android_system_core/libunwindstack/ElfInterface.cpp

526 lines
17 KiB
C++

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <stdint.h>
#include <memory>
#include <string>
#include <utility>
#include <7zCrc.h>
#include <Xz.h>
#include <XzCrc64.h>
#include <unwindstack/DwarfError.h>
#include <unwindstack/DwarfSection.h>
#include <unwindstack/ElfInterface.h>
#include <unwindstack/Log.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>
#include "DwarfDebugFrame.h"
#include "DwarfEhFrame.h"
#include "DwarfEhFrameWithHdr.h"
#include "Symbols.h"
namespace unwindstack {
ElfInterface::~ElfInterface() {
for (auto symbol : symbols_) {
delete symbol;
}
}
bool ElfInterface::IsValidPc(uint64_t pc) {
if (!pt_loads_.empty()) {
for (auto& entry : pt_loads_) {
uint64_t start = entry.second.table_offset;
uint64_t end = start + entry.second.table_size;
if (pc >= start && pc < end) {
return true;
}
}
return false;
}
// No PT_LOAD data, look for a fde for this pc in the section data.
if (debug_frame_ != nullptr && debug_frame_->GetFdeFromPc(pc) != nullptr) {
return true;
}
if (eh_frame_ != nullptr && eh_frame_->GetFdeFromPc(pc) != nullptr) {
return true;
}
return false;
}
Memory* ElfInterface::CreateGnuDebugdataMemory() {
if (gnu_debugdata_offset_ == 0 || gnu_debugdata_size_ == 0) {
return nullptr;
}
// TODO: Only call these initialization functions once.
CrcGenerateTable();
Crc64GenerateTable();
std::vector<uint8_t> src(gnu_debugdata_size_);
if (!memory_->ReadFully(gnu_debugdata_offset_, src.data(), gnu_debugdata_size_)) {
gnu_debugdata_offset_ = 0;
gnu_debugdata_size_ = static_cast<uint64_t>(-1);
return nullptr;
}
ISzAlloc alloc;
CXzUnpacker state;
alloc.Alloc = [](ISzAllocPtr, size_t size) { return malloc(size); };
alloc.Free = [](ISzAllocPtr, void* ptr) { return free(ptr); };
XzUnpacker_Construct(&state, &alloc);
std::unique_ptr<MemoryBuffer> dst(new MemoryBuffer);
int return_val;
size_t src_offset = 0;
size_t dst_offset = 0;
ECoderStatus status;
dst->Resize(5 * gnu_debugdata_size_);
do {
size_t src_remaining = src.size() - src_offset;
size_t dst_remaining = dst->Size() - dst_offset;
if (dst_remaining < 2 * gnu_debugdata_size_) {
dst->Resize(dst->Size() + 2 * gnu_debugdata_size_);
dst_remaining += 2 * gnu_debugdata_size_;
}
return_val = XzUnpacker_Code(&state, dst->GetPtr(dst_offset), &dst_remaining, &src[src_offset],
&src_remaining, true, CODER_FINISH_ANY, &status);
src_offset += src_remaining;
dst_offset += dst_remaining;
} while (return_val == SZ_OK && status == CODER_STATUS_NOT_FINISHED);
XzUnpacker_Free(&state);
if (return_val != SZ_OK || !XzUnpacker_IsStreamWasFinished(&state)) {
gnu_debugdata_offset_ = 0;
gnu_debugdata_size_ = static_cast<uint64_t>(-1);
return nullptr;
}
// Shrink back down to the exact size.
dst->Resize(dst_offset);
return dst.release();
}
template <typename AddressType>
void ElfInterface::InitHeadersWithTemplate(uint64_t load_bias) {
if (eh_frame_hdr_offset_ != 0) {
eh_frame_.reset(new DwarfEhFrameWithHdr<AddressType>(memory_));
if (!eh_frame_->Init(eh_frame_hdr_offset_, eh_frame_hdr_size_, load_bias)) {
eh_frame_.reset(nullptr);
}
}
if (eh_frame_.get() == nullptr && eh_frame_offset_ != 0) {
// If there is an eh_frame section without an eh_frame_hdr section,
// or using the frame hdr object failed to init.
eh_frame_.reset(new DwarfEhFrame<AddressType>(memory_));
if (!eh_frame_->Init(eh_frame_offset_, eh_frame_size_, load_bias)) {
eh_frame_.reset(nullptr);
}
}
if (eh_frame_.get() == nullptr) {
eh_frame_hdr_offset_ = 0;
eh_frame_hdr_size_ = static_cast<uint64_t>(-1);
eh_frame_offset_ = 0;
eh_frame_size_ = static_cast<uint64_t>(-1);
}
if (debug_frame_offset_ != 0) {
debug_frame_.reset(new DwarfDebugFrame<AddressType>(memory_));
if (!debug_frame_->Init(debug_frame_offset_, debug_frame_size_, load_bias)) {
debug_frame_.reset(nullptr);
debug_frame_offset_ = 0;
debug_frame_size_ = static_cast<uint64_t>(-1);
}
}
}
template <typename EhdrType, typename PhdrType, typename ShdrType>
bool ElfInterface::ReadAllHeaders(uint64_t* load_bias) {
EhdrType ehdr;
if (!memory_->ReadFully(0, &ehdr, sizeof(ehdr))) {
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = 0;
return false;
}
if (!ReadProgramHeaders<EhdrType, PhdrType>(ehdr, load_bias)) {
return false;
}
// We could still potentially unwind without the section header
// information, so ignore any errors.
if (!ReadSectionHeaders<EhdrType, ShdrType>(ehdr)) {
log(0, "Malformed section header found, ignoring...");
}
return true;
}
template <typename EhdrType, typename PhdrType>
uint64_t ElfInterface::GetLoadBias(Memory* memory) {
EhdrType ehdr;
if (!memory->Read(0, &ehdr, sizeof(ehdr))) {
return false;
}
uint64_t offset = ehdr.e_phoff;
for (size_t i = 0; i < ehdr.e_phnum; i++, offset += ehdr.e_phentsize) {
PhdrType phdr;
if (!memory->Read(offset, &phdr, sizeof(phdr))) {
return 0;
}
if (phdr.p_type == PT_LOAD && phdr.p_offset == 0) {
return phdr.p_vaddr;
}
}
return 0;
}
template <typename EhdrType, typename PhdrType>
bool ElfInterface::ReadProgramHeaders(const EhdrType& ehdr, uint64_t* load_bias) {
uint64_t offset = ehdr.e_phoff;
for (size_t i = 0; i < ehdr.e_phnum; i++, offset += ehdr.e_phentsize) {
PhdrType phdr;
if (!memory_->ReadFully(offset, &phdr, sizeof(phdr))) {
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = offset;
return false;
}
switch (phdr.p_type) {
case PT_LOAD:
{
if ((phdr.p_flags & PF_X) == 0) {
continue;
}
pt_loads_[phdr.p_offset] = LoadInfo{phdr.p_offset, phdr.p_vaddr,
static_cast<size_t>(phdr.p_memsz)};
if (phdr.p_offset == 0) {
*load_bias = phdr.p_vaddr;
}
break;
}
case PT_GNU_EH_FRAME:
// This is really the pointer to the .eh_frame_hdr section.
eh_frame_hdr_offset_ = phdr.p_offset;
eh_frame_hdr_size_ = phdr.p_memsz;
break;
case PT_DYNAMIC:
dynamic_offset_ = phdr.p_offset;
dynamic_vaddr_ = phdr.p_vaddr;
dynamic_size_ = phdr.p_memsz;
break;
default:
HandleUnknownType(phdr.p_type, phdr.p_offset, phdr.p_filesz);
break;
}
}
return true;
}
template <typename EhdrType, typename ShdrType>
bool ElfInterface::ReadSectionHeaders(const EhdrType& ehdr) {
uint64_t offset = ehdr.e_shoff;
uint64_t sec_offset = 0;
uint64_t sec_size = 0;
// Get the location of the section header names.
// If something is malformed in the header table data, we aren't going
// to terminate, we'll simply ignore this part.
ShdrType shdr;
if (ehdr.e_shstrndx < ehdr.e_shnum) {
uint64_t sh_offset = offset + ehdr.e_shstrndx * ehdr.e_shentsize;
if (memory_->ReadFully(sh_offset, &shdr, sizeof(shdr))) {
sec_offset = shdr.sh_offset;
sec_size = shdr.sh_size;
}
}
// Skip the first header, it's always going to be NULL.
offset += ehdr.e_shentsize;
for (size_t i = 1; i < ehdr.e_shnum; i++, offset += ehdr.e_shentsize) {
if (!memory_->Read(offset, &shdr, sizeof(shdr))) {
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = offset;
return false;
}
if (shdr.sh_type == SHT_SYMTAB || shdr.sh_type == SHT_DYNSYM) {
// Need to go get the information about the section that contains
// the string terminated names.
ShdrType str_shdr;
if (shdr.sh_link >= ehdr.e_shnum) {
last_error_.code = ERROR_UNWIND_INFO;
return false;
}
uint64_t str_offset = ehdr.e_shoff + shdr.sh_link * ehdr.e_shentsize;
if (!memory_->Read(str_offset, &str_shdr, sizeof(str_shdr))) {
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = str_offset;
return false;
}
if (str_shdr.sh_type != SHT_STRTAB) {
last_error_.code = ERROR_UNWIND_INFO;
return false;
}
symbols_.push_back(new Symbols(shdr.sh_offset, shdr.sh_size, shdr.sh_entsize,
str_shdr.sh_offset, str_shdr.sh_size));
} else if (shdr.sh_type == SHT_PROGBITS && sec_size != 0) {
// Look for the .debug_frame and .gnu_debugdata.
if (shdr.sh_name < sec_size) {
std::string name;
if (memory_->ReadString(sec_offset + shdr.sh_name, &name)) {
uint64_t* offset_ptr = nullptr;
uint64_t* size_ptr = nullptr;
if (name == ".debug_frame") {
offset_ptr = &debug_frame_offset_;
size_ptr = &debug_frame_size_;
} else if (name == ".gnu_debugdata") {
offset_ptr = &gnu_debugdata_offset_;
size_ptr = &gnu_debugdata_size_;
} else if (name == ".eh_frame") {
offset_ptr = &eh_frame_offset_;
size_ptr = &eh_frame_size_;
} else if (eh_frame_hdr_offset_ == 0 && name == ".eh_frame_hdr") {
offset_ptr = &eh_frame_hdr_offset_;
size_ptr = &eh_frame_hdr_size_;
}
if (offset_ptr != nullptr) {
*offset_ptr = shdr.sh_offset;
*size_ptr = shdr.sh_size;
}
}
}
} else if (shdr.sh_type == SHT_STRTAB) {
// In order to read soname, keep track of address to offset mapping.
strtabs_.push_back(std::make_pair<uint64_t, uint64_t>(static_cast<uint64_t>(shdr.sh_addr),
static_cast<uint64_t>(shdr.sh_offset)));
}
}
return true;
}
template <typename DynType>
bool ElfInterface::GetSonameWithTemplate(std::string* soname) {
if (soname_type_ == SONAME_INVALID) {
return false;
}
if (soname_type_ == SONAME_VALID) {
*soname = soname_;
return true;
}
soname_type_ = SONAME_INVALID;
uint64_t soname_offset = 0;
uint64_t strtab_addr = 0;
uint64_t strtab_size = 0;
// Find the soname location from the dynamic headers section.
DynType dyn;
uint64_t offset = dynamic_offset_;
uint64_t max_offset = offset + dynamic_size_;
for (uint64_t offset = dynamic_offset_; offset < max_offset; offset += sizeof(DynType)) {
if (!memory_->ReadFully(offset, &dyn, sizeof(dyn))) {
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = offset;
return false;
}
if (dyn.d_tag == DT_STRTAB) {
strtab_addr = dyn.d_un.d_ptr;
} else if (dyn.d_tag == DT_STRSZ) {
strtab_size = dyn.d_un.d_val;
} else if (dyn.d_tag == DT_SONAME) {
soname_offset = dyn.d_un.d_val;
} else if (dyn.d_tag == DT_NULL) {
break;
}
}
// Need to map the strtab address to the real offset.
for (const auto& entry : strtabs_) {
if (entry.first == strtab_addr) {
soname_offset = entry.second + soname_offset;
if (soname_offset >= entry.second + strtab_size) {
return false;
}
if (!memory_->ReadString(soname_offset, &soname_)) {
return false;
}
soname_type_ = SONAME_VALID;
*soname = soname_;
return true;
}
}
return false;
}
template <typename SymType>
bool ElfInterface::GetFunctionNameWithTemplate(uint64_t addr, std::string* name,
uint64_t* func_offset) {
if (symbols_.empty()) {
return false;
}
for (const auto symbol : symbols_) {
if (symbol->GetName<SymType>(addr, memory_, name, func_offset)) {
return true;
}
}
return false;
}
template <typename SymType>
bool ElfInterface::GetGlobalVariableWithTemplate(const std::string& name, uint64_t* memory_address) {
if (symbols_.empty()) {
return false;
}
for (const auto symbol : symbols_) {
if (symbol->GetGlobal<SymType>(memory_, name, memory_address)) {
return true;
}
}
return false;
}
bool ElfInterface::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished) {
last_error_.code = ERROR_NONE;
last_error_.address = 0;
// Try the debug_frame first since it contains the most specific unwind
// information.
DwarfSection* debug_frame = debug_frame_.get();
if (debug_frame != nullptr && debug_frame->Step(pc, regs, process_memory, finished)) {
return true;
}
// Try the eh_frame next.
DwarfSection* eh_frame = eh_frame_.get();
if (eh_frame != nullptr && eh_frame->Step(pc, regs, process_memory, finished)) {
return true;
}
if (gnu_debugdata_interface_ != nullptr &&
gnu_debugdata_interface_->Step(pc, regs, process_memory, finished)) {
return true;
}
// Set the error code based on the first error encountered.
DwarfSection* section = nullptr;
if (debug_frame_ != nullptr) {
section = debug_frame_.get();
} else if (eh_frame_ != nullptr) {
section = eh_frame_.get();
} else if (gnu_debugdata_interface_ != nullptr) {
last_error_ = gnu_debugdata_interface_->last_error();
return false;
} else {
return false;
}
// Convert the DWARF ERROR to an external error.
DwarfErrorCode code = section->LastErrorCode();
switch (code) {
case DWARF_ERROR_NONE:
last_error_.code = ERROR_NONE;
break;
case DWARF_ERROR_MEMORY_INVALID:
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = section->LastErrorAddress();
break;
case DWARF_ERROR_ILLEGAL_VALUE:
case DWARF_ERROR_ILLEGAL_STATE:
case DWARF_ERROR_STACK_INDEX_NOT_VALID:
case DWARF_ERROR_TOO_MANY_ITERATIONS:
case DWARF_ERROR_CFA_NOT_DEFINED:
case DWARF_ERROR_NO_FDES:
last_error_.code = ERROR_UNWIND_INFO;
break;
case DWARF_ERROR_NOT_IMPLEMENTED:
case DWARF_ERROR_UNSUPPORTED_VERSION:
last_error_.code = ERROR_UNSUPPORTED;
break;
}
return false;
}
// This is an estimation of the size of the elf file using the location
// of the section headers and size. This assumes that the section headers
// are at the end of the elf file. If the elf has a load bias, the size
// will be too large, but this is acceptable.
template <typename EhdrType>
void ElfInterface::GetMaxSizeWithTemplate(Memory* memory, uint64_t* size) {
EhdrType ehdr;
if (!memory->ReadFully(0, &ehdr, sizeof(ehdr))) {
return;
}
if (ehdr.e_shnum == 0) {
return;
}
*size = ehdr.e_shoff + ehdr.e_shentsize * ehdr.e_shnum;
}
// Instantiate all of the needed template functions.
template void ElfInterface::InitHeadersWithTemplate<uint32_t>(uint64_t);
template void ElfInterface::InitHeadersWithTemplate<uint64_t>(uint64_t);
template bool ElfInterface::ReadAllHeaders<Elf32_Ehdr, Elf32_Phdr, Elf32_Shdr>(uint64_t*);
template bool ElfInterface::ReadAllHeaders<Elf64_Ehdr, Elf64_Phdr, Elf64_Shdr>(uint64_t*);
template bool ElfInterface::ReadProgramHeaders<Elf32_Ehdr, Elf32_Phdr>(const Elf32_Ehdr&, uint64_t*);
template bool ElfInterface::ReadProgramHeaders<Elf64_Ehdr, Elf64_Phdr>(const Elf64_Ehdr&, uint64_t*);
template bool ElfInterface::ReadSectionHeaders<Elf32_Ehdr, Elf32_Shdr>(const Elf32_Ehdr&);
template bool ElfInterface::ReadSectionHeaders<Elf64_Ehdr, Elf64_Shdr>(const Elf64_Ehdr&);
template bool ElfInterface::GetSonameWithTemplate<Elf32_Dyn>(std::string*);
template bool ElfInterface::GetSonameWithTemplate<Elf64_Dyn>(std::string*);
template bool ElfInterface::GetFunctionNameWithTemplate<Elf32_Sym>(uint64_t, std::string*,
uint64_t*);
template bool ElfInterface::GetFunctionNameWithTemplate<Elf64_Sym>(uint64_t, std::string*,
uint64_t*);
template bool ElfInterface::GetGlobalVariableWithTemplate<Elf32_Sym>(const std::string&, uint64_t*);
template bool ElfInterface::GetGlobalVariableWithTemplate<Elf64_Sym>(const std::string&, uint64_t*);
template void ElfInterface::GetMaxSizeWithTemplate<Elf32_Ehdr>(Memory*, uint64_t*);
template void ElfInterface::GetMaxSizeWithTemplate<Elf64_Ehdr>(Memory*, uint64_t*);
template uint64_t ElfInterface::GetLoadBias<Elf32_Ehdr, Elf32_Phdr>(Memory*);
template uint64_t ElfInterface::GetLoadBias<Elf64_Ehdr, Elf64_Phdr>(Memory*);
} // namespace unwindstack