1383 lines
48 KiB
C++
1383 lines
48 KiB
C++
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <libgen.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/swap.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include <memory>
|
|
|
|
#include <android-base/file.h>
|
|
#include <android-base/properties.h>
|
|
#include <android-base/stringprintf.h>
|
|
#include <android-base/unique_fd.h>
|
|
#include <cutils/android_reboot.h>
|
|
#include <cutils/partition_utils.h>
|
|
#include <cutils/properties.h>
|
|
#include <ext4_utils/ext4.h>
|
|
#include <ext4_utils/ext4_crypt_init_extensions.h>
|
|
#include <ext4_utils/ext4_sb.h>
|
|
#include <ext4_utils/ext4_utils.h>
|
|
#include <ext4_utils/wipe.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/loop.h>
|
|
#include <linux/magic.h>
|
|
#include <log/log_properties.h>
|
|
#include <logwrap/logwrap.h>
|
|
|
|
#include "fs_mgr.h"
|
|
#include "fs_mgr_avb.h"
|
|
#include "fs_mgr_priv.h"
|
|
#include "fs_mgr_priv_dm_ioctl.h"
|
|
|
|
#define KEY_LOC_PROP "ro.crypto.keyfile.userdata"
|
|
#define KEY_IN_FOOTER "footer"
|
|
|
|
#define E2FSCK_BIN "/system/bin/e2fsck"
|
|
#define F2FS_FSCK_BIN "/system/bin/fsck.f2fs"
|
|
#define MKSWAP_BIN "/system/bin/mkswap"
|
|
#define TUNE2FS_BIN "/system/bin/tune2fs"
|
|
|
|
#define FSCK_LOG_FILE "/dev/fscklogs/log"
|
|
|
|
#define ZRAM_CONF_DEV "/sys/block/zram0/disksize"
|
|
#define ZRAM_CONF_MCS "/sys/block/zram0/max_comp_streams"
|
|
|
|
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
|
|
|
|
// record fs stat
|
|
enum FsStatFlags {
|
|
FS_STAT_IS_EXT4 = 0x0001,
|
|
FS_STAT_NEW_IMAGE_VERSION = 0x0002,
|
|
FS_STAT_E2FSCK_F_ALWAYS = 0x0004,
|
|
FS_STAT_UNCLEAN_SHUTDOWN = 0x0008,
|
|
FS_STAT_QUOTA_ENABLED = 0x0010,
|
|
FS_STAT_TUNE2FS_FAILED = 0x0020,
|
|
FS_STAT_RO_MOUNT_FAILED = 0x0040,
|
|
FS_STAT_RO_UNMOUNT_FAILED = 0x0080,
|
|
FS_STAT_FULL_MOUNT_FAILED = 0x0100,
|
|
FS_STAT_E2FSCK_FAILED = 0x0200,
|
|
FS_STAT_E2FSCK_FS_FIXED = 0x0400,
|
|
FS_STAT_EXT4_INVALID_MAGIC = 0x0800,
|
|
};
|
|
|
|
/*
|
|
* gettime() - returns the time in seconds of the system's monotonic clock or
|
|
* zero on error.
|
|
*/
|
|
static time_t gettime(void)
|
|
{
|
|
struct timespec ts;
|
|
int ret;
|
|
|
|
ret = clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
if (ret < 0) {
|
|
PERROR << "clock_gettime(CLOCK_MONOTONIC) failed";
|
|
return 0;
|
|
}
|
|
|
|
return ts.tv_sec;
|
|
}
|
|
|
|
static int wait_for_file(const char *filename, int timeout)
|
|
{
|
|
struct stat info;
|
|
time_t timeout_time = gettime() + timeout;
|
|
int ret = -1;
|
|
|
|
while (gettime() < timeout_time && ((ret = stat(filename, &info)) < 0))
|
|
usleep(10000);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void log_fs_stat(const char* blk_device, int fs_stat)
|
|
{
|
|
if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4
|
|
std::string msg = android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device, fs_stat);
|
|
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC |
|
|
O_APPEND | O_CREAT, 0664)));
|
|
if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) {
|
|
LWARNING << __FUNCTION__ << "() cannot log " << msg;
|
|
}
|
|
}
|
|
|
|
static bool should_force_check(int fs_stat) {
|
|
return fs_stat & (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED |
|
|
FS_STAT_TUNE2FS_FAILED | FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED |
|
|
FS_STAT_FULL_MOUNT_FAILED | FS_STAT_E2FSCK_FAILED);
|
|
}
|
|
|
|
static void check_fs(const char *blk_device, char *fs_type, char *target, int *fs_stat)
|
|
{
|
|
int status;
|
|
int ret;
|
|
long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
|
|
char tmpmnt_opts[64] = "errors=remount-ro";
|
|
const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device};
|
|
const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device};
|
|
|
|
/* Check for the types of filesystems we know how to check */
|
|
if (!strcmp(fs_type, "ext2") || !strcmp(fs_type, "ext3") || !strcmp(fs_type, "ext4")) {
|
|
if (*fs_stat & FS_STAT_EXT4_INVALID_MAGIC) { // will fail, so do not try
|
|
return;
|
|
}
|
|
/*
|
|
* First try to mount and unmount the filesystem. We do this because
|
|
* the kernel is more efficient than e2fsck in running the journal and
|
|
* processing orphaned inodes, and on at least one device with a
|
|
* performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
|
|
* to do what the kernel does in about a second.
|
|
*
|
|
* After mounting and unmounting the filesystem, run e2fsck, and if an
|
|
* error is recorded in the filesystem superblock, e2fsck will do a full
|
|
* check. Otherwise, it does nothing. If the kernel cannot mount the
|
|
* filesytsem due to an error, e2fsck is still run to do a full check
|
|
* fix the filesystem.
|
|
*/
|
|
if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) { // already tried if full mount failed
|
|
errno = 0;
|
|
if (!strcmp(fs_type, "ext4")) {
|
|
// This option is only valid with ext4
|
|
strlcat(tmpmnt_opts, ",nomblk_io_submit", sizeof(tmpmnt_opts));
|
|
}
|
|
ret = mount(blk_device, target, fs_type, tmpmnt_flags, tmpmnt_opts);
|
|
PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type
|
|
<< ")=" << ret;
|
|
if (!ret) {
|
|
bool umounted = false;
|
|
int retry_count = 5;
|
|
while (retry_count-- > 0) {
|
|
umounted = umount(target) == 0;
|
|
if (umounted) {
|
|
LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded";
|
|
break;
|
|
}
|
|
PERROR << __FUNCTION__ << "(): umount(" << target << ") failed";
|
|
if (retry_count) sleep(1);
|
|
}
|
|
if (!umounted) {
|
|
// boot may fail but continue and leave it to later stage for now.
|
|
PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out";
|
|
*fs_stat |= FS_STAT_RO_UNMOUNT_FAILED;
|
|
}
|
|
} else {
|
|
*fs_stat |= FS_STAT_RO_MOUNT_FAILED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some system images do not have e2fsck for licensing reasons
|
|
* (e.g. recent SDK system images). Detect these and skip the check.
|
|
*/
|
|
if (access(E2FSCK_BIN, X_OK)) {
|
|
LINFO << "Not running " << E2FSCK_BIN << " on " << blk_device
|
|
<< " (executable not in system image)";
|
|
} else {
|
|
LINFO << "Running " << E2FSCK_BIN << " on " << blk_device;
|
|
if (should_force_check(*fs_stat)) {
|
|
ret = android_fork_execvp_ext(
|
|
ARRAY_SIZE(e2fsck_forced_argv), const_cast<char**>(e2fsck_forced_argv), &status,
|
|
true, LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0);
|
|
} else {
|
|
ret = android_fork_execvp_ext(
|
|
ARRAY_SIZE(e2fsck_argv), const_cast<char**>(e2fsck_argv), &status, true,
|
|
LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
/* No need to check for error in fork, we can't really handle it now */
|
|
LERROR << "Failed trying to run " << E2FSCK_BIN;
|
|
*fs_stat |= FS_STAT_E2FSCK_FAILED;
|
|
} else if (status != 0) {
|
|
LINFO << "e2fsck returned status 0x" << std::hex << status;
|
|
*fs_stat |= FS_STAT_E2FSCK_FS_FIXED;
|
|
}
|
|
}
|
|
} else if (!strcmp(fs_type, "f2fs")) {
|
|
const char *f2fs_fsck_argv[] = {
|
|
F2FS_FSCK_BIN,
|
|
"-a",
|
|
blk_device
|
|
};
|
|
LINFO << "Running " << F2FS_FSCK_BIN << " -a " << blk_device;
|
|
|
|
ret = android_fork_execvp_ext(ARRAY_SIZE(f2fs_fsck_argv),
|
|
const_cast<char **>(f2fs_fsck_argv),
|
|
&status, true, LOG_KLOG | LOG_FILE,
|
|
true, const_cast<char *>(FSCK_LOG_FILE),
|
|
NULL, 0);
|
|
if (ret < 0) {
|
|
/* No need to check for error in fork, we can't really handle it now */
|
|
LERROR << "Failed trying to run " << F2FS_FSCK_BIN;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Function to read the primary superblock */
|
|
static int read_super_block(int fd, struct ext4_super_block *sb)
|
|
{
|
|
off64_t ret;
|
|
|
|
ret = lseek64(fd, 1024, SEEK_SET);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = read(fd, sb, sizeof(*sb));
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret != sizeof(*sb))
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ext4_fsblk_t ext4_blocks_count(struct ext4_super_block *es)
|
|
{
|
|
return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) |
|
|
le32_to_cpu(es->s_blocks_count_lo);
|
|
}
|
|
|
|
static ext4_fsblk_t ext4_r_blocks_count(struct ext4_super_block *es)
|
|
{
|
|
return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) |
|
|
le32_to_cpu(es->s_r_blocks_count_lo);
|
|
}
|
|
|
|
static int do_quota_with_shutdown_check(char *blk_device, char *fs_type,
|
|
struct fstab_rec *rec, int *fs_stat)
|
|
{
|
|
int force_check = 0;
|
|
if (!strcmp(fs_type, "ext4")) {
|
|
/*
|
|
* Some system images do not have tune2fs for licensing reasons
|
|
* Detect these and skip reserve blocks.
|
|
*/
|
|
if (access(TUNE2FS_BIN, X_OK)) {
|
|
LERROR << "Not running " << TUNE2FS_BIN << " on "
|
|
<< blk_device << " (executable not in system image)";
|
|
} else {
|
|
const char* arg1 = nullptr;
|
|
const char* arg2 = nullptr;
|
|
int status = 0;
|
|
int ret = 0;
|
|
android::base::unique_fd fd(
|
|
TEMP_FAILURE_RETRY(open(blk_device, O_RDONLY | O_CLOEXEC)));
|
|
if (fd >= 0) {
|
|
struct ext4_super_block sb;
|
|
ret = read_super_block(fd, &sb);
|
|
if (ret < 0) {
|
|
PERROR << "Can't read '" << blk_device << "' super block";
|
|
return force_check;
|
|
}
|
|
if (sb.s_magic != EXT4_SUPER_MAGIC) {
|
|
LINFO << "Invalid ext4 magic:0x" << std::hex << sb.s_magic << "," << blk_device;
|
|
*fs_stat |= FS_STAT_EXT4_INVALID_MAGIC;
|
|
return 0; // not a valid fs, tune2fs, fsck, and mount will all fail.
|
|
}
|
|
*fs_stat |= FS_STAT_IS_EXT4;
|
|
LINFO << "superblock s_max_mnt_count:" << sb.s_max_mnt_count << "," << blk_device;
|
|
if (sb.s_max_mnt_count == 0xffff) { // -1 (int16) in ext2, but uint16 in ext4
|
|
*fs_stat |= FS_STAT_NEW_IMAGE_VERSION;
|
|
}
|
|
if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 ||
|
|
(sb.s_state & EXT4_VALID_FS) == 0) {
|
|
LINFO << __FUNCTION__ << "(): was not clealy shutdown, state flag:"
|
|
<< std::hex << sb.s_state
|
|
<< "incompat flag:" << std::hex << sb.s_feature_incompat;
|
|
force_check = 1;
|
|
*fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN;
|
|
}
|
|
int has_quota = (sb.s_feature_ro_compat
|
|
& cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0;
|
|
int want_quota = fs_mgr_is_quota(rec) != 0;
|
|
|
|
if (has_quota == want_quota) {
|
|
LINFO << "Requested quota status is match on " << blk_device;
|
|
return force_check;
|
|
} else if (want_quota) {
|
|
LINFO << "Enabling quota on " << blk_device;
|
|
arg1 = "-Oquota";
|
|
arg2 = "-Qusrquota,grpquota";
|
|
force_check = 1;
|
|
*fs_stat |= FS_STAT_QUOTA_ENABLED;
|
|
} else {
|
|
LINFO << "Disabling quota on " << blk_device;
|
|
arg1 = "-Q^usrquota,^grpquota";
|
|
arg2 = "-O^quota";
|
|
}
|
|
} else {
|
|
PERROR << "Failed to open '" << blk_device << "'";
|
|
return force_check;
|
|
}
|
|
|
|
const char *tune2fs_argv[] = {
|
|
TUNE2FS_BIN,
|
|
arg1,
|
|
arg2,
|
|
blk_device,
|
|
};
|
|
ret = android_fork_execvp_ext(ARRAY_SIZE(tune2fs_argv),
|
|
const_cast<char **>(tune2fs_argv),
|
|
&status, true, LOG_KLOG | LOG_FILE,
|
|
true, NULL, NULL, 0);
|
|
if (ret < 0) {
|
|
/* No need to check for error in fork, we can't really handle it now */
|
|
LERROR << "Failed trying to run " << TUNE2FS_BIN;
|
|
*fs_stat |= FS_STAT_TUNE2FS_FAILED;
|
|
}
|
|
}
|
|
}
|
|
return force_check;
|
|
}
|
|
|
|
static void do_reserved_size(char *blk_device, char *fs_type, struct fstab_rec *rec, int *fs_stat)
|
|
{
|
|
/* Check for the types of filesystems we know how to check */
|
|
if (!strcmp(fs_type, "ext2") || !strcmp(fs_type, "ext3") || !strcmp(fs_type, "ext4")) {
|
|
/*
|
|
* Some system images do not have tune2fs for licensing reasons
|
|
* Detect these and skip reserve blocks.
|
|
*/
|
|
if (access(TUNE2FS_BIN, X_OK)) {
|
|
LERROR << "Not running " << TUNE2FS_BIN << " on "
|
|
<< blk_device << " (executable not in system image)";
|
|
} else {
|
|
LINFO << "Running " << TUNE2FS_BIN << " on " << blk_device;
|
|
|
|
int status = 0;
|
|
int ret = 0;
|
|
unsigned long reserved_blocks = 0;
|
|
android::base::unique_fd fd(
|
|
TEMP_FAILURE_RETRY(open(blk_device, O_RDONLY | O_CLOEXEC)));
|
|
if (fd >= 0) {
|
|
struct ext4_super_block sb;
|
|
ret = read_super_block(fd, &sb);
|
|
if (ret < 0) {
|
|
PERROR << "Can't read '" << blk_device << "' super block";
|
|
return;
|
|
}
|
|
reserved_blocks = rec->reserved_size / EXT4_BLOCK_SIZE(&sb);
|
|
unsigned long reserved_threshold = ext4_blocks_count(&sb) * 0.02;
|
|
if (reserved_threshold < reserved_blocks) {
|
|
LWARNING << "Reserved blocks " << reserved_blocks
|
|
<< " is too large";
|
|
reserved_blocks = reserved_threshold;
|
|
}
|
|
|
|
if (ext4_r_blocks_count(&sb) == reserved_blocks) {
|
|
LINFO << "Have reserved same blocks";
|
|
return;
|
|
}
|
|
} else {
|
|
PERROR << "Failed to open '" << blk_device << "'";
|
|
return;
|
|
}
|
|
|
|
char buf[16] = {0};
|
|
snprintf(buf, sizeof (buf), "-r %lu", reserved_blocks);
|
|
const char *tune2fs_argv[] = {
|
|
TUNE2FS_BIN,
|
|
buf,
|
|
blk_device,
|
|
};
|
|
|
|
ret = android_fork_execvp_ext(ARRAY_SIZE(tune2fs_argv),
|
|
const_cast<char **>(tune2fs_argv),
|
|
&status, true, LOG_KLOG | LOG_FILE,
|
|
true, NULL, NULL, 0);
|
|
|
|
if (ret < 0) {
|
|
/* No need to check for error in fork, we can't really handle it now */
|
|
LERROR << "Failed trying to run " << TUNE2FS_BIN;
|
|
*fs_stat |= FS_STAT_TUNE2FS_FAILED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void remove_trailing_slashes(char *n)
|
|
{
|
|
int len;
|
|
|
|
len = strlen(n) - 1;
|
|
while ((*(n + len) == '/') && len) {
|
|
*(n + len) = '\0';
|
|
len--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the given block device as read-only, using the BLKROSET ioctl.
|
|
* Return 0 on success, and -1 on error.
|
|
*/
|
|
int fs_mgr_set_blk_ro(const char *blockdev)
|
|
{
|
|
int fd;
|
|
int rc = -1;
|
|
int ON = 1;
|
|
|
|
fd = TEMP_FAILURE_RETRY(open(blockdev, O_RDONLY | O_CLOEXEC));
|
|
if (fd < 0) {
|
|
// should never happen
|
|
return rc;
|
|
}
|
|
|
|
rc = ioctl(fd, BLKROSET, &ON);
|
|
close(fd);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* __mount(): wrapper around the mount() system call which also
|
|
* sets the underlying block device to read-only if the mount is read-only.
|
|
* See "man 2 mount" for return values.
|
|
*/
|
|
static int __mount(const char *source, const char *target, const struct fstab_rec *rec)
|
|
{
|
|
unsigned long mountflags = rec->flags;
|
|
int ret;
|
|
int save_errno;
|
|
|
|
/* We need this because sometimes we have legacy symlinks
|
|
* that are lingering around and need cleaning up.
|
|
*/
|
|
struct stat info;
|
|
if (!lstat(target, &info))
|
|
if ((info.st_mode & S_IFMT) == S_IFLNK)
|
|
unlink(target);
|
|
mkdir(target, 0755);
|
|
ret = mount(source, target, rec->fs_type, mountflags, rec->fs_options);
|
|
save_errno = errno;
|
|
LINFO << __FUNCTION__ << "(source=" << source << ",target="
|
|
<< target << ",type=" << rec->fs_type << ")=" << ret;
|
|
if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
|
|
fs_mgr_set_blk_ro(source);
|
|
}
|
|
errno = save_errno;
|
|
return ret;
|
|
}
|
|
|
|
static int fs_match(const char *in1, const char *in2)
|
|
{
|
|
char *n1;
|
|
char *n2;
|
|
int ret;
|
|
|
|
n1 = strdup(in1);
|
|
n2 = strdup(in2);
|
|
|
|
remove_trailing_slashes(n1);
|
|
remove_trailing_slashes(n2);
|
|
|
|
ret = !strcmp(n1, n2);
|
|
|
|
free(n1);
|
|
free(n2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int device_is_force_encrypted() {
|
|
int ret = -1;
|
|
char value[PROP_VALUE_MAX];
|
|
ret = __system_property_get("ro.vold.forceencryption", value);
|
|
if (ret < 0)
|
|
return 0;
|
|
return strcmp(value, "1") ? 0 : 1;
|
|
}
|
|
|
|
/*
|
|
* Tries to mount any of the consecutive fstab entries that match
|
|
* the mountpoint of the one given by fstab->recs[start_idx].
|
|
*
|
|
* end_idx: On return, will be the last rec that was looked at.
|
|
* attempted_idx: On return, will indicate which fstab rec
|
|
* succeeded. In case of failure, it will be the start_idx.
|
|
* Returns
|
|
* -1 on failure with errno set to match the 1st mount failure.
|
|
* 0 on success.
|
|
*/
|
|
static int mount_with_alternatives(struct fstab *fstab, int start_idx, int *end_idx, int *attempted_idx)
|
|
{
|
|
int i;
|
|
int mount_errno = 0;
|
|
int mounted = 0;
|
|
|
|
if (!end_idx || !attempted_idx || start_idx >= fstab->num_entries) {
|
|
errno = EINVAL;
|
|
if (end_idx) *end_idx = start_idx;
|
|
if (attempted_idx) *attempted_idx = start_idx;
|
|
return -1;
|
|
}
|
|
|
|
/* Hunt down an fstab entry for the same mount point that might succeed */
|
|
for (i = start_idx;
|
|
/* We required that fstab entries for the same mountpoint be consecutive */
|
|
i < fstab->num_entries && !strcmp(fstab->recs[start_idx].mount_point, fstab->recs[i].mount_point);
|
|
i++) {
|
|
/*
|
|
* Don't try to mount/encrypt the same mount point again.
|
|
* Deal with alternate entries for the same point which are required to be all following
|
|
* each other.
|
|
*/
|
|
if (mounted) {
|
|
LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint="
|
|
<< fstab->recs[i].mount_point << " rec[" << i
|
|
<< "].fs_type=" << fstab->recs[i].fs_type
|
|
<< " already mounted as "
|
|
<< fstab->recs[*attempted_idx].fs_type;
|
|
continue;
|
|
}
|
|
|
|
int fs_stat = 0;
|
|
int force_check = do_quota_with_shutdown_check(fstab->recs[i].blk_device,
|
|
fstab->recs[i].fs_type,
|
|
&fstab->recs[i], &fs_stat);
|
|
if (fs_stat & FS_STAT_EXT4_INVALID_MAGIC) {
|
|
LERROR << __FUNCTION__ << "(): skipping mount, invalid ext4, mountpoint="
|
|
<< fstab->recs[i].mount_point << " rec[" << i
|
|
<< "].fs_type=" << fstab->recs[i].fs_type;
|
|
mount_errno = EINVAL; // continue bootup for FDE
|
|
continue;
|
|
}
|
|
if ((fstab->recs[i].fs_mgr_flags & MF_CHECK) || force_check) {
|
|
check_fs(fstab->recs[i].blk_device, fstab->recs[i].fs_type,
|
|
fstab->recs[i].mount_point, &fs_stat);
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_RESERVEDSIZE) {
|
|
do_reserved_size(fstab->recs[i].blk_device, fstab->recs[i].fs_type,
|
|
&fstab->recs[i], &fs_stat);
|
|
}
|
|
|
|
int retry_count = 2;
|
|
while (retry_count-- > 0) {
|
|
if (!__mount(fstab->recs[i].blk_device, fstab->recs[i].mount_point,
|
|
&fstab->recs[i])) {
|
|
*attempted_idx = i;
|
|
mounted = 1;
|
|
if (i != start_idx) {
|
|
LERROR << __FUNCTION__ << "(): Mounted " << fstab->recs[i].blk_device
|
|
<< " on " << fstab->recs[i].mount_point
|
|
<< " with fs_type=" << fstab->recs[i].fs_type << " instead of "
|
|
<< fstab->recs[start_idx].fs_type;
|
|
}
|
|
fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
|
|
mount_errno = 0;
|
|
break;
|
|
} else {
|
|
if (retry_count <= 0) break; // run check_fs only once
|
|
fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
|
|
/* back up the first errno for crypto decisions */
|
|
if (mount_errno == 0) {
|
|
mount_errno = errno;
|
|
}
|
|
// retry after fsck
|
|
check_fs(fstab->recs[i].blk_device, fstab->recs[i].fs_type,
|
|
fstab->recs[i].mount_point, &fs_stat);
|
|
}
|
|
}
|
|
log_fs_stat(fstab->recs[i].blk_device, fs_stat);
|
|
}
|
|
|
|
/* Adjust i for the case where it was still withing the recs[] */
|
|
if (i < fstab->num_entries) --i;
|
|
|
|
*end_idx = i;
|
|
if (!mounted) {
|
|
*attempted_idx = start_idx;
|
|
errno = mount_errno;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int translate_ext_labels(struct fstab_rec *rec)
|
|
{
|
|
DIR *blockdir = NULL;
|
|
struct dirent *ent;
|
|
char *label;
|
|
size_t label_len;
|
|
int ret = -1;
|
|
|
|
if (strncmp(rec->blk_device, "LABEL=", 6))
|
|
return 0;
|
|
|
|
label = rec->blk_device + 6;
|
|
label_len = strlen(label);
|
|
|
|
if (label_len > 16) {
|
|
LERROR << "FS label is longer than allowed by filesystem";
|
|
goto out;
|
|
}
|
|
|
|
|
|
blockdir = opendir("/dev/block");
|
|
if (!blockdir) {
|
|
LERROR << "couldn't open /dev/block";
|
|
goto out;
|
|
}
|
|
|
|
while ((ent = readdir(blockdir))) {
|
|
int fd;
|
|
char super_buf[1024];
|
|
struct ext4_super_block *sb;
|
|
|
|
if (ent->d_type != DT_BLK)
|
|
continue;
|
|
|
|
fd = openat(dirfd(blockdir), ent->d_name, O_RDONLY);
|
|
if (fd < 0) {
|
|
LERROR << "Cannot open block device /dev/block/" << ent->d_name;
|
|
goto out;
|
|
}
|
|
|
|
if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 ||
|
|
TEMP_FAILURE_RETRY(read(fd, super_buf, 1024)) != 1024) {
|
|
/* Probably a loopback device or something else without a readable
|
|
* superblock.
|
|
*/
|
|
close(fd);
|
|
continue;
|
|
}
|
|
|
|
sb = (struct ext4_super_block *)super_buf;
|
|
if (sb->s_magic != EXT4_SUPER_MAGIC) {
|
|
LINFO << "/dev/block/" << ent->d_name << " not ext{234}";
|
|
continue;
|
|
}
|
|
|
|
if (!strncmp(label, sb->s_volume_name, label_len)) {
|
|
char *new_blk_device;
|
|
|
|
if (asprintf(&new_blk_device, "/dev/block/%s", ent->d_name) < 0) {
|
|
LERROR << "Could not allocate block device string";
|
|
goto out;
|
|
}
|
|
|
|
LINFO << "resolved label " << rec->blk_device << " to "
|
|
<< new_blk_device;
|
|
|
|
free(rec->blk_device);
|
|
rec->blk_device = new_blk_device;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
closedir(blockdir);
|
|
return ret;
|
|
}
|
|
|
|
static bool needs_block_encryption(const struct fstab_rec* rec)
|
|
{
|
|
if (device_is_force_encrypted() && fs_mgr_is_encryptable(rec)) return true;
|
|
if (rec->fs_mgr_flags & MF_FORCECRYPT) return true;
|
|
if (rec->fs_mgr_flags & MF_CRYPT) {
|
|
/* Check for existence of convert_fde breadcrumb file */
|
|
char convert_fde_name[PATH_MAX];
|
|
snprintf(convert_fde_name, sizeof(convert_fde_name),
|
|
"%s/misc/vold/convert_fde", rec->mount_point);
|
|
if (access(convert_fde_name, F_OK) == 0) return true;
|
|
}
|
|
if (rec->fs_mgr_flags & MF_FORCEFDEORFBE) {
|
|
/* Check for absence of convert_fbe breadcrumb file */
|
|
char convert_fbe_name[PATH_MAX];
|
|
snprintf(convert_fbe_name, sizeof(convert_fbe_name),
|
|
"%s/convert_fbe", rec->mount_point);
|
|
if (access(convert_fbe_name, F_OK) != 0) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check to see if a mountable volume has encryption requirements
|
|
static int handle_encryptable(const struct fstab_rec* rec)
|
|
{
|
|
/* If this is block encryptable, need to trigger encryption */
|
|
if (needs_block_encryption(rec)) {
|
|
if (umount(rec->mount_point) == 0) {
|
|
return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION;
|
|
} else {
|
|
PWARNING << "Could not umount " << rec->mount_point
|
|
<< " - allow continue unencrypted";
|
|
return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
|
|
}
|
|
} else if (rec->fs_mgr_flags & (MF_FILEENCRYPTION | MF_FORCEFDEORFBE)) {
|
|
// Deal with file level encryption
|
|
LINFO << rec->mount_point << " is file encrypted";
|
|
return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED;
|
|
} else if (fs_mgr_is_encryptable(rec)) {
|
|
return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
|
|
} else {
|
|
return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
|
|
}
|
|
}
|
|
|
|
// TODO: add ueventd notifiers if they don't exist.
|
|
// This is just doing a wait_for_device for maximum of 1s
|
|
int fs_mgr_test_access(const char *device) {
|
|
int tries = 25;
|
|
while (tries--) {
|
|
if (!access(device, F_OK) || errno != ENOENT) {
|
|
return 0;
|
|
}
|
|
usleep(40 * 1000);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
bool is_device_secure() {
|
|
int ret = -1;
|
|
char value[PROP_VALUE_MAX];
|
|
ret = __system_property_get("ro.secure", value);
|
|
if (ret == 0) {
|
|
#ifdef ALLOW_SKIP_SECURE_CHECK
|
|
// Allow eng builds to skip this check if the property
|
|
// is not readable (happens during early mount)
|
|
return false;
|
|
#else
|
|
// If error and not an 'eng' build, we want to fail secure.
|
|
return true;
|
|
#endif
|
|
}
|
|
return strcmp(value, "0") ? true : false;
|
|
}
|
|
|
|
/* When multiple fstab records share the same mount_point, it will
|
|
* try to mount each one in turn, and ignore any duplicates after a
|
|
* first successful mount.
|
|
* Returns -1 on error, and FS_MGR_MNTALL_* otherwise.
|
|
*/
|
|
int fs_mgr_mount_all(struct fstab *fstab, int mount_mode)
|
|
{
|
|
int i = 0;
|
|
int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
|
|
int error_count = 0;
|
|
int mret = -1;
|
|
int mount_errno = 0;
|
|
int attempted_idx = -1;
|
|
FsManagerAvbUniquePtr avb_handle(nullptr);
|
|
|
|
if (!fstab) {
|
|
return FS_MGR_MNTALL_FAIL;
|
|
}
|
|
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
/* Don't mount entries that are managed by vold or not for the mount mode*/
|
|
if ((fstab->recs[i].fs_mgr_flags & (MF_VOLDMANAGED | MF_RECOVERYONLY)) ||
|
|
((mount_mode == MOUNT_MODE_LATE) && !fs_mgr_is_latemount(&fstab->recs[i])) ||
|
|
((mount_mode == MOUNT_MODE_EARLY) && fs_mgr_is_latemount(&fstab->recs[i]))) {
|
|
continue;
|
|
}
|
|
|
|
/* Skip swap and raw partition entries such as boot, recovery, etc */
|
|
if (!strcmp(fstab->recs[i].fs_type, "swap") ||
|
|
!strcmp(fstab->recs[i].fs_type, "emmc") ||
|
|
!strcmp(fstab->recs[i].fs_type, "mtd")) {
|
|
continue;
|
|
}
|
|
|
|
/* Skip mounting the root partition, as it will already have been mounted */
|
|
if (!strcmp(fstab->recs[i].mount_point, "/")) {
|
|
if ((fstab->recs[i].fs_mgr_flags & MS_RDONLY) != 0) {
|
|
fs_mgr_set_blk_ro(fstab->recs[i].blk_device);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Translate LABEL= file system labels into block devices */
|
|
if (!strcmp(fstab->recs[i].fs_type, "ext2") ||
|
|
!strcmp(fstab->recs[i].fs_type, "ext3") ||
|
|
!strcmp(fstab->recs[i].fs_type, "ext4")) {
|
|
int tret = translate_ext_labels(&fstab->recs[i]);
|
|
if (tret < 0) {
|
|
LERROR << "Could not translate label to block device";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
|
|
wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT);
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_AVB) {
|
|
if (!avb_handle) {
|
|
avb_handle = FsManagerAvbHandle::Open(*fstab);
|
|
if (!avb_handle) {
|
|
LERROR << "Failed to open FsManagerAvbHandle";
|
|
return FS_MGR_MNTALL_FAIL;
|
|
}
|
|
}
|
|
if (!avb_handle->SetUpAvb(&fstab->recs[i], true /* wait_for_verity_dev */)) {
|
|
LERROR << "Failed to set up AVB on partition: "
|
|
<< fstab->recs[i].mount_point << ", skipping!";
|
|
/* Skips mounting the device. */
|
|
continue;
|
|
}
|
|
} else if ((fstab->recs[i].fs_mgr_flags & MF_VERIFY) && is_device_secure()) {
|
|
int rc = fs_mgr_setup_verity(&fstab->recs[i], true);
|
|
if (__android_log_is_debuggable() &&
|
|
(rc == FS_MGR_SETUP_VERITY_DISABLED ||
|
|
rc == FS_MGR_SETUP_VERITY_SKIPPED)) {
|
|
LINFO << "Verity disabled";
|
|
} else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
|
|
LERROR << "Could not set up verified partition, skipping!";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
int last_idx_inspected;
|
|
int top_idx = i;
|
|
|
|
mret = mount_with_alternatives(fstab, i, &last_idx_inspected, &attempted_idx);
|
|
i = last_idx_inspected;
|
|
mount_errno = errno;
|
|
|
|
/* Deal with encryptability. */
|
|
if (!mret) {
|
|
int status = handle_encryptable(&fstab->recs[attempted_idx]);
|
|
|
|
if (status == FS_MGR_MNTALL_FAIL) {
|
|
/* Fatal error - no point continuing */
|
|
return status;
|
|
}
|
|
|
|
if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
|
|
if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
|
|
// Log and continue
|
|
LERROR << "Only one encryptable/encrypted partition supported";
|
|
}
|
|
encryptable = status;
|
|
}
|
|
|
|
/* Success! Go get the next one */
|
|
continue;
|
|
}
|
|
|
|
/* mount(2) returned an error, handle the encryptable/formattable case */
|
|
bool wiped = partition_wiped(fstab->recs[top_idx].blk_device);
|
|
bool crypt_footer = false;
|
|
if (mret && mount_errno != EBUSY && mount_errno != EACCES &&
|
|
fs_mgr_is_formattable(&fstab->recs[top_idx]) && wiped) {
|
|
/* top_idx and attempted_idx point at the same partition, but sometimes
|
|
* at two different lines in the fstab. Use the top one for formatting
|
|
* as that is the preferred one.
|
|
*/
|
|
LERROR << __FUNCTION__ << "(): " << fstab->recs[top_idx].blk_device
|
|
<< " is wiped and " << fstab->recs[top_idx].mount_point
|
|
<< " " << fstab->recs[top_idx].fs_type
|
|
<< " is formattable. Format it.";
|
|
if (fs_mgr_is_encryptable(&fstab->recs[top_idx]) &&
|
|
strcmp(fstab->recs[top_idx].key_loc, KEY_IN_FOOTER)) {
|
|
int fd = open(fstab->recs[top_idx].key_loc, O_WRONLY);
|
|
if (fd >= 0) {
|
|
LINFO << __FUNCTION__ << "(): also wipe "
|
|
<< fstab->recs[top_idx].key_loc;
|
|
wipe_block_device(fd, get_file_size(fd));
|
|
close(fd);
|
|
} else {
|
|
PERROR << __FUNCTION__ << "(): "
|
|
<< fstab->recs[top_idx].key_loc << " wouldn't open";
|
|
}
|
|
} else if (fs_mgr_is_encryptable(&fstab->recs[top_idx]) &&
|
|
!strcmp(fstab->recs[top_idx].key_loc, KEY_IN_FOOTER)) {
|
|
crypt_footer = true;
|
|
}
|
|
if (fs_mgr_do_format(&fstab->recs[top_idx], crypt_footer) == 0) {
|
|
/* Let's replay the mount actions. */
|
|
i = top_idx - 1;
|
|
continue;
|
|
} else {
|
|
LERROR << __FUNCTION__ << "(): Format failed. "
|
|
<< "Suggest recovery...";
|
|
encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
|
|
continue;
|
|
}
|
|
}
|
|
if (mret && mount_errno != EBUSY && mount_errno != EACCES &&
|
|
fs_mgr_is_encryptable(&fstab->recs[attempted_idx])) {
|
|
if (wiped) {
|
|
LERROR << __FUNCTION__ << "(): "
|
|
<< fstab->recs[attempted_idx].blk_device
|
|
<< " is wiped and "
|
|
<< fstab->recs[attempted_idx].mount_point << " "
|
|
<< fstab->recs[attempted_idx].fs_type
|
|
<< " is encryptable. Suggest recovery...";
|
|
encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
|
|
continue;
|
|
} else {
|
|
/* Need to mount a tmpfs at this mountpoint for now, and set
|
|
* properties that vold will query later for decrypting
|
|
*/
|
|
LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev "
|
|
<< fstab->recs[attempted_idx].blk_device
|
|
<< " for mount " << fstab->recs[attempted_idx].mount_point
|
|
<< " type " << fstab->recs[attempted_idx].fs_type;
|
|
if (fs_mgr_do_tmpfs_mount(fstab->recs[attempted_idx].mount_point) < 0) {
|
|
++error_count;
|
|
continue;
|
|
}
|
|
}
|
|
encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED;
|
|
} else {
|
|
// fs_options might be null so we cannot use PERROR << directly.
|
|
// Use StringPrintf to output "(null)" instead.
|
|
if (fs_mgr_is_nofail(&fstab->recs[attempted_idx])) {
|
|
PERROR << android::base::StringPrintf(
|
|
"Ignoring failure to mount an un-encryptable or wiped "
|
|
"partition on %s at %s options: %s",
|
|
fstab->recs[attempted_idx].blk_device, fstab->recs[attempted_idx].mount_point,
|
|
fstab->recs[attempted_idx].fs_options);
|
|
} else {
|
|
PERROR << android::base::StringPrintf(
|
|
"Failed to mount an un-encryptable or wiped partition "
|
|
"on %s at %s options: %s",
|
|
fstab->recs[attempted_idx].blk_device, fstab->recs[attempted_idx].mount_point,
|
|
fstab->recs[attempted_idx].fs_options);
|
|
++error_count;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (error_count) {
|
|
return FS_MGR_MNTALL_FAIL;
|
|
} else {
|
|
return encryptable;
|
|
}
|
|
}
|
|
|
|
/* wrapper to __mount() and expects a fully prepared fstab_rec,
|
|
* unlike fs_mgr_do_mount which does more things with avb / verity
|
|
* etc.
|
|
*/
|
|
int fs_mgr_do_mount_one(struct fstab_rec *rec)
|
|
{
|
|
if (!rec) {
|
|
return FS_MGR_DOMNT_FAILED;
|
|
}
|
|
|
|
int ret = __mount(rec->blk_device, rec->mount_point, rec);
|
|
if (ret) {
|
|
ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* If tmp_mount_point is non-null, mount the filesystem there. This is for the
|
|
* tmp mount we do to check the user password
|
|
* If multiple fstab entries are to be mounted on "n_name", it will try to mount each one
|
|
* in turn, and stop on 1st success, or no more match.
|
|
*/
|
|
int fs_mgr_do_mount(struct fstab *fstab, const char *n_name, char *n_blk_device,
|
|
char *tmp_mount_point)
|
|
{
|
|
int i = 0;
|
|
int mount_errors = 0;
|
|
int first_mount_errno = 0;
|
|
char* mount_point;
|
|
FsManagerAvbUniquePtr avb_handle(nullptr);
|
|
|
|
if (!fstab) {
|
|
return FS_MGR_DOMNT_FAILED;
|
|
}
|
|
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
if (!fs_match(fstab->recs[i].mount_point, n_name)) {
|
|
continue;
|
|
}
|
|
|
|
/* We found our match */
|
|
/* If this swap or a raw partition, report an error */
|
|
if (!strcmp(fstab->recs[i].fs_type, "swap") ||
|
|
!strcmp(fstab->recs[i].fs_type, "emmc") ||
|
|
!strcmp(fstab->recs[i].fs_type, "mtd")) {
|
|
LERROR << "Cannot mount filesystem of type "
|
|
<< fstab->recs[i].fs_type << " on " << n_blk_device;
|
|
return FS_MGR_DOMNT_FAILED;
|
|
}
|
|
|
|
/* First check the filesystem if requested */
|
|
if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
|
|
wait_for_file(n_blk_device, WAIT_TIMEOUT);
|
|
}
|
|
|
|
int fs_stat = 0;
|
|
int force_check = do_quota_with_shutdown_check(n_blk_device, fstab->recs[i].fs_type,
|
|
&fstab->recs[i], &fs_stat);
|
|
|
|
if ((fstab->recs[i].fs_mgr_flags & MF_CHECK) || force_check) {
|
|
check_fs(n_blk_device, fstab->recs[i].fs_type,
|
|
fstab->recs[i].mount_point, &fs_stat);
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_RESERVEDSIZE) {
|
|
do_reserved_size(n_blk_device, fstab->recs[i].fs_type, &fstab->recs[i], &fs_stat);
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_AVB) {
|
|
if (!avb_handle) {
|
|
avb_handle = FsManagerAvbHandle::Open(*fstab);
|
|
if (!avb_handle) {
|
|
LERROR << "Failed to open FsManagerAvbHandle";
|
|
return FS_MGR_DOMNT_FAILED;
|
|
}
|
|
}
|
|
if (!avb_handle->SetUpAvb(&fstab->recs[i], true /* wait_for_verity_dev */)) {
|
|
LERROR << "Failed to set up AVB on partition: "
|
|
<< fstab->recs[i].mount_point << ", skipping!";
|
|
/* Skips mounting the device. */
|
|
continue;
|
|
}
|
|
} else if ((fstab->recs[i].fs_mgr_flags & MF_VERIFY) && is_device_secure()) {
|
|
int rc = fs_mgr_setup_verity(&fstab->recs[i], true);
|
|
if (__android_log_is_debuggable() &&
|
|
(rc == FS_MGR_SETUP_VERITY_DISABLED ||
|
|
rc == FS_MGR_SETUP_VERITY_SKIPPED)) {
|
|
LINFO << "Verity disabled";
|
|
} else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
|
|
LERROR << "Could not set up verified partition, skipping!";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Now mount it where requested */
|
|
if (tmp_mount_point) {
|
|
mount_point = tmp_mount_point;
|
|
} else {
|
|
mount_point = fstab->recs[i].mount_point;
|
|
}
|
|
int retry_count = 2;
|
|
while (retry_count-- > 0) {
|
|
if (!__mount(n_blk_device, mount_point, &fstab->recs[i])) {
|
|
fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
|
|
return FS_MGR_DOMNT_SUCCESS;
|
|
} else {
|
|
if (retry_count <= 0) break; // run check_fs only once
|
|
if (!first_mount_errno) first_mount_errno = errno;
|
|
mount_errors++;
|
|
fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
|
|
// try again after fsck
|
|
check_fs(n_blk_device, fstab->recs[i].fs_type, fstab->recs[i].mount_point, &fs_stat);
|
|
}
|
|
}
|
|
log_fs_stat(fstab->recs[i].blk_device, fs_stat);
|
|
}
|
|
|
|
// Reach here means the mount attempt fails.
|
|
if (mount_errors) {
|
|
PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point;
|
|
if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY;
|
|
} else {
|
|
/* We didn't find a match, say so and return an error */
|
|
LERROR << "Cannot find mount point " << n_name << " in fstab";
|
|
}
|
|
return FS_MGR_DOMNT_FAILED;
|
|
}
|
|
|
|
/*
|
|
* mount a tmpfs filesystem at the given point.
|
|
* return 0 on success, non-zero on failure.
|
|
*/
|
|
int fs_mgr_do_tmpfs_mount(const char *n_name)
|
|
{
|
|
int ret;
|
|
|
|
ret = mount("tmpfs", n_name, "tmpfs",
|
|
MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS);
|
|
if (ret < 0) {
|
|
LERROR << "Cannot mount tmpfs filesystem at " << n_name;
|
|
return -1;
|
|
}
|
|
|
|
/* Success */
|
|
return 0;
|
|
}
|
|
|
|
int fs_mgr_unmount_all(struct fstab *fstab)
|
|
{
|
|
int i = 0;
|
|
int ret = 0;
|
|
|
|
if (!fstab) {
|
|
return -1;
|
|
}
|
|
|
|
while (fstab->recs[i].blk_device) {
|
|
if (umount(fstab->recs[i].mount_point)) {
|
|
LERROR << "Cannot unmount filesystem at "
|
|
<< fstab->recs[i].mount_point;
|
|
ret = -1;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This must be called after mount_all, because the mkswap command needs to be
|
|
* available.
|
|
*/
|
|
int fs_mgr_swapon_all(struct fstab *fstab)
|
|
{
|
|
int i = 0;
|
|
int flags = 0;
|
|
int err = 0;
|
|
int ret = 0;
|
|
int status;
|
|
const char *mkswap_argv[2] = {
|
|
MKSWAP_BIN,
|
|
nullptr
|
|
};
|
|
|
|
if (!fstab) {
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
/* Skip non-swap entries */
|
|
if (strcmp(fstab->recs[i].fs_type, "swap")) {
|
|
continue;
|
|
}
|
|
|
|
if (fstab->recs[i].zram_size > 0) {
|
|
/* A zram_size was specified, so we need to configure the
|
|
* device. There is no point in having multiple zram devices
|
|
* on a system (all the memory comes from the same pool) so
|
|
* we can assume the device number is 0.
|
|
*/
|
|
FILE *zram_fp;
|
|
FILE *zram_mcs_fp;
|
|
|
|
if (fstab->recs[i].max_comp_streams >= 0) {
|
|
zram_mcs_fp = fopen(ZRAM_CONF_MCS, "r+");
|
|
if (zram_mcs_fp == NULL) {
|
|
LERROR << "Unable to open zram conf comp device "
|
|
<< ZRAM_CONF_MCS;
|
|
ret = -1;
|
|
continue;
|
|
}
|
|
fprintf(zram_mcs_fp, "%d\n", fstab->recs[i].max_comp_streams);
|
|
fclose(zram_mcs_fp);
|
|
}
|
|
|
|
zram_fp = fopen(ZRAM_CONF_DEV, "r+");
|
|
if (zram_fp == NULL) {
|
|
LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV;
|
|
ret = -1;
|
|
continue;
|
|
}
|
|
fprintf(zram_fp, "%u\n", fstab->recs[i].zram_size);
|
|
fclose(zram_fp);
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
|
|
wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT);
|
|
}
|
|
|
|
/* Initialize the swap area */
|
|
mkswap_argv[1] = fstab->recs[i].blk_device;
|
|
err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv),
|
|
const_cast<char **>(mkswap_argv),
|
|
&status, true, LOG_KLOG, false, NULL,
|
|
NULL, 0);
|
|
if (err) {
|
|
LERROR << "mkswap failed for " << fstab->recs[i].blk_device;
|
|
ret = -1;
|
|
continue;
|
|
}
|
|
|
|
/* If -1, then no priority was specified in fstab, so don't set
|
|
* SWAP_FLAG_PREFER or encode the priority */
|
|
if (fstab->recs[i].swap_prio >= 0) {
|
|
flags = (fstab->recs[i].swap_prio << SWAP_FLAG_PRIO_SHIFT) &
|
|
SWAP_FLAG_PRIO_MASK;
|
|
flags |= SWAP_FLAG_PREFER;
|
|
} else {
|
|
flags = 0;
|
|
}
|
|
err = swapon(fstab->recs[i].blk_device, flags);
|
|
if (err) {
|
|
LERROR << "swapon failed for " << fstab->recs[i].blk_device;
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* key_loc must be at least PROPERTY_VALUE_MAX bytes long
|
|
*
|
|
* real_blk_device must be at least PROPERTY_VALUE_MAX bytes long
|
|
*/
|
|
int fs_mgr_get_crypt_info(struct fstab *fstab, char *key_loc, char *real_blk_device, int size)
|
|
{
|
|
int i = 0;
|
|
|
|
if (!fstab) {
|
|
return -1;
|
|
}
|
|
/* Initialize return values to null strings */
|
|
if (key_loc) {
|
|
*key_loc = '\0';
|
|
}
|
|
if (real_blk_device) {
|
|
*real_blk_device = '\0';
|
|
}
|
|
|
|
/* Look for the encryptable partition to find the data */
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
/* Don't deal with vold managed enryptable partitions here */
|
|
if (fstab->recs[i].fs_mgr_flags & MF_VOLDMANAGED) {
|
|
continue;
|
|
}
|
|
if (!(fstab->recs[i].fs_mgr_flags
|
|
& (MF_CRYPT | MF_FORCECRYPT | MF_FORCEFDEORFBE))) {
|
|
continue;
|
|
}
|
|
|
|
/* We found a match */
|
|
if (key_loc) {
|
|
strlcpy(key_loc, fstab->recs[i].key_loc, size);
|
|
}
|
|
if (real_blk_device) {
|
|
strlcpy(real_blk_device, fstab->recs[i].blk_device, size);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool fs_mgr_load_verity_state(int* mode) {
|
|
/* return the default mode, unless any of the verified partitions are in
|
|
* logging mode, in which case return that */
|
|
*mode = VERITY_MODE_DEFAULT;
|
|
|
|
std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> fstab(fs_mgr_read_fstab_default(),
|
|
fs_mgr_free_fstab);
|
|
if (!fstab) {
|
|
LERROR << "Failed to read default fstab";
|
|
return false;
|
|
}
|
|
|
|
for (int i = 0; i < fstab->num_entries; i++) {
|
|
if (fs_mgr_is_avb(&fstab->recs[i])) {
|
|
*mode = VERITY_MODE_RESTART; // avb only supports restart mode.
|
|
break;
|
|
} else if (!fs_mgr_is_verified(&fstab->recs[i])) {
|
|
continue;
|
|
}
|
|
|
|
int current;
|
|
if (load_verity_state(&fstab->recs[i], ¤t) < 0) {
|
|
continue;
|
|
}
|
|
if (current != VERITY_MODE_DEFAULT) {
|
|
*mode = current;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool fs_mgr_update_verity_state(fs_mgr_verity_state_callback callback) {
|
|
if (!callback) {
|
|
return false;
|
|
}
|
|
|
|
int mode;
|
|
if (!fs_mgr_load_verity_state(&mode)) {
|
|
return false;
|
|
}
|
|
|
|
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open("/dev/device-mapper", O_RDWR | O_CLOEXEC)));
|
|
if (fd == -1) {
|
|
PERROR << "Error opening device mapper";
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> fstab(fs_mgr_read_fstab_default(),
|
|
fs_mgr_free_fstab);
|
|
if (!fstab) {
|
|
LERROR << "Failed to read default fstab";
|
|
return false;
|
|
}
|
|
|
|
alignas(dm_ioctl) char buffer[DM_BUF_SIZE];
|
|
struct dm_ioctl* io = (struct dm_ioctl*)buffer;
|
|
bool system_root = android::base::GetProperty("ro.build.system_root_image", "") == "true";
|
|
|
|
for (int i = 0; i < fstab->num_entries; i++) {
|
|
if (!fs_mgr_is_verified(&fstab->recs[i]) && !fs_mgr_is_avb(&fstab->recs[i])) {
|
|
continue;
|
|
}
|
|
|
|
std::string mount_point;
|
|
if (system_root && !strcmp(fstab->recs[i].mount_point, "/")) {
|
|
// In AVB, the dm device name is vroot instead of system.
|
|
mount_point = fs_mgr_is_avb(&fstab->recs[i]) ? "vroot" : "system";
|
|
} else {
|
|
mount_point = basename(fstab->recs[i].mount_point);
|
|
}
|
|
|
|
fs_mgr_verity_ioctl_init(io, mount_point, 0);
|
|
|
|
const char* status;
|
|
if (ioctl(fd, DM_TABLE_STATUS, io)) {
|
|
if (fstab->recs[i].fs_mgr_flags & MF_VERIFYATBOOT) {
|
|
status = "V";
|
|
} else {
|
|
PERROR << "Failed to query DM_TABLE_STATUS for " << mount_point.c_str();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
status = &buffer[io->data_start + sizeof(struct dm_target_spec)];
|
|
|
|
// To be consistent in vboot 1.0 and vboot 2.0 (AVB), change the mount_point
|
|
// back to 'system' for the callback. So it has property [partition.system.verified]
|
|
// instead of [partition.vroot.verified].
|
|
if (mount_point == "vroot") mount_point = "system";
|
|
if (*status == 'C' || *status == 'V') {
|
|
callback(&fstab->recs[i], mount_point.c_str(), mode, *status);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|