1271 lines
45 KiB
C++
1271 lines
45 KiB
C++
/* libs/pixelflinger/codeflinger/texturing.cpp
|
|
**
|
|
** Copyright 2006, The Android Open Source Project
|
|
**
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
**
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
**
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "pixelflinger-code"
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <android/log.h>
|
|
|
|
#include "GGLAssembler.h"
|
|
|
|
namespace android {
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// iterators are initialized like this:
|
|
// (intToFixedCenter(x) * dx)>>16 + x0
|
|
// ((x<<16 + 0x8000) * dx)>>16 + x0
|
|
// ((x<<16)*dx + (0x8000*dx))>>16 + x0
|
|
// ( (x*dx) + dx>>1 ) + x0
|
|
// (x*dx) + (dx>>1 + x0)
|
|
|
|
void GGLAssembler::init_iterated_color(fragment_parts_t& parts, const reg_t& x)
|
|
{
|
|
context_t const* c = mBuilderContext.c;
|
|
const needs_t& needs = mBuilderContext.needs;
|
|
|
|
if (mSmooth) {
|
|
// NOTE: we could take this case in the mDithering + !mSmooth case,
|
|
// but this would use up to 4 more registers for the color components
|
|
// for only a little added quality.
|
|
// Currently, this causes the system to run out of registers in
|
|
// some case (see issue #719496)
|
|
|
|
comment("compute initial iterated color (smooth and/or dither case)");
|
|
|
|
parts.iterated_packed = 0;
|
|
parts.packed = 0;
|
|
|
|
// 0x1: color component
|
|
// 0x2: iterators
|
|
const int optReload = mOptLevel >> 1;
|
|
if (optReload >= 3) parts.reload = 0; // reload nothing
|
|
else if (optReload == 2) parts.reload = 2; // reload iterators
|
|
else if (optReload == 1) parts.reload = 1; // reload colors
|
|
else if (optReload <= 0) parts.reload = 3; // reload both
|
|
|
|
if (!mSmooth) {
|
|
// we're not smoothing (just dithering), we never have to
|
|
// reload the iterators
|
|
parts.reload &= ~2;
|
|
}
|
|
|
|
Scratch scratches(registerFile());
|
|
const int t0 = (parts.reload & 1) ? scratches.obtain() : 0;
|
|
const int t1 = (parts.reload & 2) ? scratches.obtain() : 0;
|
|
for (int i=0 ; i<4 ; i++) {
|
|
if (!mInfo[i].iterated)
|
|
continue;
|
|
|
|
// this component exists in the destination and is not replaced
|
|
// by a texture unit.
|
|
const int c = (parts.reload & 1) ? t0 : obtainReg();
|
|
if (i==0) CONTEXT_LOAD(c, iterators.ydady);
|
|
if (i==1) CONTEXT_LOAD(c, iterators.ydrdy);
|
|
if (i==2) CONTEXT_LOAD(c, iterators.ydgdy);
|
|
if (i==3) CONTEXT_LOAD(c, iterators.ydbdy);
|
|
parts.argb[i].reg = c;
|
|
|
|
if (mInfo[i].smooth) {
|
|
parts.argb_dx[i].reg = (parts.reload & 2) ? t1 : obtainReg();
|
|
const int dvdx = parts.argb_dx[i].reg;
|
|
CONTEXT_LOAD(dvdx, generated_vars.argb[i].dx);
|
|
MLA(AL, 0, c, x.reg, dvdx, c);
|
|
|
|
// adjust the color iterator to make sure it won't overflow
|
|
if (!mAA) {
|
|
// this is not needed when we're using anti-aliasing
|
|
// because we will (have to) clamp the components
|
|
// anyway.
|
|
int end = scratches.obtain();
|
|
MOV(AL, 0, end, reg_imm(parts.count.reg, LSR, 16));
|
|
MLA(AL, 1, end, dvdx, end, c);
|
|
SUB(MI, 0, c, c, end);
|
|
BIC(AL, 0, c, c, reg_imm(c, ASR, 31));
|
|
scratches.recycle(end);
|
|
}
|
|
}
|
|
|
|
if (parts.reload & 1) {
|
|
CONTEXT_STORE(c, generated_vars.argb[i].c);
|
|
}
|
|
}
|
|
} else {
|
|
// We're not smoothed, so we can
|
|
// just use a packed version of the color and extract the
|
|
// components as needed (or not at all if we don't blend)
|
|
|
|
// figure out if we need the iterated color
|
|
int load = 0;
|
|
for (int i=0 ; i<4 ; i++) {
|
|
component_info_t& info = mInfo[i];
|
|
if ((info.inDest || info.needed) && !info.replaced)
|
|
load |= 1;
|
|
}
|
|
|
|
parts.iterated_packed = 1;
|
|
parts.packed = (!mTextureMachine.mask && !mBlending
|
|
&& !mFog && !mDithering);
|
|
parts.reload = 0;
|
|
if (load || parts.packed) {
|
|
if (mBlending || mDithering || mInfo[GGLFormat::ALPHA].needed) {
|
|
comment("load initial iterated color (8888 packed)");
|
|
parts.iterated.setTo(obtainReg(),
|
|
&(c->formats[GGL_PIXEL_FORMAT_RGBA_8888]));
|
|
CONTEXT_LOAD(parts.iterated.reg, packed8888);
|
|
} else {
|
|
comment("load initial iterated color (dest format packed)");
|
|
|
|
parts.iterated.setTo(obtainReg(), &mCbFormat);
|
|
|
|
// pre-mask the iterated color
|
|
const int bits = parts.iterated.size();
|
|
const uint32_t size = ((bits>=32) ? 0 : (1LU << bits)) - 1;
|
|
uint32_t mask = 0;
|
|
if (mMasking) {
|
|
for (int i=0 ; i<4 ; i++) {
|
|
const int component_mask = 1<<i;
|
|
const int h = parts.iterated.format.c[i].h;
|
|
const int l = parts.iterated.format.c[i].l;
|
|
if (h && (!(mMasking & component_mask))) {
|
|
mask |= ((1<<(h-l))-1) << l;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mMasking && ((mask & size)==0)) {
|
|
// none of the components are present in the mask
|
|
} else {
|
|
CONTEXT_LOAD(parts.iterated.reg, packed);
|
|
if (mCbFormat.size == 1) {
|
|
AND(AL, 0, parts.iterated.reg,
|
|
parts.iterated.reg, imm(0xFF));
|
|
} else if (mCbFormat.size == 2) {
|
|
MOV(AL, 0, parts.iterated.reg,
|
|
reg_imm(parts.iterated.reg, LSR, 16));
|
|
}
|
|
}
|
|
|
|
// pre-mask the iterated color
|
|
if (mMasking) {
|
|
build_and_immediate(parts.iterated.reg, parts.iterated.reg,
|
|
mask, bits);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::build_iterated_color(
|
|
component_t& fragment,
|
|
const fragment_parts_t& parts,
|
|
int component,
|
|
Scratch& regs)
|
|
{
|
|
fragment.setTo( regs.obtain(), 0, 32, CORRUPTIBLE);
|
|
|
|
if (!mInfo[component].iterated)
|
|
return;
|
|
|
|
if (parts.iterated_packed) {
|
|
// iterated colors are packed, extract the one we need
|
|
extract(fragment, parts.iterated, component);
|
|
} else {
|
|
fragment.h = GGL_COLOR_BITS;
|
|
fragment.l = GGL_COLOR_BITS - 8;
|
|
fragment.flags |= CLEAR_LO;
|
|
// iterated colors are held in their own register,
|
|
// (smooth and/or dithering case)
|
|
if (parts.reload==3) {
|
|
// this implies mSmooth
|
|
Scratch scratches(registerFile());
|
|
int dx = scratches.obtain();
|
|
CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c);
|
|
CONTEXT_LOAD(dx, generated_vars.argb[component].dx);
|
|
ADD(AL, 0, dx, fragment.reg, dx);
|
|
CONTEXT_STORE(dx, generated_vars.argb[component].c);
|
|
} else if (parts.reload & 1) {
|
|
CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c);
|
|
} else {
|
|
// we don't reload, so simply rename the register and mark as
|
|
// non CORRUPTIBLE so that the texture env or blending code
|
|
// won't modify this (renamed) register
|
|
regs.recycle(fragment.reg);
|
|
fragment.reg = parts.argb[component].reg;
|
|
fragment.flags &= ~CORRUPTIBLE;
|
|
}
|
|
if (mInfo[component].smooth && mAA) {
|
|
// when using smooth shading AND anti-aliasing, we need to clamp
|
|
// the iterators because there is always an extra pixel on the
|
|
// edges, which most of the time will cause an overflow
|
|
// (since technically its outside of the domain).
|
|
BIC(AL, 0, fragment.reg, fragment.reg,
|
|
reg_imm(fragment.reg, ASR, 31));
|
|
component_sat(fragment);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::decodeLogicOpNeeds(const needs_t& needs)
|
|
{
|
|
// gather some informations about the components we need to process...
|
|
const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR;
|
|
switch(opcode) {
|
|
case GGL_COPY:
|
|
mLogicOp = 0;
|
|
break;
|
|
case GGL_CLEAR:
|
|
case GGL_SET:
|
|
mLogicOp = LOGIC_OP;
|
|
break;
|
|
case GGL_AND:
|
|
case GGL_AND_REVERSE:
|
|
case GGL_AND_INVERTED:
|
|
case GGL_XOR:
|
|
case GGL_OR:
|
|
case GGL_NOR:
|
|
case GGL_EQUIV:
|
|
case GGL_OR_REVERSE:
|
|
case GGL_OR_INVERTED:
|
|
case GGL_NAND:
|
|
mLogicOp = LOGIC_OP|LOGIC_OP_SRC|LOGIC_OP_DST;
|
|
break;
|
|
case GGL_NOOP:
|
|
case GGL_INVERT:
|
|
mLogicOp = LOGIC_OP|LOGIC_OP_DST;
|
|
break;
|
|
case GGL_COPY_INVERTED:
|
|
mLogicOp = LOGIC_OP|LOGIC_OP_SRC;
|
|
break;
|
|
};
|
|
}
|
|
|
|
void GGLAssembler::decodeTMUNeeds(const needs_t& needs, context_t const* c)
|
|
{
|
|
uint8_t replaced=0;
|
|
mTextureMachine.mask = 0;
|
|
mTextureMachine.activeUnits = 0;
|
|
for (int i=GGL_TEXTURE_UNIT_COUNT-1 ; i>=0 ; i--) {
|
|
texture_unit_t& tmu = mTextureMachine.tmu[i];
|
|
if (replaced == 0xF) {
|
|
// all components are replaced, skip this TMU.
|
|
tmu.format_idx = 0;
|
|
tmu.mask = 0;
|
|
tmu.replaced = replaced;
|
|
continue;
|
|
}
|
|
tmu.format_idx = GGL_READ_NEEDS(T_FORMAT, needs.t[i]);
|
|
tmu.format = c->formats[tmu.format_idx];
|
|
tmu.bits = tmu.format.size*8;
|
|
tmu.swrap = GGL_READ_NEEDS(T_S_WRAP, needs.t[i]);
|
|
tmu.twrap = GGL_READ_NEEDS(T_T_WRAP, needs.t[i]);
|
|
tmu.env = ggl_needs_to_env(GGL_READ_NEEDS(T_ENV, needs.t[i]));
|
|
tmu.pot = GGL_READ_NEEDS(T_POT, needs.t[i]);
|
|
tmu.linear = GGL_READ_NEEDS(T_LINEAR, needs.t[i])
|
|
&& tmu.format.size!=3; // XXX: only 8, 16 and 32 modes for now
|
|
|
|
// 5551 linear filtering is not supported
|
|
if (tmu.format_idx == GGL_PIXEL_FORMAT_RGBA_5551)
|
|
tmu.linear = 0;
|
|
|
|
tmu.mask = 0;
|
|
tmu.replaced = replaced;
|
|
|
|
if (tmu.format_idx) {
|
|
mTextureMachine.activeUnits++;
|
|
if (tmu.format.c[0].h) tmu.mask |= 0x1;
|
|
if (tmu.format.c[1].h) tmu.mask |= 0x2;
|
|
if (tmu.format.c[2].h) tmu.mask |= 0x4;
|
|
if (tmu.format.c[3].h) tmu.mask |= 0x8;
|
|
if (tmu.env == GGL_REPLACE) {
|
|
replaced |= tmu.mask;
|
|
} else if (tmu.env == GGL_DECAL) {
|
|
if (!tmu.format.c[GGLFormat::ALPHA].h) {
|
|
// if we don't have alpha, decal does nothing
|
|
tmu.mask = 0;
|
|
} else {
|
|
// decal always ignores At
|
|
tmu.mask &= ~(1<<GGLFormat::ALPHA);
|
|
}
|
|
}
|
|
}
|
|
mTextureMachine.mask |= tmu.mask;
|
|
//printf("%d: mask=%08lx, replaced=%08lx\n",
|
|
// i, int(tmu.mask), int(tmu.replaced));
|
|
}
|
|
mTextureMachine.replaced = replaced;
|
|
mTextureMachine.directTexture = 0;
|
|
//printf("replaced=%08lx\n", mTextureMachine.replaced);
|
|
}
|
|
|
|
|
|
void GGLAssembler::init_textures(
|
|
tex_coord_t* coords,
|
|
const reg_t& x, const reg_t& y)
|
|
{
|
|
context_t const* c = mBuilderContext.c;
|
|
const needs_t& needs = mBuilderContext.needs;
|
|
int Rctx = mBuilderContext.Rctx;
|
|
int Rx = x.reg;
|
|
int Ry = y.reg;
|
|
|
|
if (mTextureMachine.mask) {
|
|
comment("compute texture coordinates");
|
|
}
|
|
|
|
// init texture coordinates for each tmu
|
|
const int cb_format_idx = GGL_READ_NEEDS(CB_FORMAT, needs.n);
|
|
const bool multiTexture = mTextureMachine.activeUnits > 1;
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
|
|
const texture_unit_t& tmu = mTextureMachine.tmu[i];
|
|
if (tmu.format_idx == 0)
|
|
continue;
|
|
if ((tmu.swrap == GGL_NEEDS_WRAP_11) &&
|
|
(tmu.twrap == GGL_NEEDS_WRAP_11))
|
|
{
|
|
// 1:1 texture
|
|
pointer_t& txPtr = coords[i].ptr;
|
|
txPtr.setTo(obtainReg(), tmu.bits);
|
|
CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydsdy);
|
|
ADD(AL, 0, Rx, Rx, reg_imm(txPtr.reg, ASR, 16)); // x += (s>>16)
|
|
CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydtdy);
|
|
ADD(AL, 0, Ry, Ry, reg_imm(txPtr.reg, ASR, 16)); // y += (t>>16)
|
|
// merge base & offset
|
|
CONTEXT_LOAD(txPtr.reg, generated_vars.texture[i].stride);
|
|
SMLABB(AL, Rx, Ry, txPtr.reg, Rx); // x+y*stride
|
|
CONTEXT_ADDR_LOAD(txPtr.reg, generated_vars.texture[i].data);
|
|
base_offset(txPtr, txPtr, Rx);
|
|
} else {
|
|
Scratch scratches(registerFile());
|
|
reg_t& s = coords[i].s;
|
|
reg_t& t = coords[i].t;
|
|
// s = (x * dsdx)>>16 + ydsdy
|
|
// s = (x * dsdx)>>16 + (y*dsdy)>>16 + s0
|
|
// t = (x * dtdx)>>16 + ydtdy
|
|
// t = (x * dtdx)>>16 + (y*dtdy)>>16 + t0
|
|
s.setTo(obtainReg());
|
|
t.setTo(obtainReg());
|
|
const int need_w = GGL_READ_NEEDS(W, needs.n);
|
|
if (need_w) {
|
|
CONTEXT_LOAD(s.reg, state.texture[i].iterators.ydsdy);
|
|
CONTEXT_LOAD(t.reg, state.texture[i].iterators.ydtdy);
|
|
} else {
|
|
int ydsdy = scratches.obtain();
|
|
int ydtdy = scratches.obtain();
|
|
CONTEXT_LOAD(s.reg, generated_vars.texture[i].dsdx);
|
|
CONTEXT_LOAD(ydsdy, state.texture[i].iterators.ydsdy);
|
|
CONTEXT_LOAD(t.reg, generated_vars.texture[i].dtdx);
|
|
CONTEXT_LOAD(ydtdy, state.texture[i].iterators.ydtdy);
|
|
MLA(AL, 0, s.reg, Rx, s.reg, ydsdy);
|
|
MLA(AL, 0, t.reg, Rx, t.reg, ydtdy);
|
|
}
|
|
|
|
if ((mOptLevel&1)==0) {
|
|
CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]);
|
|
CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]);
|
|
recycleReg(s.reg);
|
|
recycleReg(t.reg);
|
|
}
|
|
}
|
|
|
|
// direct texture?
|
|
if (!multiTexture && !mBlending && !mDithering && !mFog &&
|
|
cb_format_idx == tmu.format_idx && !tmu.linear &&
|
|
mTextureMachine.replaced == tmu.mask)
|
|
{
|
|
mTextureMachine.directTexture = i + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::build_textures( fragment_parts_t& parts,
|
|
Scratch& regs)
|
|
{
|
|
context_t const* c = mBuilderContext.c;
|
|
const needs_t& needs = mBuilderContext.needs;
|
|
int Rctx = mBuilderContext.Rctx;
|
|
|
|
// We don't have a way to spill registers automatically
|
|
// spill depth and AA regs, when we know we may have to.
|
|
// build the spill list...
|
|
uint32_t spill_list = 0;
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
|
|
const texture_unit_t& tmu = mTextureMachine.tmu[i];
|
|
if (tmu.format_idx == 0)
|
|
continue;
|
|
if (tmu.linear) {
|
|
// we may run out of register if we have linear filtering
|
|
// at 1 or 4 bytes / pixel on any texture unit.
|
|
if (tmu.format.size == 1) {
|
|
// if depth and AA enabled, we'll run out of 1 register
|
|
if (parts.z.reg > 0 && parts.covPtr.reg > 0)
|
|
spill_list |= 1<<parts.covPtr.reg;
|
|
}
|
|
if (tmu.format.size == 4) {
|
|
// if depth or AA enabled, we'll run out of 1 or 2 registers
|
|
if (parts.z.reg > 0)
|
|
spill_list |= 1<<parts.z.reg;
|
|
if (parts.covPtr.reg > 0)
|
|
spill_list |= 1<<parts.covPtr.reg;
|
|
}
|
|
}
|
|
}
|
|
|
|
Spill spill(registerFile(), *this, spill_list);
|
|
|
|
const bool multiTexture = mTextureMachine.activeUnits > 1;
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
|
|
const texture_unit_t& tmu = mTextureMachine.tmu[i];
|
|
if (tmu.format_idx == 0)
|
|
continue;
|
|
|
|
pointer_t& txPtr = parts.coords[i].ptr;
|
|
pixel_t& texel = parts.texel[i];
|
|
|
|
// repeat...
|
|
if ((tmu.swrap == GGL_NEEDS_WRAP_11) &&
|
|
(tmu.twrap == GGL_NEEDS_WRAP_11))
|
|
{ // 1:1 textures
|
|
comment("fetch texel");
|
|
texel.setTo(regs.obtain(), &tmu.format);
|
|
load(txPtr, texel, WRITE_BACK);
|
|
} else {
|
|
Scratch scratches(registerFile());
|
|
reg_t& s = parts.coords[i].s;
|
|
reg_t& t = parts.coords[i].t;
|
|
if ((mOptLevel&1)==0) {
|
|
comment("reload s/t (multitexture or linear filtering)");
|
|
s.reg = scratches.obtain();
|
|
t.reg = scratches.obtain();
|
|
CONTEXT_LOAD(s.reg, generated_vars.texture[i].spill[0]);
|
|
CONTEXT_LOAD(t.reg, generated_vars.texture[i].spill[1]);
|
|
}
|
|
|
|
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
|
|
return;
|
|
|
|
comment("compute repeat/clamp");
|
|
int u = scratches.obtain();
|
|
int v = scratches.obtain();
|
|
int width = scratches.obtain();
|
|
int height = scratches.obtain();
|
|
int U = 0;
|
|
int V = 0;
|
|
|
|
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
|
|
return;
|
|
|
|
CONTEXT_LOAD(width, generated_vars.texture[i].width);
|
|
CONTEXT_LOAD(height, generated_vars.texture[i].height);
|
|
|
|
int FRAC_BITS = 0;
|
|
if (tmu.linear) {
|
|
// linear interpolation
|
|
if (tmu.format.size == 1) {
|
|
// for 8-bits textures, we can afford
|
|
// 7 bits of fractional precision at no
|
|
// additional cost (we can't do 8 bits
|
|
// because filter8 uses signed 16 bits muls)
|
|
FRAC_BITS = 7;
|
|
} else if (tmu.format.size == 2) {
|
|
// filter16() is internally limited to 4 bits, so:
|
|
// FRAC_BITS=2 generates less instructions,
|
|
// FRAC_BITS=3,4,5 creates unpleasant artifacts,
|
|
// FRAC_BITS=6+ looks good
|
|
FRAC_BITS = 6;
|
|
} else if (tmu.format.size == 4) {
|
|
// filter32() is internally limited to 8 bits, so:
|
|
// FRAC_BITS=4 looks good
|
|
// FRAC_BITS=5+ looks better, but generates 3 extra ipp
|
|
FRAC_BITS = 6;
|
|
} else {
|
|
// for all other cases we use 4 bits.
|
|
FRAC_BITS = 4;
|
|
}
|
|
}
|
|
wrapping(u, s.reg, width, tmu.swrap, FRAC_BITS);
|
|
wrapping(v, t.reg, height, tmu.twrap, FRAC_BITS);
|
|
|
|
if (tmu.linear) {
|
|
comment("compute linear filtering offsets");
|
|
// pixel size scale
|
|
const int shift = 31 - gglClz(tmu.format.size);
|
|
U = scratches.obtain();
|
|
V = scratches.obtain();
|
|
|
|
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
|
|
return;
|
|
|
|
// sample the texel center
|
|
SUB(AL, 0, u, u, imm(1<<(FRAC_BITS-1)));
|
|
SUB(AL, 0, v, v, imm(1<<(FRAC_BITS-1)));
|
|
|
|
// get the fractionnal part of U,V
|
|
AND(AL, 0, U, u, imm((1<<FRAC_BITS)-1));
|
|
AND(AL, 0, V, v, imm((1<<FRAC_BITS)-1));
|
|
|
|
// compute width-1 and height-1
|
|
SUB(AL, 0, width, width, imm(1));
|
|
SUB(AL, 0, height, height, imm(1));
|
|
|
|
// get the integer part of U,V and clamp/wrap
|
|
// and compute offset to the next texel
|
|
if (tmu.swrap == GGL_NEEDS_WRAP_REPEAT) {
|
|
// u has already been REPEATed
|
|
MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS));
|
|
MOV(MI, 0, u, width);
|
|
CMP(AL, u, width);
|
|
MOV(LT, 0, width, imm(1 << shift));
|
|
if (shift)
|
|
MOV(GE, 0, width, reg_imm(width, LSL, shift));
|
|
RSB(GE, 0, width, width, imm(0));
|
|
} else {
|
|
// u has not been CLAMPed yet
|
|
// algorithm:
|
|
// if ((u>>4) >= width)
|
|
// u = width<<4
|
|
// width = 0
|
|
// else
|
|
// width = 1<<shift
|
|
// u = u>>4; // get integer part
|
|
// if (u<0)
|
|
// u = 0
|
|
// width = 0
|
|
// generated_vars.rt = width
|
|
|
|
CMP(AL, width, reg_imm(u, ASR, FRAC_BITS));
|
|
MOV(LE, 0, u, reg_imm(width, LSL, FRAC_BITS));
|
|
MOV(LE, 0, width, imm(0));
|
|
MOV(GT, 0, width, imm(1 << shift));
|
|
MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS));
|
|
MOV(MI, 0, u, imm(0));
|
|
MOV(MI, 0, width, imm(0));
|
|
}
|
|
CONTEXT_STORE(width, generated_vars.rt);
|
|
|
|
const int stride = width;
|
|
CONTEXT_LOAD(stride, generated_vars.texture[i].stride);
|
|
if (tmu.twrap == GGL_NEEDS_WRAP_REPEAT) {
|
|
// v has already been REPEATed
|
|
MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS));
|
|
MOV(MI, 0, v, height);
|
|
CMP(AL, v, height);
|
|
MOV(LT, 0, height, imm(1 << shift));
|
|
if (shift)
|
|
MOV(GE, 0, height, reg_imm(height, LSL, shift));
|
|
RSB(GE, 0, height, height, imm(0));
|
|
MUL(AL, 0, height, stride, height);
|
|
} else {
|
|
// v has not been CLAMPed yet
|
|
CMP(AL, height, reg_imm(v, ASR, FRAC_BITS));
|
|
MOV(LE, 0, v, reg_imm(height, LSL, FRAC_BITS));
|
|
MOV(LE, 0, height, imm(0));
|
|
if (shift) {
|
|
MOV(GT, 0, height, reg_imm(stride, LSL, shift));
|
|
} else {
|
|
MOV(GT, 0, height, stride);
|
|
}
|
|
MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS));
|
|
MOV(MI, 0, v, imm(0));
|
|
MOV(MI, 0, height, imm(0));
|
|
}
|
|
CONTEXT_STORE(height, generated_vars.lb);
|
|
}
|
|
|
|
scratches.recycle(width);
|
|
scratches.recycle(height);
|
|
|
|
// iterate texture coordinates...
|
|
comment("iterate s,t");
|
|
int dsdx = scratches.obtain();
|
|
int dtdx = scratches.obtain();
|
|
|
|
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
|
|
return;
|
|
|
|
CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx);
|
|
CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx);
|
|
ADD(AL, 0, s.reg, s.reg, dsdx);
|
|
ADD(AL, 0, t.reg, t.reg, dtdx);
|
|
if ((mOptLevel&1)==0) {
|
|
CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]);
|
|
CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]);
|
|
scratches.recycle(s.reg);
|
|
scratches.recycle(t.reg);
|
|
}
|
|
scratches.recycle(dsdx);
|
|
scratches.recycle(dtdx);
|
|
|
|
// merge base & offset...
|
|
comment("merge base & offset");
|
|
texel.setTo(regs.obtain(), &tmu.format);
|
|
txPtr.setTo(texel.reg, tmu.bits);
|
|
int stride = scratches.obtain();
|
|
|
|
if (registerFile().status() & RegisterFile::OUT_OF_REGISTERS)
|
|
return;
|
|
|
|
CONTEXT_LOAD(stride, generated_vars.texture[i].stride);
|
|
CONTEXT_ADDR_LOAD(txPtr.reg, generated_vars.texture[i].data);
|
|
SMLABB(AL, u, v, stride, u); // u+v*stride
|
|
base_offset(txPtr, txPtr, u);
|
|
|
|
// load texel
|
|
if (!tmu.linear) {
|
|
comment("fetch texel");
|
|
load(txPtr, texel, 0);
|
|
} else {
|
|
// recycle registers we don't need anymore
|
|
scratches.recycle(u);
|
|
scratches.recycle(v);
|
|
scratches.recycle(stride);
|
|
|
|
comment("fetch texel, bilinear");
|
|
switch (tmu.format.size) {
|
|
case 1: filter8(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
|
|
case 2: filter16(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
|
|
case 3: filter24(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
|
|
case 4: filter32(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::build_iterate_texture_coordinates(
|
|
const fragment_parts_t& parts)
|
|
{
|
|
const bool multiTexture = mTextureMachine.activeUnits > 1;
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
|
|
const texture_unit_t& tmu = mTextureMachine.tmu[i];
|
|
if (tmu.format_idx == 0)
|
|
continue;
|
|
|
|
if ((tmu.swrap == GGL_NEEDS_WRAP_11) &&
|
|
(tmu.twrap == GGL_NEEDS_WRAP_11))
|
|
{ // 1:1 textures
|
|
const pointer_t& txPtr = parts.coords[i].ptr;
|
|
ADD(AL, 0, txPtr.reg, txPtr.reg, imm(txPtr.size>>3));
|
|
} else {
|
|
Scratch scratches(registerFile());
|
|
int s = parts.coords[i].s.reg;
|
|
int t = parts.coords[i].t.reg;
|
|
if ((mOptLevel&1)==0) {
|
|
s = scratches.obtain();
|
|
t = scratches.obtain();
|
|
CONTEXT_LOAD(s, generated_vars.texture[i].spill[0]);
|
|
CONTEXT_LOAD(t, generated_vars.texture[i].spill[1]);
|
|
}
|
|
int dsdx = scratches.obtain();
|
|
int dtdx = scratches.obtain();
|
|
CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx);
|
|
CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx);
|
|
ADD(AL, 0, s, s, dsdx);
|
|
ADD(AL, 0, t, t, dtdx);
|
|
if ((mOptLevel&1)==0) {
|
|
CONTEXT_STORE(s, generated_vars.texture[i].spill[0]);
|
|
CONTEXT_STORE(t, generated_vars.texture[i].spill[1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::filter8(
|
|
const fragment_parts_t& /*parts*/,
|
|
pixel_t& texel, const texture_unit_t& tmu,
|
|
int U, int V, pointer_t& txPtr,
|
|
int FRAC_BITS)
|
|
{
|
|
if (tmu.format.components != GGL_ALPHA &&
|
|
tmu.format.components != GGL_LUMINANCE)
|
|
{
|
|
// this is a packed format, and we don't support
|
|
// linear filtering (it's probably RGB 332)
|
|
// Should not happen with OpenGL|ES
|
|
LDRB(AL, texel.reg, txPtr.reg);
|
|
return;
|
|
}
|
|
|
|
// ------------------------
|
|
// about ~22 cycles / pixel
|
|
Scratch scratches(registerFile());
|
|
|
|
int pixel= scratches.obtain();
|
|
int d = scratches.obtain();
|
|
int u = scratches.obtain();
|
|
int k = scratches.obtain();
|
|
int rt = scratches.obtain();
|
|
int lb = scratches.obtain();
|
|
|
|
// RB -> U * V
|
|
|
|
CONTEXT_LOAD(rt, generated_vars.rt);
|
|
CONTEXT_LOAD(lb, generated_vars.lb);
|
|
|
|
int offset = pixel;
|
|
ADD(AL, 0, offset, lb, rt);
|
|
LDRB(AL, pixel, txPtr.reg, reg_scale_pre(offset));
|
|
SMULBB(AL, u, U, V);
|
|
SMULBB(AL, d, pixel, u);
|
|
RSB(AL, 0, k, u, imm(1<<(FRAC_BITS*2)));
|
|
|
|
// LB -> (1-U) * V
|
|
RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
|
|
LDRB(AL, pixel, txPtr.reg, reg_scale_pre(lb));
|
|
SMULBB(AL, u, U, V);
|
|
SMLABB(AL, d, pixel, u, d);
|
|
SUB(AL, 0, k, k, u);
|
|
|
|
// LT -> (1-U)*(1-V)
|
|
RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
|
|
LDRB(AL, pixel, txPtr.reg);
|
|
SMULBB(AL, u, U, V);
|
|
SMLABB(AL, d, pixel, u, d);
|
|
|
|
// RT -> U*(1-V)
|
|
LDRB(AL, pixel, txPtr.reg, reg_scale_pre(rt));
|
|
SUB(AL, 0, u, k, u);
|
|
SMLABB(AL, texel.reg, pixel, u, d);
|
|
|
|
for (int i=0 ; i<4 ; i++) {
|
|
if (!texel.format.c[i].h) continue;
|
|
texel.format.c[i].h = FRAC_BITS*2+8;
|
|
texel.format.c[i].l = FRAC_BITS*2; // keeping 8 bits in enough
|
|
}
|
|
texel.format.size = 4;
|
|
texel.format.bitsPerPixel = 32;
|
|
texel.flags |= CLEAR_LO;
|
|
}
|
|
|
|
void GGLAssembler::filter16(
|
|
const fragment_parts_t& /*parts*/,
|
|
pixel_t& texel, const texture_unit_t& tmu,
|
|
int U, int V, pointer_t& txPtr,
|
|
int FRAC_BITS)
|
|
{
|
|
// compute the mask
|
|
// XXX: it would be nice if the mask below could be computed
|
|
// automatically.
|
|
uint32_t mask = 0;
|
|
int shift = 0;
|
|
int prec = 0;
|
|
switch (tmu.format_idx) {
|
|
case GGL_PIXEL_FORMAT_RGB_565:
|
|
// source: 00000ggg.ggg00000 | rrrrr000.000bbbbb
|
|
// result: gggggggg.gggrrrrr | rrrrr0bb.bbbbbbbb
|
|
mask = 0x07E0F81F;
|
|
shift = 16;
|
|
prec = 5;
|
|
break;
|
|
case GGL_PIXEL_FORMAT_RGBA_4444:
|
|
// 0000,1111,0000,1111 | 0000,1111,0000,1111
|
|
mask = 0x0F0F0F0F;
|
|
shift = 12;
|
|
prec = 4;
|
|
break;
|
|
case GGL_PIXEL_FORMAT_LA_88:
|
|
// 0000,0000,1111,1111 | 0000,0000,1111,1111
|
|
// AALL -> 00AA | 00LL
|
|
mask = 0x00FF00FF;
|
|
shift = 8;
|
|
prec = 8;
|
|
break;
|
|
default:
|
|
// unsupported format, do something sensical...
|
|
ALOGE("Unsupported 16-bits texture format (%d)", tmu.format_idx);
|
|
LDRH(AL, texel.reg, txPtr.reg);
|
|
return;
|
|
}
|
|
|
|
const int adjust = FRAC_BITS*2 - prec;
|
|
const int round = 0;
|
|
|
|
// update the texel format
|
|
texel.format.size = 4;
|
|
texel.format.bitsPerPixel = 32;
|
|
texel.flags |= CLEAR_HI|CLEAR_LO;
|
|
for (int i=0 ; i<4 ; i++) {
|
|
if (!texel.format.c[i].h) continue;
|
|
const uint32_t offset = (mask & tmu.format.mask(i)) ? 0 : shift;
|
|
texel.format.c[i].h = tmu.format.c[i].h + offset + prec;
|
|
texel.format.c[i].l = texel.format.c[i].h - (tmu.format.bits(i) + prec);
|
|
}
|
|
|
|
// ------------------------
|
|
// about ~40 cycles / pixel
|
|
Scratch scratches(registerFile());
|
|
|
|
int pixel= scratches.obtain();
|
|
int d = scratches.obtain();
|
|
int u = scratches.obtain();
|
|
int k = scratches.obtain();
|
|
|
|
// RB -> U * V
|
|
int offset = pixel;
|
|
CONTEXT_LOAD(offset, generated_vars.rt);
|
|
CONTEXT_LOAD(u, generated_vars.lb);
|
|
ADD(AL, 0, offset, offset, u);
|
|
|
|
LDRH(AL, pixel, txPtr.reg, reg_pre(offset));
|
|
SMULBB(AL, u, U, V);
|
|
ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
|
|
build_and_immediate(pixel, pixel, mask, 32);
|
|
if (adjust) {
|
|
if (round)
|
|
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
|
|
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
|
|
}
|
|
MUL(AL, 0, d, pixel, u);
|
|
RSB(AL, 0, k, u, imm(1<<prec));
|
|
|
|
// LB -> (1-U) * V
|
|
CONTEXT_LOAD(offset, generated_vars.lb);
|
|
RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
|
|
LDRH(AL, pixel, txPtr.reg, reg_pre(offset));
|
|
SMULBB(AL, u, U, V);
|
|
ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
|
|
build_and_immediate(pixel, pixel, mask, 32);
|
|
if (adjust) {
|
|
if (round)
|
|
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
|
|
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
|
|
}
|
|
MLA(AL, 0, d, pixel, u, d);
|
|
SUB(AL, 0, k, k, u);
|
|
|
|
// LT -> (1-U)*(1-V)
|
|
RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
|
|
LDRH(AL, pixel, txPtr.reg);
|
|
SMULBB(AL, u, U, V);
|
|
ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
|
|
build_and_immediate(pixel, pixel, mask, 32);
|
|
if (adjust) {
|
|
if (round)
|
|
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
|
|
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
|
|
}
|
|
MLA(AL, 0, d, pixel, u, d);
|
|
|
|
// RT -> U*(1-V)
|
|
CONTEXT_LOAD(offset, generated_vars.rt);
|
|
LDRH(AL, pixel, txPtr.reg, reg_pre(offset));
|
|
SUB(AL, 0, u, k, u);
|
|
ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
|
|
build_and_immediate(pixel, pixel, mask, 32);
|
|
MLA(AL, 0, texel.reg, pixel, u, d);
|
|
}
|
|
|
|
void GGLAssembler::filter24(
|
|
const fragment_parts_t& /*parts*/,
|
|
pixel_t& texel, const texture_unit_t& /*tmu*/,
|
|
int /*U*/, int /*V*/, pointer_t& txPtr,
|
|
int /*FRAC_BITS*/)
|
|
{
|
|
// not supported yet (currently disabled)
|
|
load(txPtr, texel, 0);
|
|
}
|
|
|
|
void GGLAssembler::filter32(
|
|
const fragment_parts_t& /*parts*/,
|
|
pixel_t& texel, const texture_unit_t& /*tmu*/,
|
|
int U, int V, pointer_t& txPtr,
|
|
int FRAC_BITS)
|
|
{
|
|
const int adjust = FRAC_BITS*2 - 8;
|
|
const int round = 0;
|
|
|
|
// ------------------------
|
|
// about ~38 cycles / pixel
|
|
Scratch scratches(registerFile());
|
|
|
|
int pixel= scratches.obtain();
|
|
int dh = scratches.obtain();
|
|
int u = scratches.obtain();
|
|
int k = scratches.obtain();
|
|
|
|
int temp = scratches.obtain();
|
|
int dl = scratches.obtain();
|
|
int mask = scratches.obtain();
|
|
|
|
MOV(AL, 0, mask, imm(0xFF));
|
|
ORR(AL, 0, mask, mask, imm(0xFF0000));
|
|
|
|
// RB -> U * V
|
|
int offset = pixel;
|
|
CONTEXT_LOAD(offset, generated_vars.rt);
|
|
CONTEXT_LOAD(u, generated_vars.lb);
|
|
ADD(AL, 0, offset, offset, u);
|
|
|
|
LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset));
|
|
SMULBB(AL, u, U, V);
|
|
AND(AL, 0, temp, mask, pixel);
|
|
if (adjust) {
|
|
if (round)
|
|
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
|
|
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
|
|
}
|
|
MUL(AL, 0, dh, temp, u);
|
|
AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
|
|
MUL(AL, 0, dl, temp, u);
|
|
RSB(AL, 0, k, u, imm(0x100));
|
|
|
|
// LB -> (1-U) * V
|
|
CONTEXT_LOAD(offset, generated_vars.lb);
|
|
RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
|
|
LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset));
|
|
SMULBB(AL, u, U, V);
|
|
AND(AL, 0, temp, mask, pixel);
|
|
if (adjust) {
|
|
if (round)
|
|
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
|
|
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
|
|
}
|
|
MLA(AL, 0, dh, temp, u, dh);
|
|
AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
|
|
MLA(AL, 0, dl, temp, u, dl);
|
|
SUB(AL, 0, k, k, u);
|
|
|
|
// LT -> (1-U)*(1-V)
|
|
RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
|
|
LDR(AL, pixel, txPtr.reg);
|
|
SMULBB(AL, u, U, V);
|
|
AND(AL, 0, temp, mask, pixel);
|
|
if (adjust) {
|
|
if (round)
|
|
ADD(AL, 0, u, u, imm(1<<(adjust-1)));
|
|
MOV(AL, 0, u, reg_imm(u, LSR, adjust));
|
|
}
|
|
MLA(AL, 0, dh, temp, u, dh);
|
|
AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
|
|
MLA(AL, 0, dl, temp, u, dl);
|
|
|
|
// RT -> U*(1-V)
|
|
CONTEXT_LOAD(offset, generated_vars.rt);
|
|
LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset));
|
|
SUB(AL, 0, u, k, u);
|
|
AND(AL, 0, temp, mask, pixel);
|
|
MLA(AL, 0, dh, temp, u, dh);
|
|
AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
|
|
MLA(AL, 0, dl, temp, u, dl);
|
|
|
|
AND(AL, 0, dh, mask, reg_imm(dh, LSR, 8));
|
|
AND(AL, 0, dl, dl, reg_imm(mask, LSL, 8));
|
|
ORR(AL, 0, texel.reg, dh, dl);
|
|
}
|
|
|
|
void GGLAssembler::build_texture_environment(
|
|
component_t& fragment,
|
|
const fragment_parts_t& parts,
|
|
int component,
|
|
Scratch& regs)
|
|
{
|
|
const uint32_t component_mask = 1<<component;
|
|
const bool multiTexture = mTextureMachine.activeUnits > 1;
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
|
|
texture_unit_t& tmu = mTextureMachine.tmu[i];
|
|
|
|
if (tmu.mask & component_mask) {
|
|
// replace or modulate with this texture
|
|
if ((tmu.replaced & component_mask) == 0) {
|
|
// not replaced by a later tmu...
|
|
|
|
Scratch scratches(registerFile());
|
|
pixel_t texel(parts.texel[i]);
|
|
|
|
if (multiTexture &&
|
|
tmu.swrap == GGL_NEEDS_WRAP_11 &&
|
|
tmu.twrap == GGL_NEEDS_WRAP_11)
|
|
{
|
|
texel.reg = scratches.obtain();
|
|
texel.flags |= CORRUPTIBLE;
|
|
comment("fetch texel (multitexture 1:1)");
|
|
load(parts.coords[i].ptr, texel, WRITE_BACK);
|
|
}
|
|
|
|
component_t incoming(fragment);
|
|
modify(fragment, regs);
|
|
|
|
switch (tmu.env) {
|
|
case GGL_REPLACE:
|
|
extract(fragment, texel, component);
|
|
break;
|
|
case GGL_MODULATE:
|
|
modulate(fragment, incoming, texel, component);
|
|
break;
|
|
case GGL_DECAL:
|
|
decal(fragment, incoming, texel, component);
|
|
break;
|
|
case GGL_BLEND:
|
|
blend(fragment, incoming, texel, component, i);
|
|
break;
|
|
case GGL_ADD:
|
|
add(fragment, incoming, texel, component);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::wrapping(
|
|
int d,
|
|
int coord, int size,
|
|
int tx_wrap, int tx_linear)
|
|
{
|
|
// notes:
|
|
// if tx_linear is set, we need 4 extra bits of precision on the result
|
|
// SMULL/UMULL is 3 cycles
|
|
Scratch scratches(registerFile());
|
|
int c = coord;
|
|
if (tx_wrap == GGL_NEEDS_WRAP_REPEAT) {
|
|
// UMULL takes 4 cycles (interlocked), and we can get away with
|
|
// 2 cycles using SMULWB, but we're loosing 16 bits of precision
|
|
// out of 32 (this is not a problem because the iterator keeps
|
|
// its full precision)
|
|
// UMULL(AL, 0, size, d, c, size);
|
|
// note: we can't use SMULTB because it's signed.
|
|
MOV(AL, 0, d, reg_imm(c, LSR, 16-tx_linear));
|
|
SMULWB(AL, d, d, size);
|
|
} else if (tx_wrap == GGL_NEEDS_WRAP_CLAMP_TO_EDGE) {
|
|
if (tx_linear) {
|
|
// 1 cycle
|
|
MOV(AL, 0, d, reg_imm(coord, ASR, 16-tx_linear));
|
|
} else {
|
|
// 4 cycles (common case)
|
|
MOV(AL, 0, d, reg_imm(coord, ASR, 16));
|
|
BIC(AL, 0, d, d, reg_imm(d, ASR, 31));
|
|
CMP(AL, d, size);
|
|
SUB(GE, 0, d, size, imm(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::modulate(
|
|
component_t& dest,
|
|
const component_t& incoming,
|
|
const pixel_t& incomingTexel, int component)
|
|
{
|
|
Scratch locals(registerFile());
|
|
integer_t texel(locals.obtain(), 32, CORRUPTIBLE);
|
|
extract(texel, incomingTexel, component);
|
|
|
|
const int Nt = texel.size();
|
|
// Nt should always be less than 10 bits because it comes
|
|
// from the TMU.
|
|
|
|
int Ni = incoming.size();
|
|
// Ni could be big because it comes from previous MODULATEs
|
|
|
|
if (Nt == 1) {
|
|
// texel acts as a bit-mask
|
|
// dest = incoming & ((texel << incoming.h)-texel)
|
|
RSB(AL, 0, dest.reg, texel.reg, reg_imm(texel.reg, LSL, incoming.h));
|
|
AND(AL, 0, dest.reg, dest.reg, incoming.reg);
|
|
dest.l = incoming.l;
|
|
dest.h = incoming.h;
|
|
dest.flags |= (incoming.flags & CLEAR_LO);
|
|
} else if (Ni == 1) {
|
|
MOV(AL, 0, dest.reg, reg_imm(incoming.reg, LSL, 31-incoming.h));
|
|
AND(AL, 0, dest.reg, texel.reg, reg_imm(dest.reg, ASR, 31));
|
|
dest.l = 0;
|
|
dest.h = Nt;
|
|
} else {
|
|
int inReg = incoming.reg;
|
|
int shift = incoming.l;
|
|
if ((Nt + Ni) > 32) {
|
|
// we will overflow, reduce the precision of Ni to 8 bits
|
|
// (Note Nt cannot be more than 10 bits which happens with
|
|
// 565 textures and GGL_LINEAR)
|
|
shift += Ni-8;
|
|
Ni = 8;
|
|
}
|
|
|
|
// modulate by the component with the lowest precision
|
|
if (Nt >= Ni) {
|
|
if (shift) {
|
|
// XXX: we should be able to avoid this shift
|
|
// when shift==16 && Nt<16 && Ni<16, in which
|
|
// we could use SMULBT below.
|
|
MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift));
|
|
inReg = dest.reg;
|
|
shift = 0;
|
|
}
|
|
// operation: (Cf*Ct)/((1<<Ni)-1)
|
|
// approximated with: Cf*(Ct + Ct>>(Ni-1))>>Ni
|
|
// this operation doesn't change texel's size
|
|
ADD(AL, 0, dest.reg, inReg, reg_imm(inReg, LSR, Ni-1));
|
|
if (Nt<16 && Ni<16) SMULBB(AL, dest.reg, texel.reg, dest.reg);
|
|
else MUL(AL, 0, dest.reg, texel.reg, dest.reg);
|
|
dest.l = Ni;
|
|
dest.h = Nt + Ni;
|
|
} else {
|
|
if (shift && (shift != 16)) {
|
|
// if shift==16, we can use 16-bits mul instructions later
|
|
MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift));
|
|
inReg = dest.reg;
|
|
shift = 0;
|
|
}
|
|
// operation: (Cf*Ct)/((1<<Nt)-1)
|
|
// approximated with: Ct*(Cf + Cf>>(Nt-1))>>Nt
|
|
// this operation doesn't change incoming's size
|
|
Scratch scratches(registerFile());
|
|
int t = (texel.flags & CORRUPTIBLE) ? texel.reg : dest.reg;
|
|
if (t == inReg)
|
|
t = scratches.obtain();
|
|
ADD(AL, 0, t, texel.reg, reg_imm(texel.reg, LSR, Nt-1));
|
|
if (Nt<16 && Ni<16) {
|
|
if (shift==16) SMULBT(AL, dest.reg, t, inReg);
|
|
else SMULBB(AL, dest.reg, t, inReg);
|
|
} else MUL(AL, 0, dest.reg, t, inReg);
|
|
dest.l = Nt;
|
|
dest.h = Nt + Ni;
|
|
}
|
|
|
|
// low bits are not valid
|
|
dest.flags |= CLEAR_LO;
|
|
|
|
// no need to keep more than 8 bits/component
|
|
if (dest.size() > 8)
|
|
dest.l = dest.h-8;
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::decal(
|
|
component_t& dest,
|
|
const component_t& incoming,
|
|
const pixel_t& incomingTexel, int component)
|
|
{
|
|
// RGBA:
|
|
// Cv = Cf*(1 - At) + Ct*At = Cf + (Ct - Cf)*At
|
|
// Av = Af
|
|
Scratch locals(registerFile());
|
|
integer_t texel(locals.obtain(), 32, CORRUPTIBLE);
|
|
integer_t factor(locals.obtain(), 32, CORRUPTIBLE);
|
|
extract(texel, incomingTexel, component);
|
|
extract(factor, incomingTexel, GGLFormat::ALPHA);
|
|
|
|
// no need to keep more than 8-bits for decal
|
|
int Ni = incoming.size();
|
|
int shift = incoming.l;
|
|
if (Ni > 8) {
|
|
shift += Ni-8;
|
|
Ni = 8;
|
|
}
|
|
integer_t incomingNorm(incoming.reg, Ni, incoming.flags);
|
|
if (shift) {
|
|
MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift));
|
|
incomingNorm.reg = dest.reg;
|
|
incomingNorm.flags |= CORRUPTIBLE;
|
|
}
|
|
ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1));
|
|
build_blendOneMinusFF(dest, factor, incomingNorm, texel);
|
|
}
|
|
|
|
void GGLAssembler::blend(
|
|
component_t& dest,
|
|
const component_t& incoming,
|
|
const pixel_t& incomingTexel, int component, int tmu)
|
|
{
|
|
// RGBA:
|
|
// Cv = (1 - Ct)*Cf + Ct*Cc = Cf + (Cc - Cf)*Ct
|
|
// Av = At*Af
|
|
|
|
if (component == GGLFormat::ALPHA) {
|
|
modulate(dest, incoming, incomingTexel, component);
|
|
return;
|
|
}
|
|
|
|
Scratch locals(registerFile());
|
|
integer_t color(locals.obtain(), 8, CORRUPTIBLE);
|
|
integer_t factor(locals.obtain(), 32, CORRUPTIBLE);
|
|
LDRB(AL, color.reg, mBuilderContext.Rctx,
|
|
immed12_pre(GGL_OFFSETOF(state.texture[tmu].env_color[component])));
|
|
extract(factor, incomingTexel, component);
|
|
|
|
// no need to keep more than 8-bits for blend
|
|
int Ni = incoming.size();
|
|
int shift = incoming.l;
|
|
if (Ni > 8) {
|
|
shift += Ni-8;
|
|
Ni = 8;
|
|
}
|
|
integer_t incomingNorm(incoming.reg, Ni, incoming.flags);
|
|
if (shift) {
|
|
MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift));
|
|
incomingNorm.reg = dest.reg;
|
|
incomingNorm.flags |= CORRUPTIBLE;
|
|
}
|
|
ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1));
|
|
build_blendOneMinusFF(dest, factor, incomingNorm, color);
|
|
}
|
|
|
|
void GGLAssembler::add(
|
|
component_t& dest,
|
|
const component_t& incoming,
|
|
const pixel_t& incomingTexel, int component)
|
|
{
|
|
// RGBA:
|
|
// Cv = Cf + Ct;
|
|
Scratch locals(registerFile());
|
|
|
|
component_t incomingTemp(incoming);
|
|
|
|
// use "dest" as a temporary for extracting the texel, unless "dest"
|
|
// overlaps "incoming".
|
|
integer_t texel(dest.reg, 32, CORRUPTIBLE);
|
|
if (dest.reg == incomingTemp.reg)
|
|
texel.reg = locals.obtain();
|
|
extract(texel, incomingTexel, component);
|
|
|
|
if (texel.s < incomingTemp.size()) {
|
|
expand(texel, texel, incomingTemp.size());
|
|
} else if (texel.s > incomingTemp.size()) {
|
|
if (incomingTemp.flags & CORRUPTIBLE) {
|
|
expand(incomingTemp, incomingTemp, texel.s);
|
|
} else {
|
|
incomingTemp.reg = locals.obtain();
|
|
expand(incomingTemp, incoming, texel.s);
|
|
}
|
|
}
|
|
|
|
if (incomingTemp.l) {
|
|
ADD(AL, 0, dest.reg, texel.reg,
|
|
reg_imm(incomingTemp.reg, LSR, incomingTemp.l));
|
|
} else {
|
|
ADD(AL, 0, dest.reg, texel.reg, incomingTemp.reg);
|
|
}
|
|
dest.l = 0;
|
|
dest.h = texel.size();
|
|
component_sat(dest);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
}; // namespace android
|
|
|