android_system_core/fastboot/device/commands.cpp

858 lines
32 KiB
C++

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "commands.h"
#include <inttypes.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unordered_set>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <android/hardware/boot/1.1/IBootControl.h>
#include <cutils/android_reboot.h>
#include <ext4_utils/wipe.h>
#include <fs_mgr.h>
#include <fs_mgr/roots.h>
#include <libgsi/libgsi.h>
#include <liblp/builder.h>
#include <liblp/liblp.h>
#include <libsnapshot/snapshot.h>
#include <storage_literals/storage_literals.h>
#include <uuid/uuid.h>
#include "constants.h"
#include "fastboot_device.h"
#include "flashing.h"
#include "utility.h"
#ifdef FB_ENABLE_FETCH
static constexpr bool kEnableFetch = true;
#else
static constexpr bool kEnableFetch = false;
#endif
using android::fs_mgr::MetadataBuilder;
using ::android::hardware::hidl_string;
using ::android::hardware::boot::V1_0::BoolResult;
using ::android::hardware::boot::V1_0::CommandResult;
using ::android::hardware::boot::V1_0::Slot;
using ::android::hardware::boot::V1_1::MergeStatus;
using ::android::hardware::fastboot::V1_0::Result;
using ::android::hardware::fastboot::V1_0::Status;
using android::snapshot::SnapshotManager;
using IBootControl1_1 = ::android::hardware::boot::V1_1::IBootControl;
using namespace android::storage_literals;
struct VariableHandlers {
// Callback to retrieve the value of a single variable.
std::function<bool(FastbootDevice*, const std::vector<std::string>&, std::string*)> get;
// Callback to retrieve all possible argument combinations, for getvar all.
std::function<std::vector<std::vector<std::string>>(FastbootDevice*)> get_all_args;
};
static bool IsSnapshotUpdateInProgress(FastbootDevice* device) {
auto hal = device->boot1_1();
if (!hal) {
return false;
}
auto merge_status = hal->getSnapshotMergeStatus();
return merge_status == MergeStatus::SNAPSHOTTED || merge_status == MergeStatus::MERGING;
}
static bool IsProtectedPartitionDuringMerge(FastbootDevice* device, const std::string& name) {
static const std::unordered_set<std::string> ProtectedPartitionsDuringMerge = {
"userdata", "metadata", "misc"};
if (ProtectedPartitionsDuringMerge.count(name) == 0) {
return false;
}
return IsSnapshotUpdateInProgress(device);
}
static void GetAllVars(FastbootDevice* device, const std::string& name,
const VariableHandlers& handlers) {
if (!handlers.get_all_args) {
std::string message;
if (!handlers.get(device, std::vector<std::string>(), &message)) {
return;
}
device->WriteInfo(android::base::StringPrintf("%s:%s", name.c_str(), message.c_str()));
return;
}
auto all_args = handlers.get_all_args(device);
for (const auto& args : all_args) {
std::string message;
if (!handlers.get(device, args, &message)) {
continue;
}
std::string arg_string = android::base::Join(args, ":");
device->WriteInfo(android::base::StringPrintf("%s:%s:%s", name.c_str(), arg_string.c_str(),
message.c_str()));
}
}
bool GetVarHandler(FastbootDevice* device, const std::vector<std::string>& args) {
const std::unordered_map<std::string, VariableHandlers> kVariableMap = {
{FB_VAR_VERSION, {GetVersion, nullptr}},
{FB_VAR_VERSION_BOOTLOADER, {GetBootloaderVersion, nullptr}},
{FB_VAR_VERSION_BASEBAND, {GetBasebandVersion, nullptr}},
{FB_VAR_VERSION_OS, {GetOsVersion, nullptr}},
{FB_VAR_VERSION_VNDK, {GetVndkVersion, nullptr}},
{FB_VAR_PRODUCT, {GetProduct, nullptr}},
{FB_VAR_SERIALNO, {GetSerial, nullptr}},
{FB_VAR_VARIANT, {GetVariant, nullptr}},
{FB_VAR_SECURE, {GetSecure, nullptr}},
{FB_VAR_UNLOCKED, {GetUnlocked, nullptr}},
{FB_VAR_MAX_DOWNLOAD_SIZE, {GetMaxDownloadSize, nullptr}},
{FB_VAR_CURRENT_SLOT, {::GetCurrentSlot, nullptr}},
{FB_VAR_SLOT_COUNT, {GetSlotCount, nullptr}},
{FB_VAR_HAS_SLOT, {GetHasSlot, GetAllPartitionArgsNoSlot}},
{FB_VAR_SLOT_SUCCESSFUL, {GetSlotSuccessful, nullptr}},
{FB_VAR_SLOT_UNBOOTABLE, {GetSlotUnbootable, nullptr}},
{FB_VAR_PARTITION_SIZE, {GetPartitionSize, GetAllPartitionArgsWithSlot}},
{FB_VAR_PARTITION_TYPE, {GetPartitionType, GetAllPartitionArgsWithSlot}},
{FB_VAR_IS_LOGICAL, {GetPartitionIsLogical, GetAllPartitionArgsWithSlot}},
{FB_VAR_IS_USERSPACE, {GetIsUserspace, nullptr}},
{FB_VAR_OFF_MODE_CHARGE_STATE, {GetOffModeChargeState, nullptr}},
{FB_VAR_BATTERY_VOLTAGE, {GetBatteryVoltage, nullptr}},
{FB_VAR_BATTERY_SOC_OK, {GetBatterySoCOk, nullptr}},
{FB_VAR_HW_REVISION, {GetHardwareRevision, nullptr}},
{FB_VAR_SUPER_PARTITION_NAME, {GetSuperPartitionName, nullptr}},
{FB_VAR_SNAPSHOT_UPDATE_STATUS, {GetSnapshotUpdateStatus, nullptr}},
{FB_VAR_CPU_ABI, {GetCpuAbi, nullptr}},
{FB_VAR_SYSTEM_FINGERPRINT, {GetSystemFingerprint, nullptr}},
{FB_VAR_VENDOR_FINGERPRINT, {GetVendorFingerprint, nullptr}},
{FB_VAR_DYNAMIC_PARTITION, {GetDynamicPartition, nullptr}},
{FB_VAR_FIRST_API_LEVEL, {GetFirstApiLevel, nullptr}},
{FB_VAR_SECURITY_PATCH_LEVEL, {GetSecurityPatchLevel, nullptr}},
{FB_VAR_TREBLE_ENABLED, {GetTrebleEnabled, nullptr}},
{FB_VAR_MAX_FETCH_SIZE, {GetMaxFetchSize, nullptr}},
};
if (args.size() < 2) {
return device->WriteFail("Missing argument");
}
// Special case: return all variables that we can.
if (args[1] == "all") {
for (const auto& [name, handlers] : kVariableMap) {
GetAllVars(device, name, handlers);
}
return device->WriteOkay("");
}
// args[0] is command name, args[1] is variable.
auto found_variable = kVariableMap.find(args[1]);
if (found_variable == kVariableMap.end()) {
return device->WriteFail("Unknown variable");
}
std::string message;
std::vector<std::string> getvar_args(args.begin() + 2, args.end());
if (!found_variable->second.get(device, getvar_args, &message)) {
return device->WriteFail(message);
}
return device->WriteOkay(message);
}
bool OemPostWipeData(FastbootDevice* device) {
auto fastboot_hal = device->fastboot_hal();
if (!fastboot_hal) {
return false;
}
Result ret;
auto ret_val = fastboot_hal->doOemSpecificErase([&](Result result) { ret = result; });
if (!ret_val.isOk()) {
return false;
}
if (ret.status == Status::NOT_SUPPORTED) {
return false;
} else if (ret.status != Status::SUCCESS) {
device->WriteStatus(FastbootResult::FAIL, ret.message);
} else {
device->WriteStatus(FastbootResult::OKAY, "Erasing succeeded");
}
return true;
}
bool EraseHandler(FastbootDevice* device, const std::vector<std::string>& args) {
if (args.size() < 2) {
return device->WriteStatus(FastbootResult::FAIL, "Invalid arguments");
}
if (GetDeviceLockStatus()) {
return device->WriteStatus(FastbootResult::FAIL, "Erase is not allowed on locked devices");
}
const auto& partition_name = args[1];
if (IsProtectedPartitionDuringMerge(device, partition_name)) {
auto message = "Cannot erase " + partition_name + " while a snapshot update is in progress";
return device->WriteFail(message);
}
PartitionHandle handle;
if (!OpenPartition(device, partition_name, &handle)) {
return device->WriteStatus(FastbootResult::FAIL, "Partition doesn't exist");
}
if (wipe_block_device(handle.fd(), get_block_device_size(handle.fd())) == 0) {
//Perform oem PostWipeData if Android userdata partition has been erased
bool support_oem_postwipedata = false;
if (partition_name == "userdata") {
support_oem_postwipedata = OemPostWipeData(device);
}
if (!support_oem_postwipedata) {
return device->WriteStatus(FastbootResult::OKAY, "Erasing succeeded");
} else {
//Write device status in OemPostWipeData(), so just return true
return true;
}
}
return device->WriteStatus(FastbootResult::FAIL, "Erasing failed");
}
bool OemCmdHandler(FastbootDevice* device, const std::vector<std::string>& args) {
auto fastboot_hal = device->fastboot_hal();
if (!fastboot_hal) {
return device->WriteStatus(FastbootResult::FAIL, "Unable to open fastboot HAL");
}
//Disable "oem postwipedata userdata" to prevent user wipe oem userdata only.
if (args[0] == "oem postwipedata userdata") {
return device->WriteStatus(FastbootResult::FAIL, "Unable to do oem postwipedata userdata");
}
Result ret;
auto ret_val = fastboot_hal->doOemCommand(args[0], [&](Result result) { ret = result; });
if (!ret_val.isOk()) {
return device->WriteStatus(FastbootResult::FAIL, "Unable to do OEM command");
}
if (ret.status != Status::SUCCESS) {
return device->WriteStatus(FastbootResult::FAIL, ret.message);
}
return device->WriteStatus(FastbootResult::OKAY, ret.message);
}
bool DownloadHandler(FastbootDevice* device, const std::vector<std::string>& args) {
if (args.size() < 2) {
return device->WriteStatus(FastbootResult::FAIL, "size argument unspecified");
}
if (GetDeviceLockStatus()) {
return device->WriteStatus(FastbootResult::FAIL,
"Download is not allowed on locked devices");
}
// arg[0] is the command name, arg[1] contains size of data to be downloaded
unsigned int size;
if (!android::base::ParseUint("0x" + args[1], &size, kMaxDownloadSizeDefault)) {
return device->WriteStatus(FastbootResult::FAIL, "Invalid size");
}
device->download_data().resize(size);
if (!device->WriteStatus(FastbootResult::DATA, android::base::StringPrintf("%08x", size))) {
return false;
}
if (device->HandleData(true, &device->download_data())) {
return device->WriteStatus(FastbootResult::OKAY, "");
}
PLOG(ERROR) << "Couldn't download data";
return device->WriteStatus(FastbootResult::FAIL, "Couldn't download data");
}
bool SetActiveHandler(FastbootDevice* device, const std::vector<std::string>& args) {
if (args.size() < 2) {
return device->WriteStatus(FastbootResult::FAIL, "Missing slot argument");
}
if (GetDeviceLockStatus()) {
return device->WriteStatus(FastbootResult::FAIL,
"set_active command is not allowed on locked devices");
}
Slot slot;
if (!GetSlotNumber(args[1], &slot)) {
// Slot suffix needs to be between 'a' and 'z'.
return device->WriteStatus(FastbootResult::FAIL, "Bad slot suffix");
}
// Non-A/B devices will not have a boot control HAL.
auto boot_control_hal = device->boot_control_hal();
if (!boot_control_hal) {
return device->WriteStatus(FastbootResult::FAIL,
"Cannot set slot: boot control HAL absent");
}
if (slot >= boot_control_hal->getNumberSlots()) {
return device->WriteStatus(FastbootResult::FAIL, "Slot out of range");
}
// If the slot is not changing, do nothing.
if (args[1] == device->GetCurrentSlot()) {
return device->WriteOkay("");
}
// Check how to handle the current snapshot state.
if (auto hal11 = device->boot1_1()) {
auto merge_status = hal11->getSnapshotMergeStatus();
if (merge_status == MergeStatus::MERGING) {
return device->WriteFail("Cannot change slots while a snapshot update is in progress");
}
// Note: we allow the slot change if the state is SNAPSHOTTED. First-
// stage init does not have access to the HAL, and uses the slot number
// and /metadata OTA state to determine whether a slot change occurred.
// Booting into the old slot would erase the OTA, and switching A->B->A
// would simply resume it if no boots occur in between. Re-flashing
// partitions implicitly cancels the OTA, so leaving the state as-is is
// safe.
if (merge_status == MergeStatus::SNAPSHOTTED) {
device->WriteInfo(
"Changing the active slot with a snapshot applied may cancel the"
" update.");
}
}
CommandResult ret;
auto cb = [&ret](CommandResult result) { ret = result; };
auto result = boot_control_hal->setActiveBootSlot(slot, cb);
if (result.isOk() && ret.success) {
// Save as slot suffix to match the suffix format as returned from
// the boot control HAL.
auto current_slot = "_" + args[1];
device->set_active_slot(current_slot);
return device->WriteStatus(FastbootResult::OKAY, "");
}
return device->WriteStatus(FastbootResult::FAIL, "Unable to set slot");
}
bool ShutDownHandler(FastbootDevice* device, const std::vector<std::string>& /* args */) {
auto result = device->WriteStatus(FastbootResult::OKAY, "Shutting down");
android::base::SetProperty(ANDROID_RB_PROPERTY, "shutdown,fastboot");
device->CloseDevice();
TEMP_FAILURE_RETRY(pause());
return result;
}
bool RebootHandler(FastbootDevice* device, const std::vector<std::string>& /* args */) {
auto result = device->WriteStatus(FastbootResult::OKAY, "Rebooting");
android::base::SetProperty(ANDROID_RB_PROPERTY, "reboot,from_fastboot");
device->CloseDevice();
TEMP_FAILURE_RETRY(pause());
return result;
}
bool RebootBootloaderHandler(FastbootDevice* device, const std::vector<std::string>& /* args */) {
auto result = device->WriteStatus(FastbootResult::OKAY, "Rebooting bootloader");
android::base::SetProperty(ANDROID_RB_PROPERTY, "reboot,bootloader");
device->CloseDevice();
TEMP_FAILURE_RETRY(pause());
return result;
}
bool RebootFastbootHandler(FastbootDevice* device, const std::vector<std::string>& /* args */) {
auto result = device->WriteStatus(FastbootResult::OKAY, "Rebooting fastboot");
android::base::SetProperty(ANDROID_RB_PROPERTY, "reboot,fastboot");
device->CloseDevice();
TEMP_FAILURE_RETRY(pause());
return result;
}
static bool EnterRecovery() {
const char msg_switch_to_recovery = 'r';
android::base::unique_fd sock(socket(AF_UNIX, SOCK_STREAM, 0));
if (sock < 0) {
PLOG(ERROR) << "Couldn't create sock";
return false;
}
struct sockaddr_un addr = {.sun_family = AF_UNIX};
strncpy(addr.sun_path, "/dev/socket/recovery", sizeof(addr.sun_path) - 1);
if (connect(sock.get(), (struct sockaddr*)&addr, sizeof(addr)) < 0) {
PLOG(ERROR) << "Couldn't connect to recovery";
return false;
}
// Switch to recovery will not update the boot reason since it does not
// require a reboot.
auto ret = write(sock.get(), &msg_switch_to_recovery, sizeof(msg_switch_to_recovery));
if (ret != sizeof(msg_switch_to_recovery)) {
PLOG(ERROR) << "Couldn't write message to switch to recovery";
return false;
}
return true;
}
bool RebootRecoveryHandler(FastbootDevice* device, const std::vector<std::string>& /* args */) {
auto status = true;
if (EnterRecovery()) {
status = device->WriteStatus(FastbootResult::OKAY, "Rebooting to recovery");
} else {
status = device->WriteStatus(FastbootResult::FAIL, "Unable to reboot to recovery");
}
device->CloseDevice();
TEMP_FAILURE_RETRY(pause());
return status;
}
// Helper class for opening a handle to a MetadataBuilder and writing the new
// partition table to the same place it was read.
class PartitionBuilder {
public:
explicit PartitionBuilder(FastbootDevice* device, const std::string& partition_name);
bool Write();
bool Valid() const { return !!builder_; }
MetadataBuilder* operator->() const { return builder_.get(); }
private:
FastbootDevice* device_;
std::string super_device_;
uint32_t slot_number_;
std::unique_ptr<MetadataBuilder> builder_;
};
PartitionBuilder::PartitionBuilder(FastbootDevice* device, const std::string& partition_name)
: device_(device) {
std::string slot_suffix = GetSuperSlotSuffix(device, partition_name);
slot_number_ = android::fs_mgr::SlotNumberForSlotSuffix(slot_suffix);
auto super_device = FindPhysicalPartition(fs_mgr_get_super_partition_name(slot_number_));
if (!super_device) {
return;
}
super_device_ = *super_device;
builder_ = MetadataBuilder::New(super_device_, slot_number_);
}
bool PartitionBuilder::Write() {
auto metadata = builder_->Export();
if (!metadata) {
return false;
}
return UpdateAllPartitionMetadata(device_, super_device_, *metadata.get());
}
bool CreatePartitionHandler(FastbootDevice* device, const std::vector<std::string>& args) {
if (args.size() < 3) {
return device->WriteFail("Invalid partition name and size");
}
if (GetDeviceLockStatus()) {
return device->WriteStatus(FastbootResult::FAIL, "Command not available on locked devices");
}
uint64_t partition_size;
std::string partition_name = args[1];
if (!android::base::ParseUint(args[2].c_str(), &partition_size)) {
return device->WriteFail("Invalid partition size");
}
PartitionBuilder builder(device, partition_name);
if (!builder.Valid()) {
return device->WriteFail("Could not open super partition");
}
// TODO(112433293) Disallow if the name is in the physical table as well.
if (builder->FindPartition(partition_name)) {
return device->WriteFail("Partition already exists");
}
auto partition = builder->AddPartition(partition_name, 0);
if (!partition) {
return device->WriteFail("Failed to add partition");
}
if (!builder->ResizePartition(partition, partition_size)) {
builder->RemovePartition(partition_name);
return device->WriteFail("Not enough space for partition");
}
if (!builder.Write()) {
return device->WriteFail("Failed to write partition table");
}
return device->WriteOkay("Partition created");
}
bool DeletePartitionHandler(FastbootDevice* device, const std::vector<std::string>& args) {
if (args.size() < 2) {
return device->WriteFail("Invalid partition name and size");
}
if (GetDeviceLockStatus()) {
return device->WriteStatus(FastbootResult::FAIL, "Command not available on locked devices");
}
std::string partition_name = args[1];
PartitionBuilder builder(device, partition_name);
if (!builder.Valid()) {
return device->WriteFail("Could not open super partition");
}
builder->RemovePartition(partition_name);
if (!builder.Write()) {
return device->WriteFail("Failed to write partition table");
}
return device->WriteOkay("Partition deleted");
}
bool ResizePartitionHandler(FastbootDevice* device, const std::vector<std::string>& args) {
if (args.size() < 3) {
return device->WriteFail("Invalid partition name and size");
}
if (GetDeviceLockStatus()) {
return device->WriteStatus(FastbootResult::FAIL, "Command not available on locked devices");
}
uint64_t partition_size;
std::string partition_name = args[1];
if (!android::base::ParseUint(args[2].c_str(), &partition_size)) {
return device->WriteFail("Invalid partition size");
}
PartitionBuilder builder(device, partition_name);
if (!builder.Valid()) {
return device->WriteFail("Could not open super partition");
}
auto partition = builder->FindPartition(partition_name);
if (!partition) {
return device->WriteFail("Partition does not exist");
}
// Remove the updated flag to cancel any snapshots.
uint32_t attrs = partition->attributes();
partition->set_attributes(attrs & ~LP_PARTITION_ATTR_UPDATED);
if (!builder->ResizePartition(partition, partition_size)) {
return device->WriteFail("Not enough space to resize partition");
}
if (!builder.Write()) {
return device->WriteFail("Failed to write partition table");
}
return device->WriteOkay("Partition resized");
}
void CancelPartitionSnapshot(FastbootDevice* device, const std::string& partition_name) {
PartitionBuilder builder(device, partition_name);
if (!builder.Valid()) return;
auto partition = builder->FindPartition(partition_name);
if (!partition) return;
// Remove the updated flag to cancel any snapshots.
uint32_t attrs = partition->attributes();
partition->set_attributes(attrs & ~LP_PARTITION_ATTR_UPDATED);
builder.Write();
}
bool FlashHandler(FastbootDevice* device, const std::vector<std::string>& args) {
if (args.size() < 2) {
return device->WriteStatus(FastbootResult::FAIL, "Invalid arguments");
}
if (GetDeviceLockStatus()) {
return device->WriteStatus(FastbootResult::FAIL,
"Flashing is not allowed on locked devices");
}
const auto& partition_name = args[1];
if (IsProtectedPartitionDuringMerge(device, partition_name)) {
auto message = "Cannot flash " + partition_name + " while a snapshot update is in progress";
return device->WriteFail(message);
}
if (LogicalPartitionExists(device, partition_name)) {
CancelPartitionSnapshot(device, partition_name);
}
int ret = Flash(device, partition_name);
if (ret < 0) {
return device->WriteStatus(FastbootResult::FAIL, strerror(-ret));
}
return device->WriteStatus(FastbootResult::OKAY, "Flashing succeeded");
}
bool UpdateSuperHandler(FastbootDevice* device, const std::vector<std::string>& args) {
if (args.size() < 2) {
return device->WriteFail("Invalid arguments");
}
if (GetDeviceLockStatus()) {
return device->WriteStatus(FastbootResult::FAIL, "Command not available on locked devices");
}
bool wipe = (args.size() >= 3 && args[2] == "wipe");
return UpdateSuper(device, args[1], wipe);
}
bool GsiHandler(FastbootDevice* device, const std::vector<std::string>& args) {
if (args.size() != 2) {
return device->WriteFail("Invalid arguments");
}
AutoMountMetadata mount_metadata;
if (!mount_metadata) {
return device->WriteFail("Could not find GSI install");
}
if (!android::gsi::IsGsiInstalled()) {
return device->WriteStatus(FastbootResult::FAIL, "No GSI is installed");
}
if (args[1] == "wipe") {
if (!android::gsi::UninstallGsi()) {
return device->WriteStatus(FastbootResult::FAIL, strerror(errno));
}
} else if (args[1] == "disable") {
if (!android::gsi::DisableGsi()) {
return device->WriteStatus(FastbootResult::FAIL, strerror(errno));
}
}
return device->WriteStatus(FastbootResult::OKAY, "Success");
}
bool SnapshotUpdateHandler(FastbootDevice* device, const std::vector<std::string>& args) {
// Note that we use the HAL rather than mounting /metadata, since we want
// our results to match the bootloader.
auto hal = device->boot1_1();
if (!hal) return device->WriteFail("Not supported");
// If no arguments, return the same thing as a getvar. Note that we get the
// HAL first so we can return "not supported" before we return the less
// specific error message below.
if (args.size() < 2 || args[1].empty()) {
std::string message;
if (!GetSnapshotUpdateStatus(device, {}, &message)) {
return device->WriteFail("Could not determine update status");
}
device->WriteInfo(message);
return device->WriteOkay("");
}
MergeStatus status = hal->getSnapshotMergeStatus();
if (args.size() != 2) {
return device->WriteFail("Invalid arguments");
}
if (args[1] == "cancel") {
switch (status) {
case MergeStatus::SNAPSHOTTED:
case MergeStatus::MERGING:
hal->setSnapshotMergeStatus(MergeStatus::CANCELLED);
break;
default:
break;
}
} else if (args[1] == "merge") {
if (status != MergeStatus::MERGING) {
return device->WriteFail("No snapshot merge is in progress");
}
auto sm = SnapshotManager::New();
if (!sm) {
return device->WriteFail("Unable to create SnapshotManager");
}
if (!sm->FinishMergeInRecovery()) {
return device->WriteFail("Unable to finish snapshot merge");
}
} else {
return device->WriteFail("Invalid parameter to snapshot-update");
}
return device->WriteStatus(FastbootResult::OKAY, "Success");
}
namespace {
// Helper of FetchHandler.
class PartitionFetcher {
public:
static bool Fetch(FastbootDevice* device, const std::vector<std::string>& args) {
if constexpr (!kEnableFetch) {
return device->WriteFail("Fetch is not allowed on user build");
}
if (GetDeviceLockStatus()) {
return device->WriteFail("Fetch is not allowed on locked devices");
}
PartitionFetcher fetcher(device, args);
if (fetcher.Open()) {
fetcher.Fetch();
}
CHECK(fetcher.ret_.has_value());
return *fetcher.ret_;
}
private:
PartitionFetcher(FastbootDevice* device, const std::vector<std::string>& args)
: device_(device), args_(&args) {}
// Return whether the partition is successfully opened.
// If successfully opened, ret_ is left untouched. Otherwise, ret_ is set to the value
// that FetchHandler should return.
bool Open() {
if (args_->size() < 2) {
ret_ = device_->WriteFail("Missing partition arg");
return false;
}
partition_name_ = args_->at(1);
if (std::find(kAllowedPartitions.begin(), kAllowedPartitions.end(), partition_name_) ==
kAllowedPartitions.end()) {
ret_ = device_->WriteFail("Fetch is only allowed on [" +
android::base::Join(kAllowedPartitions, ", ") + "]");
return false;
}
if (!OpenPartition(device_, partition_name_, &handle_, O_RDONLY)) {
ret_ = device_->WriteFail(
android::base::StringPrintf("Cannot open %s", partition_name_.c_str()));
return false;
}
partition_size_ = get_block_device_size(handle_.fd());
if (partition_size_ == 0) {
ret_ = device_->WriteOkay(android::base::StringPrintf("Partition %s has size 0",
partition_name_.c_str()));
return false;
}
start_offset_ = 0;
if (args_->size() >= 3) {
if (!android::base::ParseUint(args_->at(2), &start_offset_)) {
ret_ = device_->WriteFail("Invalid offset, must be integer");
return false;
}
if (start_offset_ > std::numeric_limits<off64_t>::max()) {
ret_ = device_->WriteFail(
android::base::StringPrintf("Offset overflows: %" PRIx64, start_offset_));
return false;
}
}
if (start_offset_ > partition_size_) {
ret_ = device_->WriteFail(android::base::StringPrintf(
"Invalid offset 0x%" PRIx64 ", partition %s has size 0x%" PRIx64, start_offset_,
partition_name_.c_str(), partition_size_));
return false;
}
uint64_t maximum_total_size_to_read = partition_size_ - start_offset_;
total_size_to_read_ = maximum_total_size_to_read;
if (args_->size() >= 4) {
if (!android::base::ParseUint(args_->at(3), &total_size_to_read_)) {
ret_ = device_->WriteStatus(FastbootResult::FAIL, "Invalid size, must be integer");
return false;
}
}
if (total_size_to_read_ == 0) {
ret_ = device_->WriteOkay("Read 0 bytes");
return false;
}
if (total_size_to_read_ > maximum_total_size_to_read) {
ret_ = device_->WriteFail(android::base::StringPrintf(
"Invalid size to read 0x%" PRIx64 ", partition %s has size 0x%" PRIx64
" and fetching from offset 0x%" PRIx64,
total_size_to_read_, partition_name_.c_str(), partition_size_, start_offset_));
return false;
}
if (total_size_to_read_ > kMaxFetchSizeDefault) {
ret_ = device_->WriteFail(android::base::StringPrintf(
"Cannot fetch 0x%" PRIx64
" bytes because it exceeds maximum transport size 0x%x",
partition_size_, kMaxDownloadSizeDefault));
return false;
}
return true;
}
// Assume Open() returns true.
// After execution, ret_ is set to the value that FetchHandler should return.
void Fetch() {
CHECK(start_offset_ <= std::numeric_limits<off64_t>::max());
if (lseek64(handle_.fd(), start_offset_, SEEK_SET) != static_cast<off64_t>(start_offset_)) {
ret_ = device_->WriteFail(android::base::StringPrintf(
"On partition %s, unable to lseek(0x%" PRIx64 ": %s", partition_name_.c_str(),
start_offset_, strerror(errno)));
return;
}
if (!device_->WriteStatus(FastbootResult::DATA,
android::base::StringPrintf(
"%08x", static_cast<uint32_t>(total_size_to_read_)))) {
ret_ = false;
return;
}
uint64_t end_offset = start_offset_ + total_size_to_read_;
std::vector<char> buf(1_MiB);
uint64_t current_offset = start_offset_;
while (current_offset < end_offset) {
// On any error, exit. We can't return a status message to the driver because
// we are in the middle of writing data, so just let the driver guess what's wrong
// by ending the data stream prematurely.
uint64_t remaining = end_offset - current_offset;
uint64_t chunk_size = std::min<uint64_t>(buf.size(), remaining);
if (!android::base::ReadFully(handle_.fd(), buf.data(), chunk_size)) {
PLOG(ERROR) << std::hex << "Unable to read 0x" << chunk_size << " bytes from "
<< partition_name_ << " @ offset 0x" << current_offset;
ret_ = false;
return;
}
if (!device_->HandleData(false /* is read */, buf.data(), chunk_size)) {
PLOG(ERROR) << std::hex << "Unable to send 0x" << chunk_size << " bytes of "
<< partition_name_ << " @ offset 0x" << current_offset;
ret_ = false;
return;
}
current_offset += chunk_size;
}
ret_ = device_->WriteOkay(android::base::StringPrintf(
"Fetched %s (offset=0x%" PRIx64 ", size=0x%" PRIx64, partition_name_.c_str(),
start_offset_, total_size_to_read_));
}
static constexpr std::array<const char*, 3> kAllowedPartitions{
"vendor_boot",
"vendor_boot_a",
"vendor_boot_b",
};
FastbootDevice* device_;
const std::vector<std::string>* args_ = nullptr;
std::string partition_name_;
PartitionHandle handle_;
uint64_t partition_size_ = 0;
uint64_t start_offset_ = 0;
uint64_t total_size_to_read_ = 0;
// What FetchHandler should return.
std::optional<bool> ret_ = std::nullopt;
};
} // namespace
bool FetchHandler(FastbootDevice* device, const std::vector<std::string>& args) {
return PartitionFetcher::Fetch(device, args);
}