android_system_core/libunwindstack/tests/MemoryRemoteTest.cpp

354 lines
10 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <signal.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <unistd.h>
#include <vector>
#include <android-base/test_utils.h>
#include <android-base/file.h>
#include <gtest/gtest.h>
#include "MemoryRemote.h"
#include "MemoryFake.h"
#include "TestUtils.h"
namespace unwindstack {
class MemoryRemoteTest : public ::testing::Test {
protected:
static bool Attach(pid_t pid) {
if (ptrace(PTRACE_ATTACH, pid, 0, 0) == -1) {
return false;
}
return TestQuiescePid(pid);
}
static bool Detach(pid_t pid) {
return ptrace(PTRACE_DETACH, pid, 0, 0) == 0;
}
static constexpr size_t NS_PER_SEC = 1000000000ULL;
};
TEST_F(MemoryRemoteTest, read) {
std::vector<uint8_t> src(1024);
memset(src.data(), 0x4c, 1024);
pid_t pid;
if ((pid = fork()) == 0) {
while (true);
exit(1);
}
ASSERT_LT(0, pid);
TestScopedPidReaper reap(pid);
ASSERT_TRUE(Attach(pid));
MemoryRemote remote(pid);
std::vector<uint8_t> dst(1024);
ASSERT_TRUE(remote.ReadFully(reinterpret_cast<uint64_t>(src.data()), dst.data(), 1024));
for (size_t i = 0; i < 1024; i++) {
ASSERT_EQ(0x4cU, dst[i]) << "Failed at byte " << i;
}
ASSERT_TRUE(Detach(pid));
}
TEST_F(MemoryRemoteTest, read_large) {
static constexpr size_t kTotalPages = 245;
std::vector<uint8_t> src(kTotalPages * getpagesize());
for (size_t i = 0; i < kTotalPages; i++) {
memset(&src[i * getpagesize()], i, getpagesize());
}
pid_t pid;
if ((pid = fork()) == 0) {
while (true)
;
exit(1);
}
ASSERT_LT(0, pid);
TestScopedPidReaper reap(pid);
ASSERT_TRUE(Attach(pid));
MemoryRemote remote(pid);
std::vector<uint8_t> dst(kTotalPages * getpagesize());
ASSERT_TRUE(remote.ReadFully(reinterpret_cast<uint64_t>(src.data()), dst.data(), src.size()));
for (size_t i = 0; i < kTotalPages * getpagesize(); i++) {
ASSERT_EQ(i / getpagesize(), dst[i]) << "Failed at byte " << i;
}
ASSERT_TRUE(Detach(pid));
}
TEST_F(MemoryRemoteTest, read_partial) {
char* mapping = static_cast<char*>(
mmap(nullptr, 4 * getpagesize(), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
ASSERT_NE(MAP_FAILED, mapping);
memset(mapping, 0x4c, 4 * getpagesize());
ASSERT_EQ(0, mprotect(mapping + getpagesize(), getpagesize(), PROT_NONE));
ASSERT_EQ(0, munmap(mapping + 3 * getpagesize(), getpagesize()));
pid_t pid;
if ((pid = fork()) == 0) {
while (true)
;
exit(1);
}
ASSERT_LT(0, pid);
TestScopedPidReaper reap(pid);
// Unmap from our process.
ASSERT_EQ(0, munmap(mapping, 3 * getpagesize()));
ASSERT_TRUE(Attach(pid));
MemoryRemote remote(pid);
std::vector<uint8_t> dst(4096);
size_t bytes =
remote.Read(reinterpret_cast<uint64_t>(mapping + getpagesize() - 1024), dst.data(), 4096);
// Some read methods can read PROT_NONE maps, allow that.
ASSERT_LE(1024U, bytes);
for (size_t i = 0; i < bytes; i++) {
ASSERT_EQ(0x4cU, dst[i]) << "Failed at byte " << i;
}
// Now verify that reading stops at the end of a map.
bytes =
remote.Read(reinterpret_cast<uint64_t>(mapping + 3 * getpagesize() - 1024), dst.data(), 4096);
ASSERT_EQ(1024U, bytes);
for (size_t i = 0; i < bytes; i++) {
ASSERT_EQ(0x4cU, dst[i]) << "Failed at byte " << i;
}
ASSERT_TRUE(Detach(pid));
}
TEST_F(MemoryRemoteTest, read_fail) {
int pagesize = getpagesize();
void* src = mmap(nullptr, pagesize * 2, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE,-1, 0);
memset(src, 0x4c, pagesize * 2);
ASSERT_NE(MAP_FAILED, src);
// Put a hole right after the first page.
ASSERT_EQ(0, munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(src) + pagesize),
pagesize));
pid_t pid;
if ((pid = fork()) == 0) {
while (true);
exit(1);
}
ASSERT_LT(0, pid);
TestScopedPidReaper reap(pid);
ASSERT_TRUE(Attach(pid));
MemoryRemote remote(pid);
std::vector<uint8_t> dst(pagesize);
ASSERT_TRUE(remote.ReadFully(reinterpret_cast<uint64_t>(src), dst.data(), pagesize));
for (size_t i = 0; i < 1024; i++) {
ASSERT_EQ(0x4cU, dst[i]) << "Failed at byte " << i;
}
ASSERT_FALSE(remote.ReadFully(reinterpret_cast<uint64_t>(src) + pagesize, dst.data(), 1));
ASSERT_TRUE(remote.ReadFully(reinterpret_cast<uint64_t>(src) + pagesize - 1, dst.data(), 1));
ASSERT_FALSE(remote.ReadFully(reinterpret_cast<uint64_t>(src) + pagesize - 4, dst.data(), 8));
// Check overflow condition is caught properly.
ASSERT_FALSE(remote.ReadFully(UINT64_MAX - 100, dst.data(), 200));
ASSERT_EQ(0, munmap(src, pagesize));
ASSERT_TRUE(Detach(pid));
}
TEST_F(MemoryRemoteTest, read_overflow) {
pid_t pid;
if ((pid = fork()) == 0) {
while (true)
;
exit(1);
}
ASSERT_LT(0, pid);
TestScopedPidReaper reap(pid);
ASSERT_TRUE(Attach(pid));
MemoryRemote remote(pid);
// Check overflow condition is caught properly.
std::vector<uint8_t> dst(200);
ASSERT_FALSE(remote.ReadFully(UINT64_MAX - 100, dst.data(), 200));
ASSERT_TRUE(Detach(pid));
}
TEST_F(MemoryRemoteTest, read_illegal) {
pid_t pid;
if ((pid = fork()) == 0) {
while (true);
exit(1);
}
ASSERT_LT(0, pid);
TestScopedPidReaper reap(pid);
ASSERT_TRUE(Attach(pid));
MemoryRemote remote(pid);
std::vector<uint8_t> dst(100);
ASSERT_FALSE(remote.ReadFully(0, dst.data(), 1));
ASSERT_FALSE(remote.ReadFully(0, dst.data(), 100));
ASSERT_TRUE(Detach(pid));
}
TEST_F(MemoryRemoteTest, read_mprotect_hole) {
size_t page_size = getpagesize();
void* mapping =
mmap(nullptr, 3 * getpagesize(), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
ASSERT_NE(MAP_FAILED, mapping);
memset(mapping, 0xFF, 3 * page_size);
ASSERT_EQ(0, mprotect(static_cast<char*>(mapping) + page_size, page_size, PROT_NONE));
pid_t pid;
if ((pid = fork()) == 0) {
while (true);
exit(1);
}
ASSERT_LT(0, pid);
TestScopedPidReaper reap(pid);
ASSERT_EQ(0, munmap(mapping, 3 * page_size));
ASSERT_TRUE(Attach(pid));
MemoryRemote remote(pid);
std::vector<uint8_t> dst(getpagesize() * 4, 0xCC);
size_t read_size = remote.Read(reinterpret_cast<uint64_t>(mapping), dst.data(), page_size * 3);
// Some read methods can read PROT_NONE maps, allow that.
ASSERT_LE(page_size, read_size);
for (size_t i = 0; i < read_size; ++i) {
ASSERT_EQ(0xFF, dst[i]);
}
for (size_t i = read_size; i < dst.size(); ++i) {
ASSERT_EQ(0xCC, dst[i]);
}
}
TEST_F(MemoryRemoteTest, read_munmap_hole) {
size_t page_size = getpagesize();
void* mapping =
mmap(nullptr, 3 * getpagesize(), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
ASSERT_NE(MAP_FAILED, mapping);
memset(mapping, 0xFF, 3 * page_size);
ASSERT_EQ(0, munmap(static_cast<char*>(mapping) + page_size, page_size));
pid_t pid;
if ((pid = fork()) == 0) {
while (true)
;
exit(1);
}
ASSERT_LT(0, pid);
TestScopedPidReaper reap(pid);
ASSERT_EQ(0, munmap(mapping, page_size));
ASSERT_EQ(0, munmap(static_cast<char*>(mapping) + 2 * page_size, page_size));
ASSERT_TRUE(Attach(pid));
MemoryRemote remote(pid);
std::vector<uint8_t> dst(getpagesize() * 4, 0xCC);
size_t read_size = remote.Read(reinterpret_cast<uint64_t>(mapping), dst.data(), page_size * 3);
ASSERT_EQ(page_size, read_size);
for (size_t i = 0; i < read_size; ++i) {
ASSERT_EQ(0xFF, dst[i]);
}
for (size_t i = read_size; i < dst.size(); ++i) {
ASSERT_EQ(0xCC, dst[i]);
}
}
// Verify that the memory remote object chooses a memory read function
// properly. Either process_vm_readv or ptrace.
TEST_F(MemoryRemoteTest, read_choose_correctly) {
size_t page_size = getpagesize();
void* mapping =
mmap(nullptr, 2 * getpagesize(), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
ASSERT_NE(MAP_FAILED, mapping);
memset(mapping, 0xFC, 2 * page_size);
ASSERT_EQ(0, mprotect(static_cast<char*>(mapping), page_size, PROT_NONE));
pid_t pid;
if ((pid = fork()) == 0) {
while (true)
;
exit(1);
}
ASSERT_LT(0, pid);
TestScopedPidReaper reap(pid);
ASSERT_EQ(0, munmap(mapping, 2 * page_size));
ASSERT_TRUE(Attach(pid));
// We know that process_vm_readv of a mprotect'd PROT_NONE region will fail.
// Read from the PROT_NONE area first to force the choice of ptrace.
MemoryRemote remote_ptrace(pid);
uint32_t value;
size_t bytes = remote_ptrace.Read(reinterpret_cast<uint64_t>(mapping), &value, sizeof(value));
ASSERT_EQ(sizeof(value), bytes);
ASSERT_EQ(0xfcfcfcfcU, value);
bytes = remote_ptrace.Read(reinterpret_cast<uint64_t>(mapping) + page_size, &value, sizeof(value));
ASSERT_EQ(sizeof(value), bytes);
ASSERT_EQ(0xfcfcfcfcU, value);
bytes = remote_ptrace.Read(reinterpret_cast<uint64_t>(mapping), &value, sizeof(value));
ASSERT_EQ(sizeof(value), bytes);
ASSERT_EQ(0xfcfcfcfcU, value);
// Now verify that choosing process_vm_readv results in failing reads of
// the PROT_NONE part of the map. Read from a valid map first which
// should prefer process_vm_readv, and keep that as the read function.
MemoryRemote remote_readv(pid);
bytes = remote_readv.Read(reinterpret_cast<uint64_t>(mapping) + page_size, &value, sizeof(value));
ASSERT_EQ(sizeof(value), bytes);
ASSERT_EQ(0xfcfcfcfcU, value);
bytes = remote_readv.Read(reinterpret_cast<uint64_t>(mapping), &value, sizeof(value));
ASSERT_EQ(0U, bytes);
bytes = remote_readv.Read(reinterpret_cast<uint64_t>(mapping) + page_size, &value, sizeof(value));
ASSERT_EQ(sizeof(value), bytes);
ASSERT_EQ(0xfcfcfcfcU, value);
}
} // namespace unwindstack