android_system_core/libmeminfo/procmeminfo.cpp

550 lines
19 KiB
C++

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <linux/kernel-page-flags.h>
#include <stdio.h>
#include <unistd.h>
#include <atomic>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <procinfo/process_map.h>
#include "meminfo_private.h"
namespace android {
namespace meminfo {
static void add_mem_usage(MemUsage* to, const MemUsage& from) {
to->vss += from.vss;
to->rss += from.rss;
to->pss += from.pss;
to->uss += from.uss;
to->swap += from.swap;
to->private_clean += from.private_clean;
to->private_dirty += from.private_dirty;
to->shared_clean += from.shared_clean;
to->shared_dirty += from.shared_dirty;
}
// Returns true if the line was valid smaps stats line false otherwise.
static bool parse_smaps_field(const char* line, MemUsage* stats) {
char field[64];
int len;
if (sscanf(line, "%63s %n", field, &len) == 1 && *field && field[strlen(field) - 1] == ':') {
const char* c = line + len;
switch (field[0]) {
case 'P':
if (strncmp(field, "Pss:", 4) == 0) {
stats->pss = strtoull(c, nullptr, 10);
} else if (strncmp(field, "Private_Clean:", 14) == 0) {
uint64_t prcl = strtoull(c, nullptr, 10);
stats->private_clean = prcl;
stats->uss += prcl;
} else if (strncmp(field, "Private_Dirty:", 14) == 0) {
uint64_t prdi = strtoull(c, nullptr, 10);
stats->private_dirty = prdi;
stats->uss += prdi;
}
break;
case 'S':
if (strncmp(field, "Size:", 5) == 0) {
stats->vss = strtoull(c, nullptr, 10);
} else if (strncmp(field, "Shared_Clean:", 13) == 0) {
stats->shared_clean = strtoull(c, nullptr, 10);
} else if (strncmp(field, "Shared_Dirty:", 13) == 0) {
stats->shared_dirty = strtoull(c, nullptr, 10);
} else if (strncmp(field, "Swap:", 5) == 0) {
stats->swap = strtoull(c, nullptr, 10);
} else if (strncmp(field, "SwapPss:", 8) == 0) {
stats->swap_pss = strtoull(c, nullptr, 10);
}
break;
case 'R':
if (strncmp(field, "Rss:", 4) == 0) {
stats->rss = strtoull(c, nullptr, 10);
}
break;
}
return true;
}
return false;
}
bool ProcMemInfo::ResetWorkingSet(pid_t pid) {
std::string clear_refs_path = ::android::base::StringPrintf("/proc/%d/clear_refs", pid);
if (!::android::base::WriteStringToFile("1\n", clear_refs_path)) {
PLOG(ERROR) << "Failed to write to " << clear_refs_path;
return false;
}
return true;
}
ProcMemInfo::ProcMemInfo(pid_t pid, bool get_wss, uint64_t pgflags, uint64_t pgflags_mask)
: pid_(pid), get_wss_(get_wss), pgflags_(pgflags), pgflags_mask_(pgflags_mask) {}
const std::vector<Vma>& ProcMemInfo::Maps() {
if (maps_.empty() && !ReadMaps(get_wss_)) {
LOG(ERROR) << "Failed to read maps for Process " << pid_;
}
return maps_;
}
const std::vector<Vma>& ProcMemInfo::MapsWithPageIdle() {
if (maps_.empty() && !ReadMaps(get_wss_, true)) {
LOG(ERROR) << "Failed to read maps with page idle for Process " << pid_;
}
return maps_;
}
const std::vector<Vma>& ProcMemInfo::MapsWithoutUsageStats() {
if (maps_.empty() && !ReadMaps(get_wss_, false, false)) {
LOG(ERROR) << "Failed to read maps for Process " << pid_;
}
return maps_;
}
const std::vector<Vma>& ProcMemInfo::Smaps(const std::string& path) {
if (!maps_.empty()) {
return maps_;
}
auto collect_vmas = [&](const Vma& vma) { maps_.emplace_back(vma); };
if (path.empty() && !ForEachVma(collect_vmas)) {
LOG(ERROR) << "Failed to read smaps for Process " << pid_;
maps_.clear();
}
if (!path.empty() && !ForEachVmaFromFile(path, collect_vmas)) {
LOG(ERROR) << "Failed to read smaps from file " << path;
maps_.clear();
}
return maps_;
}
const MemUsage& ProcMemInfo::Usage() {
if (get_wss_) {
LOG(WARNING) << "Trying to read process memory usage for " << pid_
<< " using invalid object";
return usage_;
}
if (maps_.empty() && !ReadMaps(get_wss_)) {
LOG(ERROR) << "Failed to get memory usage for Process " << pid_;
}
return usage_;
}
const MemUsage& ProcMemInfo::Wss() {
if (!get_wss_) {
LOG(WARNING) << "Trying to read process working set for " << pid_
<< " using invalid object";
return usage_;
}
if (maps_.empty() && !ReadMaps(get_wss_)) {
LOG(ERROR) << "Failed to get working set for Process " << pid_;
}
return usage_;
}
bool ProcMemInfo::ForEachVma(const VmaCallback& callback) {
std::string path = ::android::base::StringPrintf("/proc/%d/smaps", pid_);
return ForEachVmaFromFile(path, callback);
}
bool ProcMemInfo::SmapsOrRollup(MemUsage* stats) const {
std::string path = ::android::base::StringPrintf(
"/proc/%d/%s", pid_, IsSmapsRollupSupported(pid_) ? "smaps_rollup" : "smaps");
return SmapsOrRollupFromFile(path, stats);
}
bool ProcMemInfo::SmapsOrRollupPss(uint64_t* pss) const {
std::string path = ::android::base::StringPrintf(
"/proc/%d/%s", pid_, IsSmapsRollupSupported(pid_) ? "smaps_rollup" : "smaps");
return SmapsOrRollupPssFromFile(path, pss);
}
const std::vector<uint16_t>& ProcMemInfo::SwapOffsets() {
if (get_wss_) {
LOG(WARNING) << "Trying to read process swap offsets for " << pid_
<< " using invalid object";
return swap_offsets_;
}
if (maps_.empty() && !ReadMaps(get_wss_)) {
LOG(ERROR) << "Failed to get swap offsets for Process " << pid_;
}
return swap_offsets_;
}
bool ProcMemInfo::PageMap(const Vma& vma, std::vector<uint64_t>* pagemap) {
pagemap->clear();
std::string pagemap_file = ::android::base::StringPrintf("/proc/%d/pagemap", pid_);
::android::base::unique_fd pagemap_fd(
TEMP_FAILURE_RETRY(open(pagemap_file.c_str(), O_RDONLY | O_CLOEXEC)));
if (pagemap_fd == -1) {
PLOG(ERROR) << "Failed to open " << pagemap_file;
return false;
}
uint64_t nr_pages = (vma.end - vma.start) / getpagesize();
pagemap->resize(nr_pages);
size_t bytes_to_read = sizeof(uint64_t) * nr_pages;
off64_t start_addr = (vma.start / getpagesize()) * sizeof(uint64_t);
ssize_t bytes_read = pread64(pagemap_fd, pagemap->data(), bytes_to_read, start_addr);
if (bytes_read == -1) {
PLOG(ERROR) << "Failed to read page frames from page map for pid: " << pid_;
return false;
} else if (static_cast<size_t>(bytes_read) != bytes_to_read) {
LOG(ERROR) << "Failed to read page frames from page map for pid: " << pid_
<< ": read bytes " << bytes_read << " expected bytes " << bytes_to_read;
return false;
}
return true;
}
bool ProcMemInfo::ReadMaps(bool get_wss, bool use_pageidle, bool get_usage_stats) {
// Each object reads /proc/<pid>/maps only once. This is done to make sure programs that are
// running for the lifetime of the system can recycle the objects and don't have to
// unnecessarily retain and update this object in memory (which can get significantly large).
// E.g. A program that only needs to reset the working set will never all ->Maps(), ->Usage().
// E.g. A program that is monitoring smaps_rollup, may never call ->maps(), Usage(), so it
// doesn't make sense for us to parse and retain unnecessary memory accounting stats by default.
if (!maps_.empty()) return true;
// parse and read /proc/<pid>/maps
std::string maps_file = ::android::base::StringPrintf("/proc/%d/maps", pid_);
if (!::android::procinfo::ReadMapFile(
maps_file, [&](uint64_t start, uint64_t end, uint16_t flags, uint64_t pgoff, ino_t,
const char* name) {
maps_.emplace_back(Vma(start, end, pgoff, flags, name));
})) {
LOG(ERROR) << "Failed to parse " << maps_file;
maps_.clear();
return false;
}
if (!get_usage_stats) {
return true;
}
std::string pagemap_file = ::android::base::StringPrintf("/proc/%d/pagemap", pid_);
::android::base::unique_fd pagemap_fd(
TEMP_FAILURE_RETRY(open(pagemap_file.c_str(), O_RDONLY | O_CLOEXEC)));
if (pagemap_fd < 0) {
PLOG(ERROR) << "Failed to open " << pagemap_file;
return false;
}
for (auto& vma : maps_) {
if (!ReadVmaStats(pagemap_fd.get(), vma, get_wss, use_pageidle)) {
LOG(ERROR) << "Failed to read page map for vma " << vma.name << "[" << vma.start << "-"
<< vma.end << "]";
maps_.clear();
return false;
}
add_mem_usage(&usage_, vma.usage);
}
return true;
}
bool ProcMemInfo::ReadVmaStats(int pagemap_fd, Vma& vma, bool get_wss, bool use_pageidle) {
PageAcct& pinfo = PageAcct::Instance();
if (get_wss && use_pageidle && !pinfo.InitPageAcct(true)) {
LOG(ERROR) << "Failed to init idle page accounting";
return false;
}
uint64_t pagesz = getpagesize();
size_t num_pages = (vma.end - vma.start) / pagesz;
size_t first_page = vma.start / pagesz;
std::vector<uint64_t> page_cache;
size_t cur_page_cache_index = 0;
size_t num_in_page_cache = 0;
size_t num_leftover_pages = num_pages;
for (size_t cur_page = first_page; cur_page < first_page + num_pages; ++cur_page) {
if (!get_wss) {
vma.usage.vss += pagesz;
}
// Cache page map data.
if (cur_page_cache_index == num_in_page_cache) {
static constexpr size_t kMaxPages = 2048;
num_leftover_pages -= num_in_page_cache;
if (num_leftover_pages > kMaxPages) {
num_in_page_cache = kMaxPages;
} else {
num_in_page_cache = num_leftover_pages;
}
page_cache.resize(num_in_page_cache);
size_t total_bytes = page_cache.size() * sizeof(uint64_t);
ssize_t bytes = pread64(pagemap_fd, page_cache.data(), total_bytes,
cur_page * sizeof(uint64_t));
if (bytes != total_bytes) {
if (bytes == -1) {
PLOG(ERROR) << "Failed to read page data at offset 0x" << std::hex
<< cur_page * sizeof(uint64_t);
} else {
LOG(ERROR) << "Failed to read page data at offset 0x" << std::hex
<< cur_page * sizeof(uint64_t) << std::dec << " read bytes " << bytes
<< " expected bytes " << total_bytes;
}
return false;
}
cur_page_cache_index = 0;
}
uint64_t page_info = page_cache[cur_page_cache_index++];
if (!PAGE_PRESENT(page_info) && !PAGE_SWAPPED(page_info)) continue;
if (PAGE_SWAPPED(page_info)) {
vma.usage.swap += pagesz;
swap_offsets_.emplace_back(PAGE_SWAP_OFFSET(page_info));
continue;
}
uint64_t page_frame = PAGE_PFN(page_info);
uint64_t cur_page_flags;
if (!pinfo.PageFlags(page_frame, &cur_page_flags)) {
LOG(ERROR) << "Failed to get page flags for " << page_frame << " in process " << pid_;
swap_offsets_.clear();
return false;
}
// skip unwanted pages from the count
if ((cur_page_flags & pgflags_mask_) != pgflags_) continue;
uint64_t cur_page_counts;
if (!pinfo.PageMapCount(page_frame, &cur_page_counts)) {
LOG(ERROR) << "Failed to get page count for " << page_frame << " in process " << pid_;
swap_offsets_.clear();
return false;
}
// Page was unmapped between the presence check at the beginning of the loop and here.
if (cur_page_counts == 0) {
continue;
}
bool is_dirty = !!(cur_page_flags & (1 << KPF_DIRTY));
bool is_private = (cur_page_counts == 1);
// Working set
if (get_wss) {
bool is_referenced = use_pageidle ? (pinfo.IsPageIdle(page_frame) == 1)
: !!(cur_page_flags & (1 << KPF_REFERENCED));
if (!is_referenced) {
continue;
}
// This effectively makes vss = rss for the working set is requested.
// The libpagemap implementation returns vss > rss for
// working set, which doesn't make sense.
vma.usage.vss += pagesz;
}
vma.usage.rss += pagesz;
vma.usage.uss += is_private ? pagesz : 0;
vma.usage.pss += pagesz / cur_page_counts;
if (is_private) {
vma.usage.private_dirty += is_dirty ? pagesz : 0;
vma.usage.private_clean += is_dirty ? 0 : pagesz;
} else {
vma.usage.shared_dirty += is_dirty ? pagesz : 0;
vma.usage.shared_clean += is_dirty ? 0 : pagesz;
}
}
return true;
}
// Public APIs
bool ForEachVmaFromFile(const std::string& path, const VmaCallback& callback) {
auto fp = std::unique_ptr<FILE, decltype(&fclose)>{fopen(path.c_str(), "re"), fclose};
if (fp == nullptr) {
return false;
}
char* line = nullptr;
bool parsing_vma = false;
ssize_t line_len;
size_t line_alloc = 0;
Vma vma;
while ((line_len = getline(&line, &line_alloc, fp.get())) > 0) {
// Make sure the line buffer terminates like a C string for ReadMapFile
line[line_len] = '\0';
if (parsing_vma) {
if (parse_smaps_field(line, &vma.usage)) {
// This was a stats field
continue;
}
// Done collecting stats, make the call back
callback(vma);
parsing_vma = false;
}
vma.clear();
// If it has, we are looking for the vma stats
// 00400000-00409000 r-xp 00000000 fc:00 426998 /usr/lib/gvfs/gvfsd-http
if (!::android::procinfo::ReadMapFileContent(
line, [&](uint64_t start, uint64_t end, uint16_t flags, uint64_t pgoff, ino_t,
const char* name) {
vma.start = start;
vma.end = end;
vma.flags = flags;
vma.offset = pgoff;
vma.name = name;
})) {
LOG(ERROR) << "Failed to parse " << path;
return false;
}
parsing_vma = true;
}
// free getline() managed buffer
free(line);
if (parsing_vma) {
callback(vma);
}
return true;
}
enum smaps_rollup_support { UNTRIED, SUPPORTED, UNSUPPORTED };
static std::atomic<smaps_rollup_support> g_rollup_support = UNTRIED;
bool IsSmapsRollupSupported(pid_t pid) {
// Similar to OpenSmapsOrRollup checks from android_os_Debug.cpp, except
// the method only checks if rollup is supported and returns the status
// right away.
enum smaps_rollup_support rollup_support = g_rollup_support.load(std::memory_order_relaxed);
if (rollup_support != UNTRIED) {
return rollup_support == SUPPORTED;
}
std::string rollup_file = ::android::base::StringPrintf("/proc/%d/smaps_rollup", pid);
if (access(rollup_file.c_str(), F_OK | R_OK)) {
// No check for errno = ENOENT necessary here. The caller MUST fallback to
// using /proc/<pid>/smaps instead anyway.
g_rollup_support.store(UNSUPPORTED, std::memory_order_relaxed);
return false;
}
g_rollup_support.store(SUPPORTED, std::memory_order_relaxed);
LOG(INFO) << "Using smaps_rollup for pss collection";
return true;
}
bool SmapsOrRollupFromFile(const std::string& path, MemUsage* stats) {
auto fp = std::unique_ptr<FILE, decltype(&fclose)>{fopen(path.c_str(), "re"), fclose};
if (fp == nullptr) {
return false;
}
char* line = nullptr;
size_t line_alloc = 0;
stats->clear();
while (getline(&line, &line_alloc, fp.get()) > 0) {
switch (line[0]) {
case 'P':
if (strncmp(line, "Pss:", 4) == 0) {
char* c = line + 4;
stats->pss += strtoull(c, nullptr, 10);
} else if (strncmp(line, "Private_Clean:", 14) == 0) {
char* c = line + 14;
uint64_t prcl = strtoull(c, nullptr, 10);
stats->private_clean += prcl;
stats->uss += prcl;
} else if (strncmp(line, "Private_Dirty:", 14) == 0) {
char* c = line + 14;
uint64_t prdi = strtoull(c, nullptr, 10);
stats->private_dirty += prdi;
stats->uss += prdi;
}
break;
case 'R':
if (strncmp(line, "Rss:", 4) == 0) {
char* c = line + 4;
stats->rss += strtoull(c, nullptr, 10);
}
break;
case 'S':
if (strncmp(line, "SwapPss:", 8) == 0) {
char* c = line + 8;
stats->swap_pss += strtoull(c, nullptr, 10);
}
break;
}
}
// free getline() managed buffer
free(line);
return true;
}
bool SmapsOrRollupPssFromFile(const std::string& path, uint64_t* pss) {
auto fp = std::unique_ptr<FILE, decltype(&fclose)>{fopen(path.c_str(), "re"), fclose};
if (fp == nullptr) {
return false;
}
*pss = 0;
char* line = nullptr;
size_t line_alloc = 0;
while (getline(&line, &line_alloc, fp.get()) > 0) {
uint64_t v;
if (sscanf(line, "Pss: %" SCNu64 " kB", &v) == 1) {
*pss += v;
}
}
// free getline() managed buffer
free(line);
return true;
}
} // namespace meminfo
} // namespace android