android_system_core/include/system/graphics.h

650 lines
23 KiB
C

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SYSTEM_CORE_INCLUDE_ANDROID_GRAPHICS_H
#define SYSTEM_CORE_INCLUDE_ANDROID_GRAPHICS_H
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* If the HAL needs to create service threads to handle graphics related
* tasks, these threads need to run at HAL_PRIORITY_URGENT_DISPLAY priority
* if they can block the main rendering thread in any way.
*
* the priority of the current thread can be set with:
*
* #include <sys/resource.h>
* setpriority(PRIO_PROCESS, 0, HAL_PRIORITY_URGENT_DISPLAY);
*
*/
#define HAL_PRIORITY_URGENT_DISPLAY (-8)
/**
* pixel format definitions
*/
enum {
/*
* "linear" color pixel formats:
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*
* The color space determines, for example, if the formats are linear or
* gamma-corrected; or whether any special operations are performed when
* reading or writing into a buffer in one of these formats.
*/
HAL_PIXEL_FORMAT_RGBA_8888 = 1,
HAL_PIXEL_FORMAT_RGBX_8888 = 2,
HAL_PIXEL_FORMAT_RGB_888 = 3,
HAL_PIXEL_FORMAT_RGB_565 = 4,
HAL_PIXEL_FORMAT_BGRA_8888 = 5,
// Deprecated sRGB formats for source code compatibility
// Not for use in new code
HAL_PIXEL_FORMAT_sRGB_A_8888 = 0xC,
HAL_PIXEL_FORMAT_sRGB_X_8888 = 0xD,
/*
* 0x100 - 0x1FF
*
* This range is reserved for pixel formats that are specific to the HAL
* implementation. Implementations can use any value in this range to
* communicate video pixel formats between their HAL modules. These formats
* must not have an alpha channel. Additionally, an EGLimage created from a
* gralloc buffer of one of these formats must be supported for use with the
* GL_OES_EGL_image_external OpenGL ES extension.
*/
/*
* Android YUV format:
*
* This format is exposed outside of the HAL to software decoders and
* applications. EGLImageKHR must support it in conjunction with the
* OES_EGL_image_external extension.
*
* YV12 is a 4:2:0 YCrCb planar format comprised of a WxH Y plane followed
* by (W/2) x (H/2) Cr and Cb planes.
*
* This format assumes
* - an even width
* - an even height
* - a horizontal stride multiple of 16 pixels
* - a vertical stride equal to the height
*
* y_size = stride * height
* c_stride = ALIGN(stride/2, 16)
* c_size = c_stride * height/2
* size = y_size + c_size * 2
* cr_offset = y_size
* cb_offset = y_size + c_size
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*/
HAL_PIXEL_FORMAT_YV12 = 0x32315659, // YCrCb 4:2:0 Planar
/*
* Android Y8 format:
*
* This format is exposed outside of the HAL to the framework.
* The expected gralloc usage flags are SW_* and HW_CAMERA_*,
* and no other HW_ flags will be used.
*
* Y8 is a YUV planar format comprised of a WxH Y plane,
* with each pixel being represented by 8 bits.
*
* It is equivalent to just the Y plane from YV12.
*
* This format assumes
* - an even width
* - an even height
* - a horizontal stride multiple of 16 pixels
* - a vertical stride equal to the height
*
* size = stride * height
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*/
HAL_PIXEL_FORMAT_Y8 = 0x20203859,
/*
* Android Y16 format:
*
* This format is exposed outside of the HAL to the framework.
* The expected gralloc usage flags are SW_* and HW_CAMERA_*,
* and no other HW_ flags will be used.
*
* Y16 is a YUV planar format comprised of a WxH Y plane,
* with each pixel being represented by 16 bits.
*
* It is just like Y8, but has double the bits per pixel (little endian).
*
* This format assumes
* - an even width
* - an even height
* - a horizontal stride multiple of 16 pixels
* - a vertical stride equal to the height
* - strides are specified in pixels, not in bytes
*
* size = stride * height * 2
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer, except that dataSpace field
* HAL_DATASPACE_DEPTH indicates that this buffer contains a depth
* image where each sample is a distance value measured by a depth camera.
*/
HAL_PIXEL_FORMAT_Y16 = 0x20363159,
/*
* Android RAW sensor format:
*
* This format is exposed outside of the camera HAL to applications.
*
* RAW16 is a single-channel, 16-bit, little endian format, typically
* representing raw Bayer-pattern images from an image sensor, with minimal
* processing.
*
* The exact pixel layout of the data in the buffer is sensor-dependent, and
* needs to be queried from the camera device.
*
* Generally, not all 16 bits are used; more common values are 10 or 12
* bits. If not all bits are used, the lower-order bits are filled first.
* All parameters to interpret the raw data (black and white points,
* color space, etc) must be queried from the camera device.
*
* This format assumes
* - an even width
* - an even height
* - a horizontal stride multiple of 16 pixels
* - a vertical stride equal to the height
* - strides are specified in pixels, not in bytes
*
* size = stride * height * 2
*
* This format must be accepted by the gralloc module when used with the
* following usage flags:
* - GRALLOC_USAGE_HW_CAMERA_*
* - GRALLOC_USAGE_SW_*
* - GRALLOC_USAGE_RENDERSCRIPT
*
* When used with ANativeWindow, the dataSpace should be
* HAL_DATASPACE_ARBITRARY, as raw image sensor buffers require substantial
* extra metadata to define.
*/
HAL_PIXEL_FORMAT_RAW16 = 0x20,
// Temporary alias for source code compatibility; do not use in new code
HAL_PIXEL_FORMAT_RAW_SENSOR = HAL_PIXEL_FORMAT_RAW16,
/*
* Android RAW10 format:
*
* This format is exposed outside of the camera HAL to applications.
*
* RAW10 is a single-channel, 10-bit per pixel, densely packed in each row,
* unprocessed format, usually representing raw Bayer-pattern images coming from
* an image sensor.
*
* In an image buffer with this format, starting from the first pixel of each
* row, each 4 consecutive pixels are packed into 5 bytes (40 bits). Each one
* of the first 4 bytes contains the top 8 bits of each pixel, The fifth byte
* contains the 2 least significant bits of the 4 pixels, the exact layout data
* for each 4 consecutive pixels is illustrated below (Pi[j] stands for the jth
* bit of the ith pixel):
*
* bit 7 bit 0
* =====|=====|=====|=====|=====|=====|=====|=====|
* Byte 0: |P0[9]|P0[8]|P0[7]|P0[6]|P0[5]|P0[4]|P0[3]|P0[2]|
* |-----|-----|-----|-----|-----|-----|-----|-----|
* Byte 1: |P1[9]|P1[8]|P1[7]|P1[6]|P1[5]|P1[4]|P1[3]|P1[2]|
* |-----|-----|-----|-----|-----|-----|-----|-----|
* Byte 2: |P2[9]|P2[8]|P2[7]|P2[6]|P2[5]|P2[4]|P2[3]|P2[2]|
* |-----|-----|-----|-----|-----|-----|-----|-----|
* Byte 3: |P3[9]|P3[8]|P3[7]|P3[6]|P3[5]|P3[4]|P3[3]|P3[2]|
* |-----|-----|-----|-----|-----|-----|-----|-----|
* Byte 4: |P3[1]|P3[0]|P2[1]|P2[0]|P1[1]|P1[0]|P0[1]|P0[0]|
* ===============================================
*
* This format assumes
* - a width multiple of 4 pixels
* - an even height
* - a vertical stride equal to the height
* - strides are specified in bytes, not in pixels
*
* size = stride * height
*
* When stride is equal to width * (10 / 8), there will be no padding bytes at
* the end of each row, the entire image data is densely packed. When stride is
* larger than width * (10 / 8), padding bytes will be present at the end of each
* row (including the last row).
*
* This format must be accepted by the gralloc module when used with the
* following usage flags:
* - GRALLOC_USAGE_HW_CAMERA_*
* - GRALLOC_USAGE_SW_*
* - GRALLOC_USAGE_RENDERSCRIPT
*
* When used with ANativeWindow, the dataSpace field should be
* HAL_DATASPACE_ARBITRARY, as raw image sensor buffers require substantial
* extra metadata to define.
*/
HAL_PIXEL_FORMAT_RAW10 = 0x25,
/*
* Android opaque RAW format:
*
* This format is exposed outside of the camera HAL to applications.
*
* RAW_OPAQUE is a format for unprocessed raw image buffers coming from an
* image sensor. The actual structure of buffers of this format is
* implementation-dependent.
*
* This format must be accepted by the gralloc module when used with the
* following usage flags:
* - GRALLOC_USAGE_HW_CAMERA_*
* - GRALLOC_USAGE_SW_*
* - GRALLOC_USAGE_RENDERSCRIPT
*
* When used with ANativeWindow, the dataSpace field should be
* HAL_DATASPACE_ARBITRARY, as raw image sensor buffers require substantial
* extra metadata to define.
*/
HAL_PIXEL_FORMAT_RAW_OPAQUE = 0x24,
/*
* Android binary blob graphics buffer format:
*
* This format is used to carry task-specific data which does not have a
* standard image structure. The details of the format are left to the two
* endpoints.
*
* A typical use case is for transporting JPEG-compressed images from the
* Camera HAL to the framework or to applications.
*
* Buffers of this format must have a height of 1, and width equal to their
* size in bytes.
*
* When used with ANativeWindow, the mapping of the dataSpace field to
* buffer contents for BLOB is as follows:
*
* dataSpace value | Buffer contents
* -------------------------------+-----------------------------------------
* HAL_DATASPACE_JFIF | An encoded JPEG image
* HAL_DATASPACE_DEPTH | An android_depth_points buffer
* Other | Unsupported
*
*/
HAL_PIXEL_FORMAT_BLOB = 0x21,
/*
* Android format indicating that the choice of format is entirely up to the
* device-specific Gralloc implementation.
*
* The Gralloc implementation should examine the usage bits passed in when
* allocating a buffer with this format, and it should derive the pixel
* format from those usage flags. This format will never be used with any
* of the GRALLOC_USAGE_SW_* usage flags.
*
* If a buffer of this format is to be used as an OpenGL ES texture, the
* framework will assume that sampling the texture will always return an
* alpha value of 1.0 (i.e. the buffer contains only opaque pixel values).
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*/
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED = 0x22,
/*
* Android flexible YCbCr formats
*
* This format allows platforms to use an efficient YCbCr/YCrCb buffer
* layout, while still describing the buffer layout in a way accessible to
* the CPU in a device-independent manner. While called YCbCr, it can be
* used to describe formats with either chromatic ordering, as well as
* whole planar or semiplanar layouts.
*
* struct android_ycbcr (below) is the the struct used to describe it.
*
* This format must be accepted by the gralloc module when
* USAGE_HW_CAMERA_WRITE and USAGE_SW_READ_* are set.
*
* This format is locked for use by gralloc's (*lock_ycbcr) method, and
* locking with the (*lock) method will return an error.
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*/
HAL_PIXEL_FORMAT_YCbCr_420_888 = 0x23,
/* Legacy formats (deprecated), used by ImageFormat.java */
HAL_PIXEL_FORMAT_YCbCr_422_SP = 0x10, // NV16
HAL_PIXEL_FORMAT_YCrCb_420_SP = 0x11, // NV21
HAL_PIXEL_FORMAT_YCbCr_422_I = 0x14, // YUY2
};
/*
* Structure for describing YCbCr formats for consumption by applications.
* This is used with HAL_PIXEL_FORMAT_YCbCr_*_888.
*
* Buffer chroma subsampling is defined in the format.
* e.g. HAL_PIXEL_FORMAT_YCbCr_420_888 has subsampling 4:2:0.
*
* Buffers must have a 8 bit depth.
*
* @y, @cb, and @cr point to the first byte of their respective planes.
*
* Stride describes the distance in bytes from the first value of one row of
* the image to the first value of the next row. It includes the width of the
* image plus padding.
* @ystride is the stride of the luma plane.
* @cstride is the stride of the chroma planes.
*
* @chroma_step is the distance in bytes from one chroma pixel value to the
* next. This is 2 bytes for semiplanar (because chroma values are interleaved
* and each chroma value is one byte) and 1 for planar.
*/
struct android_ycbcr {
void *y;
void *cb;
void *cr;
size_t ystride;
size_t cstride;
size_t chroma_step;
/** reserved for future use, set to 0 by gralloc's (*lock_ycbcr)() */
uint32_t reserved[8];
};
/**
* Structure used to define depth point clouds for format HAL_PIXEL_FORMAT_BLOB
* with dataSpace value of HAL_DATASPACE_DEPTH.
* When locking a native buffer of the above format and dataSpace value,
* the vaddr pointer can be cast to this structure.
*
* A variable-length list of (x,y,z) 3D points, as floats.
*
* @num_points is the number of points in the list
*
* @xyz_points is the flexible array of floating-point values.
* It contains (num_points) * 3 floats.
*
* For example:
* android_depth_points d = get_depth_buffer();
* struct {
* float x; float y; float z;
* } firstPoint, lastPoint;
*
* firstPoint.x = d.xyz_points[0];
* firstPoint.y = d.xyz_points[1];
* firstPoint.z = d.xyz_points[2];
* lastPoint.x = d.xyz_points[(d.num_points - 1) * 3 + 0];
* lastPoint.y = d.xyz_points[(d.num_points - 1) * 3 + 1];
* lastPoint.z = d.xyz_points[(d.num_points - 1) * 3 + 2];
*/
struct android_depth_points {
uint32_t num_points;
/** reserved for future use, set to 0 by gralloc's (*lock)() */
uint32_t reserved[8];
float xyz_points[];
};
/**
* Transformation definitions
*
* IMPORTANT NOTE:
* HAL_TRANSFORM_ROT_90 is applied CLOCKWISE and AFTER HAL_TRANSFORM_FLIP_{H|V}.
*
*/
enum {
/* flip source image horizontally (around the vertical axis) */
HAL_TRANSFORM_FLIP_H = 0x01,
/* flip source image vertically (around the horizontal axis)*/
HAL_TRANSFORM_FLIP_V = 0x02,
/* rotate source image 90 degrees clockwise */
HAL_TRANSFORM_ROT_90 = 0x04,
/* rotate source image 180 degrees */
HAL_TRANSFORM_ROT_180 = 0x03,
/* rotate source image 270 degrees clockwise */
HAL_TRANSFORM_ROT_270 = 0x07,
/* don't use. see system/window.h */
HAL_TRANSFORM_RESERVED = 0x08,
};
/**
* Dataspace Definitions
* ======================
*
* Dataspace is the definition of how pixel values should be interpreted.
*
* For many formats, this is the colorspace of the image data, which includes
* primaries (including white point) and the transfer characteristic function,
* which describes both gamma curve and numeric range (within the bit depth).
*
* Other dataspaces include depth measurement data from a depth camera.
*/
typedef enum android_dataspace {
/*
* Default-assumption data space, when not explicitly specified.
*
* It is safest to assume the buffer is an image with sRGB primaries and
* encoding ranges, but the consumer and/or the producer of the data may
* simply be using defaults. No automatic gamma transform should be
* expected, except for a possible display gamma transform when drawn to a
* screen.
*/
HAL_DATASPACE_UNKNOWN = 0x0,
/*
* Arbitrary dataspace with manually defined characteristics. Definition
* for colorspaces or other meaning must be communicated separately.
*
* This is used when specifying primaries, transfer characteristics,
* etc. separately.
*
* A typical use case is in video encoding parameters (e.g. for H.264),
* where a colorspace can have separately defined primaries, transfer
* characteristics, etc.
*/
HAL_DATASPACE_ARBITRARY = 0x1,
/*
* RGB Colorspaces
* -----------------
*
* Primaries are given using (x,y) coordinates in the CIE 1931 definition
* of x and y specified by ISO 11664-1.
*
* Transfer characteristics are the opto-electronic transfer characteristic
* at the source as a function of linear optical intensity (luminance).
*/
/*
* sRGB linear encoding:
*
* The red, green, and blue components are stored in sRGB space, but
* are linear, not gamma-encoded.
* The RGB primaries and the white point are the same as BT.709.
*
* The values are encoded using the full range ([0,255] for 8-bit) for all
* components.
*/
HAL_DATASPACE_SRGB_LINEAR = 0x200,
/*
* sRGB gamma encoding:
*
* The red, green and blue components are stored in sRGB space, and
* converted to linear space when read, using the standard sRGB to linear
* equation:
*
* Clinear = Csrgb / 12.92 for Csrgb <= 0.04045
* = (Csrgb + 0.055 / 1.055)^2.4 for Csrgb > 0.04045
*
* When written the inverse transformation is performed:
*
* Csrgb = 12.92 * Clinear for Clinear <= 0.0031308
* = 1.055 * Clinear^(1/2.4) - 0.055 for Clinear > 0.0031308
*
*
* The alpha component, if present, is always stored in linear space and
* is left unmodified when read or written.
*
* The RGB primaries and the white point are the same as BT.709.
*
* The values are encoded using the full range ([0,255] for 8-bit) for all
* components.
*
*/
HAL_DATASPACE_SRGB = 0x201,
/*
* YCbCr Colorspaces
* -----------------
*
* Primaries are given using (x,y) coordinates in the CIE 1931 definition
* of x and y specified by ISO 11664-1.
*
* Transfer characteristics are the opto-electronic transfer characteristic
* at the source as a function of linear optical intensity (luminance).
*/
/*
* JPEG File Interchange Format (JFIF)
*
* Same model as BT.601-625, but all values (Y, Cb, Cr) range from 0 to 255
*
* Transfer characteristic curve:
* E = 1.099 * L ^ 0.45 - 0.099, 1.00 >= L >= 0.018
* E = 4.500 L, 0.018 > L >= 0
* L - luminance of image 0 <= L <= 1 for conventional colorimetry
* E - corresponding electrical signal
*
* Primaries: x y
* green 0.290 0.600
* blue 0.150 0.060
* red 0.640 0.330
* white (D65) 0.3127 0.3290
*/
HAL_DATASPACE_JFIF = 0x101,
/*
* ITU-R Recommendation 601 (BT.601) - 625-line
*
* Standard-definition television, 625 Lines (PAL)
*
* For 8-bit-depth formats:
* Luma (Y) samples should range from 16 to 235, inclusive
* Chroma (Cb, Cr) samples should range from 16 to 240, inclusive
*
* For 10-bit-depth formats:
* Luma (Y) samples should range from 64 to 940, inclusive
* Chroma (Cb, Cr) samples should range from 64 to 960, inclusive
*
* Transfer characteristic curve:
* E = 1.099 * L ^ 0.45 - 0.099, 1.00 >= L >= 0.018
* E = 4.500 L, 0.018 > L >= 0
* L - luminance of image 0 <= L <= 1 for conventional colorimetry
* E - corresponding electrical signal
*
* Primaries: x y
* green 0.290 0.600
* blue 0.150 0.060
* red 0.640 0.330
* white (D65) 0.3127 0.3290
*/
HAL_DATASPACE_BT601_625 = 0x102,
/*
* ITU-R Recommendation 601 (BT.601) - 525-line
*
* Standard-definition television, 525 Lines (NTSC)
*
* For 8-bit-depth formats:
* Luma (Y) samples should range from 16 to 235, inclusive
* Chroma (Cb, Cr) samples should range from 16 to 240, inclusive
*
* For 10-bit-depth formats:
* Luma (Y) samples should range from 64 to 940, inclusive
* Chroma (Cb, Cr) samples should range from 64 to 960, inclusive
*
* Transfer characteristic curve:
* E = 1.099 * L ^ 0.45 - 0.099, 1.00 >= L >= 0.018
* E = 4.500 L, 0.018 > L >= 0
* L - luminance of image 0 <= L <= 1 for conventional colorimetry
* E - corresponding electrical signal
*
* Primaries: x y
* green 0.310 0.595
* blue 0.155 0.070
* red 0.630 0.340
* white (D65) 0.3127 0.3290
*/
HAL_DATASPACE_BT601_525 = 0x103,
/*
* ITU-R Recommendation 709 (BT.709)
*
* High-definition television
*
* For 8-bit-depth formats:
* Luma (Y) samples should range from 16 to 235, inclusive
* Chroma (Cb, Cr) samples should range from 16 to 240, inclusive
*
* For 10-bit-depth formats:
* Luma (Y) samples should range from 64 to 940, inclusive
* Chroma (Cb, Cr) samples should range from 64 to 960, inclusive
*
* Primaries: x y
* green 0.300 0.600
* blue 0.150 0.060
* red 0.640 0.330
* white (D65) 0.3127 0.3290
*/
HAL_DATASPACE_BT709 = 0x104,
/*
* The buffer contains depth ranging measurements from a depth camera.
* This value is valid with formats:
* HAL_PIXEL_FORMAT_Y16: 16-bit single channel depth image.
* HAL_PIXEL_FORMAT_BLOB: A depth point cloud, as
* a variable-length float (x,y,z) coordinate point list.
* The point cloud will be represented with the android_depth_points
* structure.
*/
HAL_DATASPACE_DEPTH = 0x1000
} android_dataspace_t;
#ifdef __cplusplus
}
#endif
#endif /* SYSTEM_CORE_INCLUDE_ANDROID_GRAPHICS_H */