android_system_core/libziparchive/zip_archive_test.cc

732 lines
26 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "zip_archive_private.h"
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <memory>
#include <vector>
#include <android-base/file.h>
#include <android-base/test_utils.h>
#include <android-base/unique_fd.h>
#include <gtest/gtest.h>
#include <utils/FileMap.h>
#include <ziparchive/zip_archive.h>
#include <ziparchive/zip_archive_stream_entry.h>
static std::string test_data_dir = android::base::GetExecutableDirectory() + "/testdata";
static const std::string kMissingZip = "missing.zip";
static const std::string kValidZip = "valid.zip";
static const std::string kLargeZip = "large.zip";
static const std::string kBadCrcZip = "bad_crc.zip";
static const std::string kCrashApk = "crash.apk";
static const std::string kBadFilenameZip = "bad_filename.zip";
static const std::string kUpdateZip = "dummy-update.zip";
static const std::vector<uint8_t> kATxtContents{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'a',
'b', 'c', 'd', 'e', 'f', 'g', 'h', '\n'};
static const std::vector<uint8_t> kATxtContentsCompressed{'K', 'L', 'J', 'N', 'I', 'M', 'K',
207, 'H', 132, 210, '\\', '\0'};
static const std::vector<uint8_t> kBTxtContents{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', '\n'};
static const std::string kATxtName("a.txt");
static const std::string kBTxtName("b.txt");
static const std::string kNonexistentTxtName("nonexistent.txt");
static const std::string kEmptyTxtName("empty.txt");
static const std::string kLargeCompressTxtName("compress.txt");
static const std::string kLargeUncompressTxtName("uncompress.txt");
static int32_t OpenArchiveWrapper(const std::string& name, ZipArchiveHandle* handle) {
const std::string abs_path = test_data_dir + "/" + name;
return OpenArchive(abs_path.c_str(), handle);
}
static void SetZipString(ZipString* zip_str, const std::string& str) {
zip_str->name = reinterpret_cast<const uint8_t*>(str.c_str());
zip_str->name_length = str.size();
}
TEST(ziparchive, Open) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(kValidZip, &handle));
CloseArchive(handle);
ASSERT_EQ(-1, OpenArchiveWrapper(kBadFilenameZip, &handle));
CloseArchive(handle);
}
TEST(ziparchive, OutOfBound) {
ZipArchiveHandle handle;
ASSERT_EQ(-8, OpenArchiveWrapper(kCrashApk, &handle));
CloseArchive(handle);
}
TEST(ziparchive, OpenMissing) {
ZipArchiveHandle handle;
ASSERT_NE(0, OpenArchiveWrapper(kMissingZip, &handle));
// Confirm the file descriptor is not going to be mistaken for a valid one.
ASSERT_EQ(-1, GetFileDescriptor(handle));
}
TEST(ziparchive, OpenAssumeFdOwnership) {
int fd = open((test_data_dir + "/" + kValidZip).c_str(), O_RDONLY | O_BINARY);
ASSERT_NE(-1, fd);
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveFd(fd, "OpenWithAssumeFdOwnership", &handle));
CloseArchive(handle);
ASSERT_EQ(-1, lseek(fd, 0, SEEK_SET));
ASSERT_EQ(EBADF, errno);
}
TEST(ziparchive, OpenDoNotAssumeFdOwnership) {
int fd = open((test_data_dir + "/" + kValidZip).c_str(), O_RDONLY | O_BINARY);
ASSERT_NE(-1, fd);
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveFd(fd, "OpenWithAssumeFdOwnership", &handle, false));
CloseArchive(handle);
ASSERT_EQ(0, lseek(fd, 0, SEEK_SET));
close(fd);
}
static void AssertIterationOrder(const ZipString* prefix, const ZipString* suffix,
const std::vector<std::string>& expected_names_sorted) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(kValidZip, &handle));
void* iteration_cookie;
ASSERT_EQ(0, StartIteration(handle, &iteration_cookie, prefix, suffix));
ZipEntry data;
std::vector<std::string> names;
ZipString name;
for (size_t i = 0; i < expected_names_sorted.size(); ++i) {
ASSERT_EQ(0, Next(iteration_cookie, &data, &name));
names.push_back(std::string(reinterpret_cast<const char*>(name.name), name.name_length));
}
// End of iteration.
ASSERT_EQ(-1, Next(iteration_cookie, &data, &name));
CloseArchive(handle);
// Assert that the names are as expected.
std::sort(names.begin(), names.end());
ASSERT_EQ(expected_names_sorted, names);
}
TEST(ziparchive, Iteration) {
static const std::vector<std::string> kExpectedMatchesSorted = {"a.txt", "b.txt", "b/", "b/c.txt",
"b/d.txt"};
AssertIterationOrder(nullptr, nullptr, kExpectedMatchesSorted);
}
TEST(ziparchive, IterationWithPrefix) {
ZipString prefix("b/");
static const std::vector<std::string> kExpectedMatchesSorted = {"b/", "b/c.txt", "b/d.txt"};
AssertIterationOrder(&prefix, nullptr, kExpectedMatchesSorted);
}
TEST(ziparchive, IterationWithSuffix) {
ZipString suffix(".txt");
static const std::vector<std::string> kExpectedMatchesSorted = {"a.txt", "b.txt", "b/c.txt",
"b/d.txt"};
AssertIterationOrder(nullptr, &suffix, kExpectedMatchesSorted);
}
TEST(ziparchive, IterationWithPrefixAndSuffix) {
ZipString prefix("b");
ZipString suffix(".txt");
static const std::vector<std::string> kExpectedMatchesSorted = {"b.txt", "b/c.txt", "b/d.txt"};
AssertIterationOrder(&prefix, &suffix, kExpectedMatchesSorted);
}
TEST(ziparchive, IterationWithBadPrefixAndSuffix) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(kValidZip, &handle));
void* iteration_cookie;
ZipString prefix("x");
ZipString suffix("y");
ASSERT_EQ(0, StartIteration(handle, &iteration_cookie, &prefix, &suffix));
ZipEntry data;
ZipString name;
// End of iteration.
ASSERT_EQ(-1, Next(iteration_cookie, &data, &name));
CloseArchive(handle);
}
TEST(ziparchive, FindEntry) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(kValidZip, &handle));
ZipEntry data;
ZipString name;
SetZipString(&name, kATxtName);
ASSERT_EQ(0, FindEntry(handle, name, &data));
// Known facts about a.txt, from zipinfo -v.
ASSERT_EQ(63, data.offset);
ASSERT_EQ(kCompressDeflated, data.method);
ASSERT_EQ(static_cast<uint32_t>(17), data.uncompressed_length);
ASSERT_EQ(static_cast<uint32_t>(13), data.compressed_length);
ASSERT_EQ(0x950821c5, data.crc32);
ASSERT_EQ(static_cast<uint32_t>(0x438a8005), data.mod_time);
// An entry that doesn't exist. Should be a negative return code.
ZipString absent_name;
SetZipString(&absent_name, kNonexistentTxtName);
ASSERT_LT(FindEntry(handle, absent_name, &data), 0);
CloseArchive(handle);
}
TEST(ziparchive, TestInvalidDeclaredLength) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper("declaredlength.zip", &handle));
void* iteration_cookie;
ASSERT_EQ(0, StartIteration(handle, &iteration_cookie, nullptr, nullptr));
ZipString name;
ZipEntry data;
ASSERT_EQ(Next(iteration_cookie, &data, &name), 0);
ASSERT_EQ(Next(iteration_cookie, &data, &name), 0);
CloseArchive(handle);
}
TEST(ziparchive, ExtractToMemory) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(kValidZip, &handle));
// An entry that's deflated.
ZipEntry data;
ZipString a_name;
SetZipString(&a_name, kATxtName);
ASSERT_EQ(0, FindEntry(handle, a_name, &data));
const uint32_t a_size = data.uncompressed_length;
ASSERT_EQ(a_size, kATxtContents.size());
uint8_t* buffer = new uint8_t[a_size];
ASSERT_EQ(0, ExtractToMemory(handle, &data, buffer, a_size));
ASSERT_EQ(0, memcmp(buffer, kATxtContents.data(), a_size));
delete[] buffer;
// An entry that's stored.
ZipString b_name;
SetZipString(&b_name, kBTxtName);
ASSERT_EQ(0, FindEntry(handle, b_name, &data));
const uint32_t b_size = data.uncompressed_length;
ASSERT_EQ(b_size, kBTxtContents.size());
buffer = new uint8_t[b_size];
ASSERT_EQ(0, ExtractToMemory(handle, &data, buffer, b_size));
ASSERT_EQ(0, memcmp(buffer, kBTxtContents.data(), b_size));
delete[] buffer;
CloseArchive(handle);
}
static const uint32_t kEmptyEntriesZip[] = {
0x04034b50, 0x0000000a, 0x63600000, 0x00004438, 0x00000000, 0x00000000, 0x00090000,
0x6d65001c, 0x2e797470, 0x55747874, 0x03000954, 0x52e25c13, 0x52e25c24, 0x000b7875,
0x42890401, 0x88040000, 0x50000013, 0x1e02014b, 0x00000a03, 0x60000000, 0x00443863,
0x00000000, 0x00000000, 0x09000000, 0x00001800, 0x00000000, 0xa0000000, 0x00000081,
0x706d6500, 0x742e7974, 0x54557478, 0x13030005, 0x7552e25c, 0x01000b78, 0x00428904,
0x13880400, 0x4b500000, 0x00000605, 0x00010000, 0x004f0001, 0x00430000, 0x00000000};
// This is a zip file containing a single entry (ab.txt) that contains
// 90072 repetitions of the string "ab\n" and has an uncompressed length
// of 270216 bytes.
static const uint16_t kAbZip[] = {
0x4b50, 0x0403, 0x0014, 0x0000, 0x0008, 0x51d2, 0x4698, 0xc4b0, 0x2cda, 0x011b, 0x0000, 0x1f88,
0x0004, 0x0006, 0x001c, 0x6261, 0x742e, 0x7478, 0x5455, 0x0009, 0x7c03, 0x3a09, 0x7c55, 0x3a09,
0x7555, 0x0b78, 0x0100, 0x8904, 0x0042, 0x0400, 0x1388, 0x0000, 0xc2ed, 0x0d31, 0x0000, 0x030c,
0x7fa0, 0x3b2e, 0x22ff, 0xa2aa, 0x841f, 0x45fc, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555, 0x5555,
0x5555, 0x5555, 0x5555, 0x5555, 0xdd55, 0x502c, 0x014b, 0x1e02, 0x1403, 0x0000, 0x0800, 0xd200,
0x9851, 0xb046, 0xdac4, 0x1b2c, 0x0001, 0x8800, 0x041f, 0x0600, 0x1800, 0x0000, 0x0000, 0x0100,
0x0000, 0xa000, 0x0081, 0x0000, 0x6100, 0x2e62, 0x7874, 0x5574, 0x0554, 0x0300, 0x097c, 0x553a,
0x7875, 0x000b, 0x0401, 0x4289, 0x0000, 0x8804, 0x0013, 0x5000, 0x054b, 0x0006, 0x0000, 0x0100,
0x0100, 0x4c00, 0x0000, 0x5b00, 0x0001, 0x0000, 0x0000};
static const std::string kAbTxtName("ab.txt");
static const size_t kAbUncompressedSize = 270216;
TEST(ziparchive, EmptyEntries) {
TemporaryFile tmp_file;
ASSERT_NE(-1, tmp_file.fd);
ASSERT_TRUE(android::base::WriteFully(tmp_file.fd, kEmptyEntriesZip, sizeof(kEmptyEntriesZip)));
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveFd(tmp_file.fd, "EmptyEntriesTest", &handle));
ZipEntry entry;
ZipString empty_name;
SetZipString(&empty_name, kEmptyTxtName);
ASSERT_EQ(0, FindEntry(handle, empty_name, &entry));
ASSERT_EQ(static_cast<uint32_t>(0), entry.uncompressed_length);
uint8_t buffer[1];
ASSERT_EQ(0, ExtractToMemory(handle, &entry, buffer, 1));
TemporaryFile tmp_output_file;
ASSERT_NE(-1, tmp_output_file.fd);
ASSERT_EQ(0, ExtractEntryToFile(handle, &entry, tmp_output_file.fd));
struct stat stat_buf;
ASSERT_EQ(0, fstat(tmp_output_file.fd, &stat_buf));
ASSERT_EQ(0, stat_buf.st_size);
}
TEST(ziparchive, EntryLargerThan32K) {
TemporaryFile tmp_file;
ASSERT_NE(-1, tmp_file.fd);
ASSERT_TRUE(android::base::WriteFully(tmp_file.fd, reinterpret_cast<const uint8_t*>(kAbZip),
sizeof(kAbZip) - 1));
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveFd(tmp_file.fd, "EntryLargerThan32KTest", &handle));
ZipEntry entry;
ZipString ab_name;
SetZipString(&ab_name, kAbTxtName);
ASSERT_EQ(0, FindEntry(handle, ab_name, &entry));
ASSERT_EQ(kAbUncompressedSize, entry.uncompressed_length);
// Extract the entry to memory.
std::vector<uint8_t> buffer(kAbUncompressedSize);
ASSERT_EQ(0, ExtractToMemory(handle, &entry, &buffer[0], buffer.size()));
// Extract the entry to a file.
TemporaryFile tmp_output_file;
ASSERT_NE(-1, tmp_output_file.fd);
ASSERT_EQ(0, ExtractEntryToFile(handle, &entry, tmp_output_file.fd));
// Make sure the extracted file size is as expected.
struct stat stat_buf;
ASSERT_EQ(0, fstat(tmp_output_file.fd, &stat_buf));
ASSERT_EQ(kAbUncompressedSize, static_cast<size_t>(stat_buf.st_size));
// Read the file back to a buffer and make sure the contents are
// the same as the memory buffer we extracted directly to.
std::vector<uint8_t> file_contents(kAbUncompressedSize);
ASSERT_EQ(0, lseek64(tmp_output_file.fd, 0, SEEK_SET));
ASSERT_TRUE(android::base::ReadFully(tmp_output_file.fd, &file_contents[0], file_contents.size()));
ASSERT_EQ(file_contents, buffer);
for (int i = 0; i < 90072; ++i) {
const uint8_t* line = &file_contents[0] + (3 * i);
ASSERT_EQ('a', line[0]);
ASSERT_EQ('b', line[1]);
ASSERT_EQ('\n', line[2]);
}
}
TEST(ziparchive, TrailerAfterEOCD) {
TemporaryFile tmp_file;
ASSERT_NE(-1, tmp_file.fd);
// Create a file with 8 bytes of random garbage.
static const uint8_t trailer[] = {'A', 'n', 'd', 'r', 'o', 'i', 'd', 'z'};
ASSERT_TRUE(android::base::WriteFully(tmp_file.fd, kEmptyEntriesZip, sizeof(kEmptyEntriesZip)));
ASSERT_TRUE(android::base::WriteFully(tmp_file.fd, trailer, sizeof(trailer)));
ZipArchiveHandle handle;
ASSERT_GT(0, OpenArchiveFd(tmp_file.fd, "EmptyEntriesTest", &handle));
}
TEST(ziparchive, ExtractToFile) {
TemporaryFile tmp_file;
ASSERT_NE(-1, tmp_file.fd);
const uint8_t data[8] = {'1', '2', '3', '4', '5', '6', '7', '8'};
const size_t data_size = sizeof(data);
ASSERT_TRUE(android::base::WriteFully(tmp_file.fd, data, data_size));
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(kValidZip, &handle));
ZipEntry entry;
ZipString name;
SetZipString(&name, kATxtName);
ASSERT_EQ(0, FindEntry(handle, name, &entry));
ASSERT_EQ(0, ExtractEntryToFile(handle, &entry, tmp_file.fd));
// Assert that the first 8 bytes of the file haven't been clobbered.
uint8_t read_buffer[data_size];
ASSERT_EQ(0, lseek64(tmp_file.fd, 0, SEEK_SET));
ASSERT_TRUE(android::base::ReadFully(tmp_file.fd, read_buffer, data_size));
ASSERT_EQ(0, memcmp(read_buffer, data, data_size));
// Assert that the remainder of the file contains the incompressed data.
std::vector<uint8_t> uncompressed_data(entry.uncompressed_length);
ASSERT_TRUE(
android::base::ReadFully(tmp_file.fd, uncompressed_data.data(), entry.uncompressed_length));
ASSERT_EQ(0, memcmp(&uncompressed_data[0], kATxtContents.data(), kATxtContents.size()));
// Assert that the total length of the file is sane
ASSERT_EQ(static_cast<ssize_t>(data_size + kATxtContents.size()),
lseek64(tmp_file.fd, 0, SEEK_END));
}
#if !defined(_WIN32)
TEST(ziparchive, OpenFromMemory) {
const std::string zip_path = test_data_dir + "/" + kUpdateZip;
android::base::unique_fd fd(open(zip_path.c_str(), O_RDONLY | O_BINARY));
ASSERT_NE(-1, fd);
struct stat sb;
ASSERT_EQ(0, fstat(fd, &sb));
// Memory map the file first and open the archive from the memory region.
android::FileMap file_map;
file_map.create(zip_path.c_str(), fd, 0 /*offset*/, sb.st_size, true);
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveFromMemory(file_map.getDataPtr(), file_map.getDataLength(),
zip_path.c_str(), &handle));
// Assert one entry can be found and extracted correctly.
std::string BINARY_PATH("META-INF/com/google/android/update-binary");
ZipString binary_path(BINARY_PATH.c_str());
ZipEntry binary_entry;
ASSERT_EQ(0, FindEntry(handle, binary_path, &binary_entry));
TemporaryFile tmp_binary;
ASSERT_NE(-1, tmp_binary.fd);
ASSERT_EQ(0, ExtractEntryToFile(handle, &binary_entry, tmp_binary.fd));
}
#endif
static void ZipArchiveStreamTest(ZipArchiveHandle& handle, const std::string& entry_name, bool raw,
bool verified, ZipEntry* entry, std::vector<uint8_t>* read_data) {
ZipString name;
SetZipString(&name, entry_name);
ASSERT_EQ(0, FindEntry(handle, name, entry));
std::unique_ptr<ZipArchiveStreamEntry> stream;
if (raw) {
stream.reset(ZipArchiveStreamEntry::CreateRaw(handle, *entry));
if (entry->method == kCompressStored) {
read_data->resize(entry->uncompressed_length);
} else {
read_data->resize(entry->compressed_length);
}
} else {
stream.reset(ZipArchiveStreamEntry::Create(handle, *entry));
read_data->resize(entry->uncompressed_length);
}
uint8_t* read_data_ptr = read_data->data();
ASSERT_TRUE(stream.get() != nullptr);
const std::vector<uint8_t>* data;
uint64_t total_size = 0;
while ((data = stream->Read()) != nullptr) {
total_size += data->size();
memcpy(read_data_ptr, data->data(), data->size());
read_data_ptr += data->size();
}
ASSERT_EQ(verified, stream->Verify());
ASSERT_EQ(total_size, read_data->size());
}
static void ZipArchiveStreamTestUsingContents(const std::string& zip_file,
const std::string& entry_name,
const std::vector<uint8_t>& contents, bool raw) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(zip_file, &handle));
ZipEntry entry;
std::vector<uint8_t> read_data;
ZipArchiveStreamTest(handle, entry_name, raw, true, &entry, &read_data);
ASSERT_EQ(contents.size(), read_data.size());
ASSERT_TRUE(memcmp(read_data.data(), contents.data(), read_data.size()) == 0);
CloseArchive(handle);
}
static void ZipArchiveStreamTestUsingMemory(const std::string& zip_file,
const std::string& entry_name) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(zip_file, &handle));
ZipEntry entry;
std::vector<uint8_t> read_data;
ZipArchiveStreamTest(handle, entry_name, false, true, &entry, &read_data);
std::vector<uint8_t> cmp_data(entry.uncompressed_length);
ASSERT_EQ(entry.uncompressed_length, read_data.size());
ASSERT_EQ(0, ExtractToMemory(handle, &entry, cmp_data.data(), cmp_data.size()));
ASSERT_TRUE(memcmp(read_data.data(), cmp_data.data(), read_data.size()) == 0);
CloseArchive(handle);
}
TEST(ziparchive, StreamCompressed) {
ZipArchiveStreamTestUsingContents(kValidZip, kATxtName, kATxtContents, false);
}
TEST(ziparchive, StreamUncompressed) {
ZipArchiveStreamTestUsingContents(kValidZip, kBTxtName, kBTxtContents, false);
}
TEST(ziparchive, StreamRawCompressed) {
ZipArchiveStreamTestUsingContents(kValidZip, kATxtName, kATxtContentsCompressed, true);
}
TEST(ziparchive, StreamRawUncompressed) {
ZipArchiveStreamTestUsingContents(kValidZip, kBTxtName, kBTxtContents, true);
}
TEST(ziparchive, StreamLargeCompressed) {
ZipArchiveStreamTestUsingMemory(kLargeZip, kLargeCompressTxtName);
}
TEST(ziparchive, StreamLargeUncompressed) {
ZipArchiveStreamTestUsingMemory(kLargeZip, kLargeUncompressTxtName);
}
TEST(ziparchive, StreamCompressedBadCrc) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(kBadCrcZip, &handle));
ZipEntry entry;
std::vector<uint8_t> read_data;
ZipArchiveStreamTest(handle, kATxtName, false, false, &entry, &read_data);
CloseArchive(handle);
}
TEST(ziparchive, StreamUncompressedBadCrc) {
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveWrapper(kBadCrcZip, &handle));
ZipEntry entry;
std::vector<uint8_t> read_data;
ZipArchiveStreamTest(handle, kBTxtName, false, false, &entry, &read_data);
CloseArchive(handle);
}
// Generated using the following Java program:
// public static void main(String[] foo) throws Exception {
// FileOutputStream fos = new
// FileOutputStream("/tmp/data_descriptor.zip");
// ZipOutputStream zos = new ZipOutputStream(fos);
// ZipEntry ze = new ZipEntry("name");
// ze.setMethod(ZipEntry.DEFLATED);
// zos.putNextEntry(ze);
// zos.write("abdcdefghijk".getBytes());
// zos.closeEntry();
// zos.close();
// }
//
// cat /tmp/data_descriptor.zip | xxd -i
//
static const std::vector<uint8_t> kDataDescriptorZipFile{
0x50, 0x4b, 0x03, 0x04, 0x14, 0x00, 0x08, 0x08, 0x08, 0x00, 0x30, 0x59, 0xce, 0x4a, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x6e, 0x61,
0x6d, 0x65, 0x4b, 0x4c, 0x4a, 0x49, 0x4e, 0x49, 0x4d, 0x4b, 0xcf, 0xc8, 0xcc, 0xca, 0x06, 0x00,
//[sig---------------], [crc32---------------], [csize---------------], [size----------------]
0x50, 0x4b, 0x07, 0x08, 0x3d, 0x4e, 0x0e, 0xf9, 0x0e, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x50, 0x4b, 0x01, 0x02, 0x14, 0x00, 0x14, 0x00, 0x08, 0x08, 0x08, 0x00, 0x30, 0x59, 0xce, 0x4a,
0x3d, 0x4e, 0x0e, 0xf9, 0x0e, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6e, 0x61,
0x6d, 0x65, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x32, 0x00,
0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00};
// The offsets of the data descriptor in this file, so we can mess with
// them later in the test.
static constexpr uint32_t kDataDescriptorOffset = 48;
static constexpr uint32_t kCSizeOffset = kDataDescriptorOffset + 8;
static constexpr uint32_t kSizeOffset = kCSizeOffset + 4;
static void ExtractEntryToMemory(const std::vector<uint8_t>& zip_data,
std::vector<uint8_t>* entry_out, int32_t* error_code_out) {
TemporaryFile tmp_file;
ASSERT_NE(-1, tmp_file.fd);
ASSERT_TRUE(android::base::WriteFully(tmp_file.fd, &zip_data[0], zip_data.size()));
ZipArchiveHandle handle;
ASSERT_EQ(0, OpenArchiveFd(tmp_file.fd, "ExtractEntryToMemory", &handle));
// This function expects a variant of kDataDescriptorZipFile, for look for
// an entry whose name is "name" and whose size is 12 (contents =
// "abdcdefghijk").
ZipEntry entry;
ZipString name;
std::string name_str = "name";
SetZipString(&name, name_str);
ASSERT_EQ(0, FindEntry(handle, name, &entry));
ASSERT_EQ(static_cast<uint32_t>(12), entry.uncompressed_length);
entry_out->resize(12);
(*error_code_out) = ExtractToMemory(handle, &entry, &((*entry_out)[0]), 12);
CloseArchive(handle);
}
TEST(ziparchive, ValidDataDescriptors) {
std::vector<uint8_t> entry;
int32_t error_code = 0;
ExtractEntryToMemory(kDataDescriptorZipFile, &entry, &error_code);
ASSERT_EQ(0, error_code);
ASSERT_EQ(12u, entry.size());
ASSERT_EQ('a', entry[0]);
ASSERT_EQ('k', entry[11]);
}
TEST(ziparchive, InvalidDataDescriptors_csize) {
std::vector<uint8_t> invalid_csize = kDataDescriptorZipFile;
invalid_csize[kCSizeOffset] = 0xfe;
std::vector<uint8_t> entry;
int32_t error_code = 0;
ExtractEntryToMemory(invalid_csize, &entry, &error_code);
ASSERT_EQ(kInconsistentInformation, error_code);
}
TEST(ziparchive, InvalidDataDescriptors_size) {
std::vector<uint8_t> invalid_size = kDataDescriptorZipFile;
invalid_size[kSizeOffset] = 0xfe;
std::vector<uint8_t> entry;
int32_t error_code = 0;
ExtractEntryToMemory(invalid_size, &entry, &error_code);
ASSERT_EQ(kInconsistentInformation, error_code);
}
TEST(ziparchive, ErrorCodeString) {
ASSERT_STREQ("Success", ErrorCodeString(0));
// Out of bounds.
ASSERT_STREQ("Unknown return code", ErrorCodeString(1));
ASSERT_STREQ("Unknown return code", ErrorCodeString(-13));
ASSERT_STREQ("I/O error", ErrorCodeString(kIoError));
}
class VectorReader : public zip_archive::Reader {
public:
VectorReader(const std::vector<uint8_t>& input) : Reader(), input_(input) {}
bool ReadAtOffset(uint8_t* buf, size_t len, uint32_t offset) const {
if ((offset + len) < input_.size()) {
return false;
}
memcpy(buf, &input_[offset], len);
return true;
}
private:
const std::vector<uint8_t>& input_;
};
class VectorWriter : public zip_archive::Writer {
public:
VectorWriter() : Writer() {}
bool Append(uint8_t* buf, size_t size) {
output_.insert(output_.end(), buf, buf + size);
return true;
}
std::vector<uint8_t>& GetOutput() { return output_; }
private:
std::vector<uint8_t> output_;
};
class BadReader : public zip_archive::Reader {
public:
BadReader() : Reader() {}
bool ReadAtOffset(uint8_t*, size_t, uint32_t) const { return false; }
};
class BadWriter : public zip_archive::Writer {
public:
BadWriter() : Writer() {}
bool Append(uint8_t*, size_t) { return false; }
};
TEST(ziparchive, Inflate) {
const uint32_t compressed_length = kATxtContentsCompressed.size();
const uint32_t uncompressed_length = kATxtContents.size();
const VectorReader reader(kATxtContentsCompressed);
{
VectorWriter writer;
uint64_t crc_out = 0;
int32_t ret =
zip_archive::Inflate(reader, compressed_length, uncompressed_length, &writer, &crc_out);
ASSERT_EQ(0, ret);
ASSERT_EQ(kATxtContents, writer.GetOutput());
ASSERT_EQ(0x950821C5u, crc_out);
}
{
VectorWriter writer;
int32_t ret =
zip_archive::Inflate(reader, compressed_length, uncompressed_length, &writer, nullptr);
ASSERT_EQ(0, ret);
ASSERT_EQ(kATxtContents, writer.GetOutput());
}
{
BadWriter writer;
int32_t ret =
zip_archive::Inflate(reader, compressed_length, uncompressed_length, &writer, nullptr);
ASSERT_EQ(kIoError, ret);
}
{
BadReader reader;
VectorWriter writer;
int32_t ret =
zip_archive::Inflate(reader, compressed_length, uncompressed_length, &writer, nullptr);
ASSERT_EQ(kIoError, ret);
ASSERT_EQ(0u, writer.GetOutput().size());
}
}