android_system_core/logd/ChattyLogBuffer.cpp

620 lines
24 KiB
C++

/*
* Copyright (C) 2012-2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// for manual checking of stale entries during ChattyLogBuffer::erase()
//#define DEBUG_CHECK_FOR_STALE_ENTRIES
#include "ChattyLogBuffer.h"
#include <ctype.h>
#include <endian.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/user.h>
#include <time.h>
#include <unistd.h>
#include <limits>
#include <unordered_map>
#include <utility>
#include <private/android_logger.h>
#include "LogUtils.h"
#ifndef __predict_false
#define __predict_false(exp) __builtin_expect((exp) != 0, 0)
#endif
ChattyLogBuffer::ChattyLogBuffer(LogReaderList* reader_list, LogTags* tags, PruneList* prune,
LogStatistics* stats)
: SimpleLogBuffer(reader_list, tags, stats), prune_(prune) {}
ChattyLogBuffer::~ChattyLogBuffer() {}
enum match_type { DIFFERENT, SAME, SAME_LIBLOG };
static enum match_type Identical(const LogBufferElement& elem, const LogBufferElement& last) {
ssize_t lenl = elem.msg_len();
if (lenl <= 0) return DIFFERENT; // value if this represents a chatty elem
ssize_t lenr = last.msg_len();
if (lenr <= 0) return DIFFERENT; // value if this represents a chatty elem
if (elem.uid() != last.uid()) return DIFFERENT;
if (elem.pid() != last.pid()) return DIFFERENT;
if (elem.tid() != last.tid()) return DIFFERENT;
// last is more than a minute old, stop squashing identical messages
if (elem.realtime().nsec() > (last.realtime().nsec() + 60 * NS_PER_SEC)) return DIFFERENT;
// Identical message
const char* msgl = elem.msg();
const char* msgr = last.msg();
if (lenl == lenr) {
if (!fastcmp<memcmp>(msgl, msgr, lenl)) return SAME;
// liblog tagged messages (content gets summed)
if (elem.log_id() == LOG_ID_EVENTS && lenl == sizeof(android_log_event_int_t) &&
!fastcmp<memcmp>(msgl, msgr, sizeof(android_log_event_int_t) - sizeof(int32_t)) &&
elem.GetTag() == LIBLOG_LOG_TAG) {
return SAME_LIBLOG;
}
}
// audit message (except sequence number) identical?
if (IsBinary(last.log_id()) &&
lenl > static_cast<ssize_t>(sizeof(android_log_event_string_t)) &&
lenr > static_cast<ssize_t>(sizeof(android_log_event_string_t))) {
if (fastcmp<memcmp>(msgl, msgr, sizeof(android_log_event_string_t) - sizeof(int32_t))) {
return DIFFERENT;
}
msgl += sizeof(android_log_event_string_t);
lenl -= sizeof(android_log_event_string_t);
msgr += sizeof(android_log_event_string_t);
lenr -= sizeof(android_log_event_string_t);
}
static const char avc[] = "): avc: ";
const char* avcl = android::strnstr(msgl, lenl, avc);
if (!avcl) return DIFFERENT;
lenl -= avcl - msgl;
const char* avcr = android::strnstr(msgr, lenr, avc);
if (!avcr) return DIFFERENT;
lenr -= avcr - msgr;
if (lenl != lenr) return DIFFERENT;
if (fastcmp<memcmp>(avcl + strlen(avc), avcr + strlen(avc), lenl - strlen(avc))) {
return DIFFERENT;
}
return SAME;
}
void ChattyLogBuffer::LogInternal(LogBufferElement&& elem) {
// b/137093665: don't coalesce security messages.
if (elem.log_id() == LOG_ID_SECURITY) {
SimpleLogBuffer::LogInternal(std::move(elem));
return;
}
int log_id = elem.log_id();
// Initialize last_logged_elements_ to a copy of elem if logging the first element for a log_id.
if (!last_logged_elements_[log_id]) {
last_logged_elements_[log_id].emplace(elem);
SimpleLogBuffer::LogInternal(std::move(elem));
return;
}
LogBufferElement& current_last = *last_logged_elements_[log_id];
enum match_type match = Identical(elem, current_last);
if (match == DIFFERENT) {
if (duplicate_elements_[log_id]) {
// If we previously had 3+ identical messages, log the chatty message.
if (duplicate_elements_[log_id]->dropped_count() > 0) {
SimpleLogBuffer::LogInternal(std::move(*duplicate_elements_[log_id]));
}
duplicate_elements_[log_id].reset();
// Log the saved copy of the last identical message seen.
SimpleLogBuffer::LogInternal(std::move(current_last));
}
last_logged_elements_[log_id].emplace(elem);
SimpleLogBuffer::LogInternal(std::move(elem));
return;
}
// 2 identical message: set duplicate_elements_ appropriately.
if (!duplicate_elements_[log_id]) {
duplicate_elements_[log_id].emplace(std::move(current_last));
last_logged_elements_[log_id].emplace(std::move(elem));
return;
}
// 3+ identical LIBLOG event messages: coalesce them into last_logged_elements_.
if (match == SAME_LIBLOG) {
const android_log_event_int_t* current_last_event =
reinterpret_cast<const android_log_event_int_t*>(current_last.msg());
int64_t current_last_count = current_last_event->payload.data;
android_log_event_int_t* elem_event =
reinterpret_cast<android_log_event_int_t*>(const_cast<char*>(elem.msg()));
int64_t elem_count = elem_event->payload.data;
int64_t total = current_last_count + elem_count;
if (total > std::numeric_limits<int32_t>::max()) {
SimpleLogBuffer::LogInternal(std::move(current_last));
last_logged_elements_[log_id].emplace(std::move(elem));
return;
}
stats()->AddTotal(current_last.log_id(), current_last.msg_len());
elem_event->payload.data = total;
last_logged_elements_[log_id].emplace(std::move(elem));
return;
}
// 3+ identical messages (not LIBLOG) messages: increase the drop count.
uint16_t dropped_count = duplicate_elements_[log_id]->dropped_count();
if (dropped_count == std::numeric_limits<uint16_t>::max()) {
SimpleLogBuffer::LogInternal(std::move(*duplicate_elements_[log_id]));
dropped_count = 0;
}
// We're dropping the current_last log so add its stats to the total.
stats()->AddTotal(current_last.log_id(), current_last.msg_len());
// Use current_last for tracking the dropped count to always use the latest timestamp.
current_last.SetDropped(dropped_count + 1);
duplicate_elements_[log_id].emplace(std::move(current_last));
last_logged_elements_[log_id].emplace(std::move(elem));
}
LogBufferElementCollection::iterator ChattyLogBuffer::Erase(LogBufferElementCollection::iterator it,
bool coalesce) {
LogBufferElement& element = *it;
log_id_t id = element.log_id();
// Remove iterator references in the various lists that will become stale
// after the element is erased from the main logging list.
{ // start of scope for found iterator
int key = (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) ? element.GetTag() : element.uid();
LogBufferIteratorMap::iterator found = mLastWorst[id].find(key);
if ((found != mLastWorst[id].end()) && (it == found->second)) {
mLastWorst[id].erase(found);
}
}
{ // start of scope for pid found iterator
// element->uid() may not be AID_SYSTEM for next-best-watermark.
// will not assume id != LOG_ID_EVENTS or LOG_ID_SECURITY for KISS and
// long term code stability, find() check should be fast for those ids.
LogBufferPidIteratorMap::iterator found = mLastWorstPidOfSystem[id].find(element.pid());
if (found != mLastWorstPidOfSystem[id].end() && it == found->second) {
mLastWorstPidOfSystem[id].erase(found);
}
}
#ifdef DEBUG_CHECK_FOR_STALE_ENTRIES
LogBufferElementCollection::iterator bad = it;
int key = (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) ? element->GetTag() : element->uid();
#endif
if (coalesce) {
stats()->Erase(element.ToLogStatisticsElement());
} else {
stats()->Subtract(element.ToLogStatisticsElement());
}
it = SimpleLogBuffer::Erase(it);
#ifdef DEBUG_CHECK_FOR_STALE_ENTRIES
log_id_for_each(i) {
for (auto b : mLastWorst[i]) {
if (bad == b.second) {
LOG(ERROR) << StringPrintf("stale mLastWorst[%d] key=%d mykey=%d", i, b.first, key);
}
}
for (auto b : mLastWorstPidOfSystem[i]) {
if (bad == b.second) {
LOG(ERROR) << StringPrintf("stale mLastWorstPidOfSystem[%d] pid=%d", i, b.first);
}
}
}
#endif
return it;
}
// Define a temporary mechanism to report the last LogBufferElement pointer
// for the specified uid, pid and tid. Used below to help merge-sort when
// pruning for worst UID.
class LogBufferElementLast {
typedef std::unordered_map<uint64_t, LogBufferElement*> LogBufferElementMap;
LogBufferElementMap map;
public:
bool coalesce(LogBufferElement* element, uint16_t dropped) {
uint64_t key = LogBufferElementKey(element->uid(), element->pid(), element->tid());
LogBufferElementMap::iterator it = map.find(key);
if (it != map.end()) {
LogBufferElement* found = it->second;
uint16_t moreDropped = found->dropped_count();
if ((dropped + moreDropped) > USHRT_MAX) {
map.erase(it);
} else {
found->SetDropped(dropped + moreDropped);
return true;
}
}
return false;
}
void add(LogBufferElement* element) {
uint64_t key = LogBufferElementKey(element->uid(), element->pid(), element->tid());
map[key] = element;
}
void clear() { map.clear(); }
void clear(LogBufferElement* element) {
uint64_t current = element->realtime().nsec() - (EXPIRE_RATELIMIT * NS_PER_SEC);
for (LogBufferElementMap::iterator it = map.begin(); it != map.end();) {
LogBufferElement* mapElement = it->second;
if (mapElement->dropped_count() >= EXPIRE_THRESHOLD &&
current > mapElement->realtime().nsec()) {
it = map.erase(it);
} else {
++it;
}
}
}
private:
uint64_t LogBufferElementKey(uid_t uid, pid_t pid, pid_t tid) {
return uint64_t(uid) << 32 | uint64_t(pid) << 16 | uint64_t(tid);
}
};
// prune "pruneRows" of type "id" from the buffer.
//
// This garbage collection task is used to expire log entries. It is called to
// remove all logs (clear), all UID logs (unprivileged clear), or every
// 256 or 10% of the total logs (whichever is less) to prune the logs.
//
// First there is a prep phase where we discover the reader region lock that
// acts as a backstop to any pruning activity to stop there and go no further.
//
// There are three major pruning loops that follow. All expire from the oldest
// entries. Since there are multiple log buffers, the Android logging facility
// will appear to drop entries 'in the middle' when looking at multiple log
// sources and buffers. This effect is slightly more prominent when we prune
// the worst offender by logging source. Thus the logs slowly loose content
// and value as you move back in time. This is preferred since chatty sources
// invariably move the logs value down faster as less chatty sources would be
// expired in the noise.
//
// The first pass prunes elements that match 3 possible rules:
// 1) A high priority prune rule, for example ~100/20, which indicates elements from UID 100 and PID
// 20 should be pruned in this first pass.
// 2) The default chatty pruning rule, ~!. This rule sums the total size spent on log messages for
// each UID this log buffer. If the highest sum consumes more than 12.5% of the log buffer, then
// these elements from that UID are pruned.
// 3) The default AID_SYSTEM pruning rule, ~1000/!. This rule is a special case to 2), if
// AID_SYSTEM is the top consumer of the log buffer, then this rule sums the total size spent on
// log messages for each PID in AID_SYSTEM in this log buffer and prunes elements from the PID
// with the highest sum.
// This pass reevaluates the sums for rules 2) and 3) for every log message pruned. It creates
// 'chatty' entries for the elements that it prunes and merges related chatty entries together. It
// completes when one of three conditions have been met:
// 1) The requested element count has been pruned.
// 2) There are no elements that match any of these rules.
// 3) A reader is referencing the oldest element that would match these rules.
//
// The second pass prunes elements starting from the beginning of the log. It skips elements that
// match any low priority prune rules. It completes when one of three conditions have been met:
// 1) The requested element count has been pruned.
// 2) All elements except those mwatching low priority prune rules have been pruned.
// 3) A reader is referencing the oldest element that would match these rules.
//
// The final pass only happens if there are any low priority prune rules and if the first two passes
// were unable to prune the requested number of elements. It prunes elements all starting from the
// beginning of the log, regardless of if they match any low priority prune rules.
//
// If the requested number of logs was unable to be pruned, KickReader() is called to mitigate the
// situation before the next call to Prune() and the function returns false. Otherwise, if the
// requested number of logs or all logs present in the buffer are pruned, in the case of Clear(),
// it returns true.
bool ChattyLogBuffer::Prune(log_id_t id, unsigned long pruneRows, uid_t caller_uid) {
LogReaderThread* oldest = nullptr;
bool clearAll = pruneRows == ULONG_MAX;
auto reader_threads_lock = std::lock_guard{reader_list()->reader_threads_lock()};
// Region locked?
for (const auto& reader_thread : reader_list()->reader_threads()) {
if (!reader_thread->IsWatching(id)) {
continue;
}
if (!oldest || oldest->start() > reader_thread->start() ||
(oldest->start() == reader_thread->start() &&
reader_thread->deadline().time_since_epoch().count() != 0)) {
oldest = reader_thread.get();
}
}
LogBufferElementCollection::iterator it;
if (__predict_false(caller_uid != AID_ROOT)) { // unlikely
// Only here if clear all request from non system source, so chatty
// filter logistics is not required.
it = GetOldest(id);
while (it != logs().end()) {
LogBufferElement& element = *it;
if (element.log_id() != id || element.uid() != caller_uid) {
++it;
continue;
}
if (oldest && oldest->start() <= element.sequence()) {
KickReader(oldest, id, pruneRows);
return false;
}
it = Erase(it);
if (--pruneRows == 0) {
return true;
}
}
return true;
}
// First prune pass.
bool check_high_priority = id != LOG_ID_SECURITY && prune_->HasHighPriorityPruneRules();
while (!clearAll && (pruneRows > 0)) {
// recalculate the worst offender on every batched pass
int worst = -1; // not valid for uid() or getKey()
size_t worst_sizes = 0;
size_t second_worst_sizes = 0;
pid_t worstPid = 0; // POSIX guarantees PID != 0
if (worstUidEnabledForLogid(id) && prune_->worst_uid_enabled()) {
// Calculate threshold as 12.5% of available storage
size_t threshold = max_size(id) / 8;
if (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) {
stats()->WorstTwoTags(threshold, &worst, &worst_sizes, &second_worst_sizes);
// per-pid filter for AID_SYSTEM sources is too complex
} else {
stats()->WorstTwoUids(id, threshold, &worst, &worst_sizes, &second_worst_sizes);
if (worst == AID_SYSTEM && prune_->worst_pid_of_system_enabled()) {
stats()->WorstTwoSystemPids(id, worst_sizes, &worstPid, &second_worst_sizes);
}
}
}
// skip if we have neither a worst UID or high priority prune rules
if (worst == -1 && !check_high_priority) {
break;
}
bool kick = false;
bool leading = true; // true if starting from the oldest log entry, false if starting from
// a specific chatty entry.
// Perform at least one mandatory garbage collection cycle in following
// - clear leading chatty tags
// - coalesce chatty tags
// - check age-out of preserved logs
bool gc = pruneRows <= 1;
if (!gc && (worst != -1)) {
{ // begin scope for worst found iterator
LogBufferIteratorMap::iterator found = mLastWorst[id].find(worst);
if (found != mLastWorst[id].end() && found->second != logs().end()) {
leading = false;
it = found->second;
}
}
if (worstPid) { // begin scope for pid worst found iterator
// FYI: worstPid only set if !LOG_ID_EVENTS and
// !LOG_ID_SECURITY, not going to make that assumption ...
LogBufferPidIteratorMap::iterator found = mLastWorstPidOfSystem[id].find(worstPid);
if (found != mLastWorstPidOfSystem[id].end() && found->second != logs().end()) {
leading = false;
it = found->second;
}
}
}
if (leading) {
it = GetOldest(id);
}
static const log_time too_old{EXPIRE_HOUR_THRESHOLD * 60 * 60, 0};
LogBufferElementCollection::iterator lastt;
lastt = logs().end();
--lastt;
LogBufferElementLast last;
while (it != logs().end()) {
LogBufferElement& element = *it;
if (oldest && oldest->start() <= element.sequence()) {
// Do not let chatty eliding trigger any reader mitigation
break;
}
if (element.log_id() != id) {
++it;
continue;
}
// below this point element->log_id() == id
uint16_t dropped = element.dropped_count();
// remove any leading drops
if (leading && dropped) {
it = Erase(it);
continue;
}
if (dropped && last.coalesce(&element, dropped)) {
it = Erase(it, true);
continue;
}
int key = (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) ? element.GetTag()
: element.uid();
if (check_high_priority && prune_->IsHighPriority(&element)) {
last.clear(&element);
it = Erase(it);
if (dropped) {
continue;
}
pruneRows--;
if (pruneRows == 0) {
break;
}
if (key == worst) {
kick = true;
if (worst_sizes < second_worst_sizes) {
break;
}
worst_sizes -= element.msg_len();
}
continue;
}
if (element.realtime() < (lastt->realtime() - too_old) ||
element.realtime() > lastt->realtime()) {
break;
}
if (dropped) {
last.add(&element);
if (worstPid && ((!gc && element.pid() == worstPid) ||
mLastWorstPidOfSystem[id].find(element.pid()) ==
mLastWorstPidOfSystem[id].end())) {
// element->uid() may not be AID_SYSTEM, next best
// watermark if current one empty. id is not LOG_ID_EVENTS
// or LOG_ID_SECURITY because of worstPid check.
mLastWorstPidOfSystem[id][element.pid()] = it;
}
if ((!gc && !worstPid && (key == worst)) ||
(mLastWorst[id].find(key) == mLastWorst[id].end())) {
mLastWorst[id][key] = it;
}
++it;
continue;
}
if (key != worst || (worstPid && element.pid() != worstPid)) {
leading = false;
last.clear(&element);
++it;
continue;
}
// key == worst below here
// If worstPid set, then element->pid() == worstPid below here
pruneRows--;
if (pruneRows == 0) {
break;
}
kick = true;
uint16_t len = element.msg_len();
// do not create any leading drops
if (leading) {
it = Erase(it);
} else {
stats()->Drop(element.ToLogStatisticsElement());
element.SetDropped(1);
if (last.coalesce(&element, 1)) {
it = Erase(it, true);
} else {
last.add(&element);
if (worstPid && (!gc || mLastWorstPidOfSystem[id].find(worstPid) ==
mLastWorstPidOfSystem[id].end())) {
// element->uid() may not be AID_SYSTEM, next best
// watermark if current one empty. id is not
// LOG_ID_EVENTS or LOG_ID_SECURITY because of worstPid.
mLastWorstPidOfSystem[id][worstPid] = it;
}
if ((!gc && !worstPid) || mLastWorst[id].find(worst) == mLastWorst[id].end()) {
mLastWorst[id][worst] = it;
}
++it;
}
}
if (worst_sizes < second_worst_sizes) {
break;
}
worst_sizes -= len;
}
last.clear();
if (!kick || !prune_->worst_uid_enabled()) {
break; // the following loop will ask bad clients to skip/drop
}
}
// Second prune pass.
bool skipped_low_priority_prune = false;
bool check_low_priority =
id != LOG_ID_SECURITY && prune_->HasLowPriorityPruneRules() && !clearAll;
it = GetOldest(id);
while (pruneRows > 0 && it != logs().end()) {
LogBufferElement& element = *it;
if (element.log_id() != id) {
it++;
continue;
}
if (oldest && oldest->start() <= element.sequence()) {
if (!skipped_low_priority_prune) KickReader(oldest, id, pruneRows);
break;
}
if (check_low_priority && !element.dropped_count() && prune_->IsLowPriority(&element)) {
skipped_low_priority_prune = true;
it++;
continue;
}
it = Erase(it);
pruneRows--;
}
// Third prune pass.
if (skipped_low_priority_prune && pruneRows > 0) {
it = GetOldest(id);
while (it != logs().end() && pruneRows > 0) {
LogBufferElement& element = *it;
if (element.log_id() != id) {
++it;
continue;
}
if (oldest && oldest->start() <= element.sequence()) {
KickReader(oldest, id, pruneRows);
break;
}
it = Erase(it);
pruneRows--;
}
}
return pruneRows == 0 || it == logs().end();
}