the bootloader
// Attempting to flash a random single byte should definately fail
TEST_P(FuzzWriteableParsedPartition, FlashGarbageImageSmall) {
const std::string name = GetParam().first;
auto part_info = GetParam().second;
for (const auto& part_name : real_parts) {
std::vector<char> buf = RandomBuf(1);
if (part_info.hashable) {
std::string hash_before, hash_after, err_msg;
int retcode;
ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "A parsed partition should fail on a single byte";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(hash_before, hash_after)
<< "Flashing a single byte to parsed partition " + part_name +
" should fail and not change the partition hash";
} else {
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "Flashing a 1 byte image to a parsed partition should fail";
}
}
}
TEST_P(FuzzWriteableParsedPartition, FlashGarbageImageLarge) {
const std::string name = GetParam().first;
auto part_info = GetParam().second;
for (const auto& part_name : real_parts) {
std::vector<char> buf = RandomBuf(max_flash);
if (part_info.hashable) {
std::string hash_before, hash_after, err_msg;
int retcode;
ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "A parsed partition should not accept randomly generated images";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(hash_before, hash_after)
<< "The hash of the partition has changed after attempting to flash garbage to "
"a parsed partition";
} else {
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "A parsed partition should not accept randomly generated images";
}
}
}
TEST_P(FuzzWriteableParsedPartition, FlashGarbageImageLarge2) {
const std::string name = GetParam().first;
auto part_info = GetParam().second;
for (const auto& part_name : real_parts) {
std::vector<char> buf(max_flash, -1); // All 1's
if (part_info.hashable) {
std::string hash_before, hash_after, err_msg;
int retcode;
ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "A parsed partition should not accept a image of all 0xFF";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(hash_before, hash_after)
<< "The hash of the partition has changed after attempting to flash garbage to "
"a parsed partition";
} else {
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "A parsed partition should not accept a image of all 0xFF";
}
}
}
TEST_P(FuzzWriteableParsedPartition, FlashGarbageImageLarge3) {
const std::string name = GetParam().first;
auto part_info = GetParam().second;
for (const auto& part_name : real_parts) {
std::vector<char> buf(max_flash, 0); // All 0's
if (part_info.hashable) {
std::string hash_before, hash_after, err_msg;
int retcode;
ASSERT_EQ(fb->Erase(part_name), SUCCESS) << "Erasing " + part_name + " failed";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_before, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "A parsed partition should not accept a image of all 0x00";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_after, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(hash_before, hash_after)
<< "The hash of the partition has changed after attempting to flash garbage to "
"a parsed partition";
} else {
EXPECT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "A parsed partition should not accept a image of all 0x00";
}
}
}
INSTANTIATE_TEST_CASE_P(XMLFuzzPartitionsWriteableParsed, FuzzWriteableParsedPartition,
::testing::ValuesIn(PARTITION_XML_WRITE_PARSED));
// Make sure all attempts to flash things are rejected
TEST_P(FuzzAnyPartitionLocked, RejectFlash) {
std::vector<char> buf = RandomBuf(5);
for (const auto& part_name : real_parts) {
ASSERT_EQ(fb->FlashPartition(part_name, buf), DEVICE_FAIL)
<< "Flashing a partition should always fail in locked mode";
}
}
INSTANTIATE_TEST_CASE_P(XMLFuzzAnyPartitionLocked, FuzzAnyPartitionLocked,
::testing::ValuesIn(PARTITION_XML_TESTS));
// Test flashing unlock erases userdata
TEST_P(UserdataPartition, UnlockErases) {
// Get hash after an erase
int retcode;
std::string err_msg, hash_before, hash_buf, hash_after;
ASSERT_EQ(fb->Erase("userdata"), SUCCESS) << "Erasing uesrdata failed";
ASSERT_TRUE(PartitionHash(fb.get(), "userdata", &hash_before, &retcode, &err_msg)) << err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
// Write garbage
std::vector<char> buf = RandomBuf(max_flash / 2);
ASSERT_EQ(fb->FlashPartition("userdata", buf), SUCCESS);
ASSERT_TRUE(PartitionHash(fb.get(), "userdata", &hash_buf, &retcode, &err_msg)) << err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
// Validity check of hash
EXPECT_NE(hash_before, hash_buf)
<< "Writing a random buffer to 'userdata' had the same hash as after erasing it";
SetLockState(true); // Lock the device
SetLockState(false); // Unlock the device (should cause erase)
ASSERT_TRUE(PartitionHash(fb.get(), "userdata", &hash_after, &retcode, &err_msg)) << err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_NE(hash_after, hash_buf) << "Unlocking the device did not cause the hash of userdata to "
"change (i.e. it was not erased as required)";
EXPECT_EQ(hash_after, hash_before) << "Unlocking the device did not produce the same hash of "
"userdata as after doing an erase to userdata";
}
// This is a hack to make this test disapeer if there is not a checsum, userdata is not hashable,
// or userdata is not marked to be writeable in testing
INSTANTIATE_TEST_CASE_P(XMLUserdataLocked, UserdataPartition,
::testing::ValuesIn(PARTITION_XML_USERDATA_CHECKSUM_WRITEABLE));
// Packed images test
TEST_P(ExtensionsPackedValid, TestDeviceUnpack) {
const std::string& packed_name = GetParam().first;
const std::string& packed_image = GetParam().second.packed_img;
const std::string& unpacked = GetParam().second.unpacked_dir;
// First we need to check for existence of images
const extension::Configuration::PackedInfo& info = config.packed[packed_name];
const auto flash_part = [&](const std::string fname, const std::string part_name) {
FILE* to_flash = fopen((SEARCH_PATH + fname).c_str(), "rb");
ASSERT_NE(to_flash, nullptr) << "'" << fname << "'"
<< " failed to open for flashing";
int fd = fileno(to_flash);
size_t fsize = lseek(fd, 0, SEEK_END);
ASSERT_GT(fsize, 0) << fname + " appears to be an empty image";
ASSERT_EQ(fb->FlashPartition(part_name, fd, fsize), SUCCESS);
fclose(to_flash);
};
// We first need to set the slot count
std::string var;
int num_slots = 1;
if (info.slots) {
ASSERT_EQ(fb->GetVar("slot-count", &var), SUCCESS) << "Getting slot count failed";
num_slots = strtol(var.c_str(), nullptr, 10);
} else {
for (const auto& part : info.children) {
EXPECT_FALSE(config.partitions[part].slots)
<< "A partition can not have slots if the packed image does not";
}
}
for (int i = 0; i < num_slots; i++) {
std::unordered_map<std::string, std::string> initial_hashes;
const std::string packed_suffix =
info.slots ? android::base::StringPrintf("_%c", 'a' + i) : "";
// Flash the paritions manually and get hash
for (const auto& part : info.children) {
const extension::Configuration::PartitionInfo& part_info = config.partitions[part];
const std::string suffix = part_info.slots ? packed_suffix : "";
const std::string part_name = part + suffix;
ASSERT_EQ(fb->Erase(part_name), SUCCESS);
const std::string fpath = unpacked + '/' + part + ".img";
ASSERT_NO_FATAL_FAILURE(flash_part(fpath, part_name))
<< "Failed to flash '" + fpath + "'";
// If the partition is hashable we store it
if (part_info.hashable) {
std::string hash, err_msg;
int retcode;
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
initial_hashes[part] = hash;
}
}
// erase once at the end, to avoid false positives if flashing does nothing
for (const auto& part : info.children) {
const std::string suffix = config.partitions[part].slots ? packed_suffix : "";
ASSERT_EQ(fb->Erase(part + suffix), SUCCESS);
}
// Now we flash the packed image and compare our hashes
ASSERT_NO_FATAL_FAILURE(flash_part(packed_image, packed_name + packed_suffix));
for (const auto& part : info.children) {
const extension::Configuration::PartitionInfo& part_info = config.partitions[part];
// If the partition is hashable we check it
if (part_info.hashable) {
const std::string suffix = part_info.slots ? packed_suffix : "";
const std::string part_name = part + suffix;
std::string hash, err_msg;
int retcode;
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
std::string msg =
"The hashes between flashing the packed image and directly flashing '" +
part_name + "' does not match";
EXPECT_EQ(hash, initial_hashes[part]) << msg;
}
}
}
}
INSTANTIATE_TEST_CASE_P(XMLTestPacked, ExtensionsPackedValid,
::testing::ValuesIn(PACKED_XML_SUCCESS_TESTS));
// Packed images test
TEST_P(ExtensionsPackedInvalid, TestDeviceUnpack) {
const std::string& packed_name = GetParam().first;
const std::string& packed_image = GetParam().second.packed_img;
// First we need to check for existence of images
const extension::Configuration::PackedInfo& info = config.packed[packed_name];
// We first need to set the slot count
std::string var;
int num_slots = 1;
if (info.slots) {
ASSERT_EQ(fb->GetVar("slot-count", &var), SUCCESS) << "Getting slot count failed";
num_slots = strtol(var.c_str(), nullptr, 10);
} else {
for (const auto& part : info.children) {
EXPECT_FALSE(config.partitions[part].slots)
<< "A partition can not have slots if the packed image does not";
}
}
for (int i = 0; i < num_slots; i++) {
std::unordered_map<std::string, std::string> initial_hashes;
const std::string packed_suffix =
info.slots ? android::base::StringPrintf("_%c", 'a' + i) : "";
// manually and get hash
for (const auto& part : info.children) {
const extension::Configuration::PartitionInfo& part_info = config.partitions[part];
const std::string suffix = part_info.slots ? packed_suffix : "";
const std::string part_name = part + suffix;
// If the partition is hashable we store it
if (part_info.hashable) {
std::string hash, err_msg;
int retcode;
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
initial_hashes[part] = hash;
}
}
// Attempt to flash the invalid file
FILE* to_flash = fopen((SEARCH_PATH + packed_image).c_str(), "rb");
ASSERT_NE(to_flash, nullptr) << "'" << packed_image << "'"
<< " failed to open for flashing";
int fd = fileno(to_flash);
size_t fsize = lseek(fd, 0, SEEK_END);
ASSERT_GT(fsize, 0) << packed_image + " appears to be an empty image";
ASSERT_EQ(fb->FlashPartition(packed_name + packed_suffix, fd, fsize), DEVICE_FAIL)
<< "Expected flashing to fail for " + packed_image;
fclose(to_flash);
for (const auto& part : info.children) {
const extension::Configuration::PartitionInfo& part_info = config.partitions[part];
// If the partition is hashable we check it
if (part_info.hashable) {
const std::string suffix = part_info.slots ? packed_suffix : "";
const std::string part_name = part + suffix;
std::string hash, err_msg;
int retcode;
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg))
<< err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
std::string msg = "Flashing an invalid image changed the hash of '" + part_name;
EXPECT_EQ(hash, initial_hashes[part]) << msg;
}
}
}
}
INSTANTIATE_TEST_CASE_P(XMLTestPacked, ExtensionsPackedInvalid,
::testing::ValuesIn(PACKED_XML_FAIL_TESTS));
// OEM xml tests
TEST_P(ExtensionsOemConformance, RunOEMTest) {
const std::string& cmd = std::get<0>(GetParam());
// bool restricted = std::get<1>(GetParam());
const extension::Configuration::CommandTest& test = std::get<2>(GetParam());
const RetCode expect = (test.expect == extension::FAIL) ? DEVICE_FAIL : SUCCESS;
// Does the test require staging something?
if (!test.input.empty()) { // Non-empty string
FILE* to_stage = fopen((SEARCH_PATH + test.input).c_str(), "rb");
ASSERT_NE(to_stage, nullptr) << "'" << test.input << "'"
<< " failed to open for staging";
int fd = fileno(to_stage);
size_t fsize = lseek(fd, 0, SEEK_END);
std::string var;
EXPECT_EQ(fb->GetVar("max-download-size", &var), SUCCESS);
int64_t size = strtoll(var.c_str(), nullptr, 16);
EXPECT_LT(fsize, size) << "'" << test.input << "'"
<< " is too large for staging";
ASSERT_EQ(fb->Download(fd, fsize), SUCCESS) << "'" << test.input << "'"
<< " failed to download for staging";
fclose(to_stage);
}
// Run the command
int dsize = -1;
std::string resp;
const std::string full_cmd = "oem " + cmd + " " + test.arg;
ASSERT_EQ(fb->RawCommand(full_cmd, &resp, nullptr, &dsize), expect);
// This is how we test if indeed data response
if (test.expect == extension::DATA) {
EXPECT_GT(dsize, 0);
}
// Validate response if neccesary
if (!test.regex_str.empty()) {
std::smatch sm;
std::regex_match(resp, sm, test.regex);
EXPECT_FALSE(sm.empty()) << "The oem regex did not match";
}
// If payload, we validate that as well
const std::vector<std::string> args = SplitBySpace(test.validator);
if (args.size()) {
// Save output
const std::string save_loc =
OUTPUT_PATH + (test.output.empty() ? DEFAULT_OUPUT_NAME : test.output);
std::string resp;
ASSERT_EQ(fb->Upload(save_loc, &resp), SUCCESS)
<< "Saving output file failed with (" << fb->Error() << ") " << resp;
// Build the arguments to the validator
std::vector<std::string> prog_args(args.begin() + 1, args.end());
prog_args.push_back(full_cmd); // Pass in the full command
prog_args.push_back(save_loc); // Pass in the save location
// Run the validation program
int pipe;
const pid_t pid = StartProgram(args[0], prog_args, &pipe);
ASSERT_GT(pid, 0) << "Failed to launch validation program: " << args[0];
std::string error_msg;
int ret = WaitProgram(pid, pipe, &error_msg);
EXPECT_EQ(ret, 0) << error_msg; // Program exited correctly
}
}
INSTANTIATE_TEST_CASE_P(XMLOEM, ExtensionsOemConformance, ::testing::ValuesIn(OEM_XML_TESTS));
// Sparse Tests
TEST_P(SparseTestPartition, SparseSingleBlock) {
const std::string name = GetParam().first;
auto part_info = GetParam().second;
const std::string part_name = name + (part_info.slots ? "_a" : "");
SparseWrapper sparse(4096, 4096);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
std::vector<char> buf = RandomBuf(4096);
ASSERT_EQ(sparse_file_add_data(*sparse, buf.data(), buf.size(), 0), 0)
<< "Adding data failed to sparse file: " << sparse.Rep();
EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep();
EXPECT_EQ(fb->Flash(part_name), SUCCESS) << "Flashing sparse failed: " << sparse.Rep();
std::string hash, hash_new, err_msg;
int retcode;
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
// Now flash it the non-sparse way
EXPECT_EQ(fb->FlashPartition(part_name, buf), SUCCESS) << "Flashing image failed: ";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_new, &retcode, &err_msg)) << err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(hash, hash_new) << "Flashing a random buffer of 4096 using sparse and non-sparse "
"methods did not result in the same hash";
}
TEST_P(SparseTestPartition, SparseFill) {
const std::string name = GetParam().first;
auto part_info = GetParam().second;
const std::string part_name = name + (part_info.slots ? "_a" : "");
int64_t size = (max_dl / 4096) * 4096;
SparseWrapper sparse(4096, size);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
ASSERT_EQ(sparse_file_add_fill(*sparse, 0xdeadbeef, size, 0), 0)
<< "Adding data failed to sparse file: " << sparse.Rep();
EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep();
EXPECT_EQ(fb->Flash(part_name), SUCCESS) << "Flashing sparse failed: " << sparse.Rep();
std::string hash, hash_new, err_msg;
int retcode;
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
// Now flash it the non-sparse way
std::vector<char> buf(size);
for (auto iter = buf.begin(); iter < buf.end(); iter += 4) {
iter[0] = 0xef;
iter[1] = 0xbe;
iter[2] = 0xad;
iter[3] = 0xde;
}
EXPECT_EQ(fb->FlashPartition(part_name, buf), SUCCESS) << "Flashing image failed: ";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_new, &retcode, &err_msg)) << err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(hash, hash_new) << "Flashing a random buffer of 4096 using sparse and non-sparse "
"methods did not result in the same hash";
}
// This tests to make sure it does not overwrite previous flashes
TEST_P(SparseTestPartition, SparseMultiple) {
const std::string name = GetParam().first;
auto part_info = GetParam().second;
const std::string part_name = name + (part_info.slots ? "_a" : "");
int64_t size = (max_dl / 4096) * 4096;
SparseWrapper sparse(4096, size / 2);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
ASSERT_EQ(sparse_file_add_fill(*sparse, 0xdeadbeef, size / 2, 0), 0)
<< "Adding data failed to sparse file: " << sparse.Rep();
EXPECT_EQ(fb->Download(*sparse), SUCCESS) << "Download sparse failed: " << sparse.Rep();
EXPECT_EQ(fb->Flash(part_name), SUCCESS) << "Flashing sparse failed: " << sparse.Rep();
SparseWrapper sparse2(4096, size / 2);
ASSERT_TRUE(*sparse) << "Sparse image creation failed";
std::vector<char> buf = RandomBuf(size / 2);
ASSERT_EQ(sparse_file_add_data(*sparse2, buf.data(), buf.size(), (size / 2) / 4096), 0)
<< "Adding data failed to sparse file: " << sparse2.Rep();
EXPECT_EQ(fb->Download(*sparse2), SUCCESS) << "Download sparse failed: " << sparse2.Rep();
EXPECT_EQ(fb->Flash(part_name), SUCCESS) << "Flashing sparse failed: " << sparse2.Rep();
std::string hash, hash_new, err_msg;
int retcode;
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash, &retcode, &err_msg)) << err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
// Now flash it the non-sparse way
std::vector<char> fbuf(size);
for (auto iter = fbuf.begin(); iter < fbuf.begin() + size / 2; iter += 4) {
iter[0] = 0xef;
iter[1] = 0xbe;
iter[2] = 0xad;
iter[3] = 0xde;
}
fbuf.assign(buf.begin(), buf.end());
EXPECT_EQ(fb->FlashPartition(part_name, fbuf), SUCCESS) << "Flashing image failed: ";
ASSERT_TRUE(PartitionHash(fb.get(), part_name, &hash_new, &retcode, &err_msg)) << err_msg;
ASSERT_EQ(retcode, 0) << err_msg;
EXPECT_EQ(hash, hash_new) << "Flashing a random buffer of 4096 using sparse and non-sparse "
"methods did not result in the same hash";
}
INSTANTIATE_TEST_CASE_P(XMLSparseTest, SparseTestPartition,
::testing::ValuesIn(SINGLE_PARTITION_XML_WRITE_HASHABLE));
void GenerateXmlTests(const extension::Configuration& config) {
// Build the getvar tests
for (const auto& it : config.getvars) {
GETVAR_XML_TESTS.push_back(std::make_pair(it.first, it.second));
}
// Build the partition tests, to interface with gtest we need to do it this way
for (const auto& it : config.partitions) {
const auto tup = std::make_tuple(it.first, it.second);
PARTITION_XML_TESTS.push_back(tup); // All partitions
if (it.second.test == it.second.YES) {
PARTITION_XML_WRITEABLE.push_back(tup); // All writeable partitions
if (it.second.hashable) {
PARTITION_XML_WRITE_HASHABLE.push_back(tup); // All write and hashable
if (!it.second.parsed) {
PARTITION_XML_WRITE_HASH_NONPARSED.push_back(
tup); // All write hashed and non-parsed
}
}
if (it.second.parsed) {
PARTITION_XML_WRITE_PARSED.push_back(tup); // All write and parsed
}
}
}
// Build the packed tests, only useful if we have a hash
if (!config.checksum.empty()) {
for (const auto& it : config.packed) {
for (const auto& test : it.second.tests) {
const auto tup = std::make_tuple(it.first, test);
if (test.expect == extension::OKAY) { // only testing the success case
PACKED_XML_SUCCESS_TESTS.push_back(tup);
} else {
PACKED_XML_FAIL_TESTS.push_back(tup);
}
}
}
}
// This is a hack to make this test disapeer if there is not a checksum, userdata is not
// hashable, or userdata is not marked to be writeable in testing
const auto part_info = config.partitions.find("userdata");
if (!config.checksum.empty() && part_info != config.partitions.end() &&
part_info->second.hashable &&
part_info->second.test == extension::Configuration::PartitionInfo::YES) {
PARTITION_XML_USERDATA_CHECKSUM_WRITEABLE.push_back(
std::make_tuple(part_info->first, part_info->second));
}
if (!PARTITION_XML_WRITE_HASHABLE.empty()) {
SINGLE_PARTITION_XML_WRITE_HASHABLE.push_back(PARTITION_XML_WRITE_HASHABLE.front());
}
// Build oem tests
for (const auto& it : config.oem) {
auto oem_cmd = it.second;
for (const auto& t : oem_cmd.tests) {
OEM_XML_TESTS.push_back(std::make_tuple(it.first, oem_cmd.restricted, t));
}
}
}
} // namespace fastboot
int main(int argc, char** argv) {
std::string err;
// Parse the args
const std::unordered_map<std::string, std::string> args = fastboot::ParseArgs(argc, argv, &err);
if (!err.empty()) {
printf("%s\n", err.c_str());
return -1;
}
if (args.find("config") != args.end()) {
auto found = args.find("search_path");
fastboot::SEARCH_PATH = (found != args.end()) ? found->second + "/" : "";
found = args.find("output_path");
fastboot::OUTPUT_PATH = (found != args.end()) ? found->second + "/" : "/tmp/";
if (!fastboot::extension::ParseXml(fastboot::SEARCH_PATH + args.at("config"),
&fastboot::config)) {
printf("XML config parsing failed\n");
return -1;
}
// To interface with gtest, must set global scope test variables
fastboot::GenerateXmlTests(fastboot::config);
}
if (args.find("serial") != args.end()) {
fastboot::FastBootTest::device_serial = args.at("serial");
}
setbuf(stdout, NULL); // no buffering
if (!fastboot::FastBootTest::IsFastbootOverTcp()) {
printf("<Waiting for Device>\n");
const auto matcher = [](usb_ifc_info* info) -> int {
return fastboot::FastBootTest::MatchFastboot(info, fastboot::FastBootTest::device_serial);
};
Transport* transport = nullptr;
while (!transport) {
transport = usb_open(matcher);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
transport->Close();
}
if (args.find("serial_port") != args.end()) {
fastboot::FastBootTest::serial_port = fastboot::ConfigureSerial(args.at("serial_port"));
}
::testing::InitGoogleTest(&argc, argv);
auto ret = RUN_ALL_TESTS();
if (fastboot::FastBootTest::serial_port > 0) {
close(fastboot::FastBootTest::serial_port);
}
return ret;
}