1065 lines
31 KiB
C++
1065 lines
31 KiB
C++
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include <backtrace/Backtrace.h>
|
|
#include <backtrace/BacktraceMap.h>
|
|
|
|
// For the THREAD_SIGNAL definition.
|
|
#include "BacktraceThread.h"
|
|
|
|
#include <cutils/atomic.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "thread_utils.h"
|
|
|
|
// Number of microseconds per milliseconds.
|
|
#define US_PER_MSEC 1000
|
|
|
|
// Number of nanoseconds in a second.
|
|
#define NS_PER_SEC 1000000000ULL
|
|
|
|
// Number of simultaneous dumping operations to perform.
|
|
#define NUM_THREADS 40
|
|
|
|
// Number of simultaneous threads running in our forked process.
|
|
#define NUM_PTRACE_THREADS 5
|
|
|
|
struct thread_t {
|
|
pid_t tid;
|
|
int32_t state;
|
|
pthread_t threadId;
|
|
void* data;
|
|
};
|
|
|
|
struct dump_thread_t {
|
|
thread_t thread;
|
|
Backtrace* backtrace;
|
|
int32_t* now;
|
|
int32_t done;
|
|
};
|
|
|
|
extern "C" {
|
|
// Prototypes for functions in the test library.
|
|
int test_level_one(int, int, int, int, void (*)(void*), void*);
|
|
|
|
int test_recursive_call(int, void (*)(void*), void*);
|
|
}
|
|
|
|
uint64_t NanoTime() {
|
|
struct timespec t = { 0, 0 };
|
|
clock_gettime(CLOCK_MONOTONIC, &t);
|
|
return static_cast<uint64_t>(t.tv_sec * NS_PER_SEC + t.tv_nsec);
|
|
}
|
|
|
|
void DumpFrames(Backtrace* backtrace) {
|
|
if (backtrace->NumFrames() == 0) {
|
|
printf(" No frames to dump\n");
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < backtrace->NumFrames(); i++) {
|
|
printf(" %s\n", backtrace->FormatFrameData(i).c_str());
|
|
}
|
|
}
|
|
|
|
void WaitForStop(pid_t pid) {
|
|
uint64_t start = NanoTime();
|
|
|
|
siginfo_t si;
|
|
while (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) < 0 && (errno == EINTR || errno == ESRCH)) {
|
|
if ((NanoTime() - start) > NS_PER_SEC) {
|
|
printf("The process did not get to a stopping point in 1 second.\n");
|
|
break;
|
|
}
|
|
usleep(US_PER_MSEC);
|
|
}
|
|
}
|
|
|
|
bool ReadyLevelBacktrace(Backtrace* backtrace) {
|
|
// See if test_level_four is in the backtrace.
|
|
bool found = false;
|
|
for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) {
|
|
if (it->func_name == "test_level_four") {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
void VerifyLevelDump(Backtrace* backtrace) {
|
|
ASSERT_GT(backtrace->NumFrames(), static_cast<size_t>(0));
|
|
ASSERT_LT(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES));
|
|
|
|
// Look through the frames starting at the highest to find the
|
|
// frame we want.
|
|
size_t frame_num = 0;
|
|
for (size_t i = backtrace->NumFrames()-1; i > 2; i--) {
|
|
if (backtrace->GetFrame(i)->func_name == "test_level_one") {
|
|
frame_num = i;
|
|
break;
|
|
}
|
|
}
|
|
ASSERT_LT(static_cast<size_t>(0), frame_num);
|
|
ASSERT_LE(static_cast<size_t>(3), frame_num);
|
|
|
|
ASSERT_EQ(backtrace->GetFrame(frame_num)->func_name, "test_level_one");
|
|
ASSERT_EQ(backtrace->GetFrame(frame_num-1)->func_name, "test_level_two");
|
|
ASSERT_EQ(backtrace->GetFrame(frame_num-2)->func_name, "test_level_three");
|
|
ASSERT_EQ(backtrace->GetFrame(frame_num-3)->func_name, "test_level_four");
|
|
}
|
|
|
|
void VerifyLevelBacktrace(void*) {
|
|
std::unique_ptr<Backtrace> backtrace(
|
|
Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
|
|
VerifyLevelDump(backtrace.get());
|
|
}
|
|
|
|
bool ReadyMaxBacktrace(Backtrace* backtrace) {
|
|
return (backtrace->NumFrames() == MAX_BACKTRACE_FRAMES);
|
|
}
|
|
|
|
void VerifyMaxDump(Backtrace* backtrace) {
|
|
ASSERT_EQ(backtrace->NumFrames(), static_cast<size_t>(MAX_BACKTRACE_FRAMES));
|
|
// Verify that the last frame is our recursive call.
|
|
ASSERT_EQ(backtrace->GetFrame(MAX_BACKTRACE_FRAMES-1)->func_name,
|
|
"test_recursive_call");
|
|
}
|
|
|
|
void VerifyMaxBacktrace(void*) {
|
|
std::unique_ptr<Backtrace> backtrace(
|
|
Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
|
|
VerifyMaxDump(backtrace.get());
|
|
}
|
|
|
|
void ThreadSetState(void* data) {
|
|
thread_t* thread = reinterpret_cast<thread_t*>(data);
|
|
android_atomic_acquire_store(1, &thread->state);
|
|
volatile int i = 0;
|
|
while (thread->state) {
|
|
i++;
|
|
}
|
|
}
|
|
|
|
void VerifyThreadTest(pid_t tid, void (*VerifyFunc)(Backtrace*)) {
|
|
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), tid));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
|
|
VerifyFunc(backtrace.get());
|
|
}
|
|
|
|
bool WaitForNonZero(int32_t* value, uint64_t seconds) {
|
|
uint64_t start = NanoTime();
|
|
do {
|
|
if (android_atomic_acquire_load(value)) {
|
|
return true;
|
|
}
|
|
} while ((NanoTime() - start) < seconds * NS_PER_SEC);
|
|
return false;
|
|
}
|
|
|
|
TEST(libbacktrace, local_trace) {
|
|
ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelBacktrace, nullptr), 0);
|
|
}
|
|
|
|
void VerifyIgnoreFrames(
|
|
Backtrace* bt_all, Backtrace* bt_ign1,
|
|
Backtrace* bt_ign2, const char* cur_proc) {
|
|
EXPECT_EQ(bt_all->NumFrames(), bt_ign1->NumFrames() + 1);
|
|
EXPECT_EQ(bt_all->NumFrames(), bt_ign2->NumFrames() + 2);
|
|
|
|
// Check all of the frames are the same > the current frame.
|
|
bool check = (cur_proc == nullptr);
|
|
for (size_t i = 0; i < bt_ign2->NumFrames(); i++) {
|
|
if (check) {
|
|
EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_ign1->GetFrame(i+1)->pc);
|
|
EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_ign1->GetFrame(i+1)->sp);
|
|
EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_ign1->GetFrame(i+1)->stack_size);
|
|
|
|
EXPECT_EQ(bt_ign2->GetFrame(i)->pc, bt_all->GetFrame(i+2)->pc);
|
|
EXPECT_EQ(bt_ign2->GetFrame(i)->sp, bt_all->GetFrame(i+2)->sp);
|
|
EXPECT_EQ(bt_ign2->GetFrame(i)->stack_size, bt_all->GetFrame(i+2)->stack_size);
|
|
}
|
|
if (!check && bt_ign2->GetFrame(i)->func_name == cur_proc) {
|
|
check = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VerifyLevelIgnoreFrames(void*) {
|
|
std::unique_ptr<Backtrace> all(
|
|
Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
|
|
ASSERT_TRUE(all.get() != nullptr);
|
|
ASSERT_TRUE(all->Unwind(0));
|
|
|
|
std::unique_ptr<Backtrace> ign1(
|
|
Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
|
|
ASSERT_TRUE(ign1.get() != nullptr);
|
|
ASSERT_TRUE(ign1->Unwind(1));
|
|
|
|
std::unique_ptr<Backtrace> ign2(
|
|
Backtrace::Create(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD));
|
|
ASSERT_TRUE(ign2.get() != nullptr);
|
|
ASSERT_TRUE(ign2->Unwind(2));
|
|
|
|
VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), "VerifyLevelIgnoreFrames");
|
|
}
|
|
|
|
TEST(libbacktrace, local_trace_ignore_frames) {
|
|
ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelIgnoreFrames, nullptr), 0);
|
|
}
|
|
|
|
TEST(libbacktrace, local_max_trace) {
|
|
ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxBacktrace, nullptr), 0);
|
|
}
|
|
|
|
void VerifyProcTest(pid_t pid, pid_t tid, bool share_map,
|
|
bool (*ReadyFunc)(Backtrace*),
|
|
void (*VerifyFunc)(Backtrace*)) {
|
|
pid_t ptrace_tid;
|
|
if (tid < 0) {
|
|
ptrace_tid = pid;
|
|
} else {
|
|
ptrace_tid = tid;
|
|
}
|
|
uint64_t start = NanoTime();
|
|
bool verified = false;
|
|
do {
|
|
usleep(US_PER_MSEC);
|
|
if (ptrace(PTRACE_ATTACH, ptrace_tid, 0, 0) == 0) {
|
|
// Wait for the process to get to a stopping point.
|
|
WaitForStop(ptrace_tid);
|
|
|
|
std::unique_ptr<BacktraceMap> map;
|
|
if (share_map) {
|
|
map.reset(BacktraceMap::Create(pid));
|
|
}
|
|
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, tid, map.get()));
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
if (ReadyFunc(backtrace.get())) {
|
|
VerifyFunc(backtrace.get());
|
|
verified = true;
|
|
}
|
|
|
|
ASSERT_TRUE(ptrace(PTRACE_DETACH, ptrace_tid, 0, 0) == 0);
|
|
}
|
|
// If 5 seconds have passed, then we are done.
|
|
} while (!verified && (NanoTime() - start) <= 5 * NS_PER_SEC);
|
|
ASSERT_TRUE(verified);
|
|
}
|
|
|
|
TEST(libbacktrace, ptrace_trace) {
|
|
pid_t pid;
|
|
if ((pid = fork()) == 0) {
|
|
ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
|
|
_exit(1);
|
|
}
|
|
VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyLevelDump);
|
|
|
|
kill(pid, SIGKILL);
|
|
int status;
|
|
ASSERT_EQ(waitpid(pid, &status, 0), pid);
|
|
}
|
|
|
|
TEST(libbacktrace, ptrace_trace_shared_map) {
|
|
pid_t pid;
|
|
if ((pid = fork()) == 0) {
|
|
ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
|
|
_exit(1);
|
|
}
|
|
|
|
VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, true, ReadyLevelBacktrace, VerifyLevelDump);
|
|
|
|
kill(pid, SIGKILL);
|
|
int status;
|
|
ASSERT_EQ(waitpid(pid, &status, 0), pid);
|
|
}
|
|
|
|
TEST(libbacktrace, ptrace_max_trace) {
|
|
pid_t pid;
|
|
if ((pid = fork()) == 0) {
|
|
ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, nullptr, nullptr), 0);
|
|
_exit(1);
|
|
}
|
|
VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyMaxBacktrace, VerifyMaxDump);
|
|
|
|
kill(pid, SIGKILL);
|
|
int status;
|
|
ASSERT_EQ(waitpid(pid, &status, 0), pid);
|
|
}
|
|
|
|
void VerifyProcessIgnoreFrames(Backtrace* bt_all) {
|
|
std::unique_ptr<Backtrace> ign1(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD));
|
|
ASSERT_TRUE(ign1.get() != nullptr);
|
|
ASSERT_TRUE(ign1->Unwind(1));
|
|
|
|
std::unique_ptr<Backtrace> ign2(Backtrace::Create(bt_all->Pid(), BACKTRACE_CURRENT_THREAD));
|
|
ASSERT_TRUE(ign2.get() != nullptr);
|
|
ASSERT_TRUE(ign2->Unwind(2));
|
|
|
|
VerifyIgnoreFrames(bt_all, ign1.get(), ign2.get(), nullptr);
|
|
}
|
|
|
|
TEST(libbacktrace, ptrace_ignore_frames) {
|
|
pid_t pid;
|
|
if ((pid = fork()) == 0) {
|
|
ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
|
|
_exit(1);
|
|
}
|
|
VerifyProcTest(pid, BACKTRACE_CURRENT_THREAD, false, ReadyLevelBacktrace, VerifyProcessIgnoreFrames);
|
|
|
|
kill(pid, SIGKILL);
|
|
int status;
|
|
ASSERT_EQ(waitpid(pid, &status, 0), pid);
|
|
}
|
|
|
|
// Create a process with multiple threads and dump all of the threads.
|
|
void* PtraceThreadLevelRun(void*) {
|
|
EXPECT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
|
|
return nullptr;
|
|
}
|
|
|
|
void GetThreads(pid_t pid, std::vector<pid_t>* threads) {
|
|
// Get the list of tasks.
|
|
char task_path[128];
|
|
snprintf(task_path, sizeof(task_path), "/proc/%d/task", pid);
|
|
|
|
DIR* tasks_dir = opendir(task_path);
|
|
ASSERT_TRUE(tasks_dir != nullptr);
|
|
struct dirent* entry;
|
|
while ((entry = readdir(tasks_dir)) != nullptr) {
|
|
char* end;
|
|
pid_t tid = strtoul(entry->d_name, &end, 10);
|
|
if (*end == '\0') {
|
|
threads->push_back(tid);
|
|
}
|
|
}
|
|
closedir(tasks_dir);
|
|
}
|
|
|
|
TEST(libbacktrace, ptrace_threads) {
|
|
pid_t pid;
|
|
if ((pid = fork()) == 0) {
|
|
for (size_t i = 0; i < NUM_PTRACE_THREADS; i++) {
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
pthread_t thread;
|
|
ASSERT_TRUE(pthread_create(&thread, &attr, PtraceThreadLevelRun, nullptr) == 0);
|
|
}
|
|
ASSERT_NE(test_level_one(1, 2, 3, 4, nullptr, nullptr), 0);
|
|
_exit(1);
|
|
}
|
|
|
|
// Check to see that all of the threads are running before unwinding.
|
|
std::vector<pid_t> threads;
|
|
uint64_t start = NanoTime();
|
|
do {
|
|
usleep(US_PER_MSEC);
|
|
threads.clear();
|
|
GetThreads(pid, &threads);
|
|
} while ((threads.size() != NUM_PTRACE_THREADS + 1) &&
|
|
((NanoTime() - start) <= 5 * NS_PER_SEC));
|
|
ASSERT_EQ(threads.size(), static_cast<size_t>(NUM_PTRACE_THREADS + 1));
|
|
|
|
ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0);
|
|
WaitForStop(pid);
|
|
for (std::vector<int>::const_iterator it = threads.begin(); it != threads.end(); ++it) {
|
|
// Skip the current forked process, we only care about the threads.
|
|
if (pid == *it) {
|
|
continue;
|
|
}
|
|
VerifyProcTest(pid, *it, false, ReadyLevelBacktrace, VerifyLevelDump);
|
|
}
|
|
ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);
|
|
|
|
kill(pid, SIGKILL);
|
|
int status;
|
|
ASSERT_EQ(waitpid(pid, &status, 0), pid);
|
|
}
|
|
|
|
void VerifyLevelThread(void*) {
|
|
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid()));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
|
|
VerifyLevelDump(backtrace.get());
|
|
}
|
|
|
|
TEST(libbacktrace, thread_current_level) {
|
|
ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelThread, nullptr), 0);
|
|
}
|
|
|
|
void VerifyMaxThread(void*) {
|
|
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), gettid()));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
|
|
VerifyMaxDump(backtrace.get());
|
|
}
|
|
|
|
TEST(libbacktrace, thread_current_max) {
|
|
ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxThread, nullptr), 0);
|
|
}
|
|
|
|
void* ThreadLevelRun(void* data) {
|
|
thread_t* thread = reinterpret_cast<thread_t*>(data);
|
|
|
|
thread->tid = gettid();
|
|
EXPECT_NE(test_level_one(1, 2, 3, 4, ThreadSetState, data), 0);
|
|
return nullptr;
|
|
}
|
|
|
|
TEST(libbacktrace, thread_level_trace) {
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
thread_t thread_data = { 0, 0, 0, nullptr };
|
|
pthread_t thread;
|
|
ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0);
|
|
|
|
// Wait up to 2 seconds for the tid to be set.
|
|
ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));
|
|
|
|
// Make sure that the thread signal used is not visible when compiled for
|
|
// the target.
|
|
#if !defined(__GLIBC__)
|
|
ASSERT_LT(THREAD_SIGNAL, SIGRTMIN);
|
|
#endif
|
|
|
|
// Save the current signal action and make sure it is restored afterwards.
|
|
struct sigaction cur_action;
|
|
ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &cur_action) == 0);
|
|
|
|
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
|
|
VerifyLevelDump(backtrace.get());
|
|
|
|
// Tell the thread to exit its infinite loop.
|
|
android_atomic_acquire_store(0, &thread_data.state);
|
|
|
|
// Verify that the old action was restored.
|
|
struct sigaction new_action;
|
|
ASSERT_TRUE(sigaction(THREAD_SIGNAL, nullptr, &new_action) == 0);
|
|
EXPECT_EQ(cur_action.sa_sigaction, new_action.sa_sigaction);
|
|
// The SA_RESTORER flag gets set behind our back, so a direct comparison
|
|
// doesn't work unless we mask the value off. Mips doesn't have this
|
|
// flag, so skip this on that platform.
|
|
#ifdef SA_RESTORER
|
|
cur_action.sa_flags &= ~SA_RESTORER;
|
|
new_action.sa_flags &= ~SA_RESTORER;
|
|
#endif
|
|
EXPECT_EQ(cur_action.sa_flags, new_action.sa_flags);
|
|
}
|
|
|
|
TEST(libbacktrace, thread_ignore_frames) {
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
thread_t thread_data = { 0, 0, 0, nullptr };
|
|
pthread_t thread;
|
|
ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0);
|
|
|
|
// Wait up to 2 seconds for the tid to be set.
|
|
ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));
|
|
|
|
std::unique_ptr<Backtrace> all(Backtrace::Create(getpid(), thread_data.tid));
|
|
ASSERT_TRUE(all.get() != nullptr);
|
|
ASSERT_TRUE(all->Unwind(0));
|
|
|
|
std::unique_ptr<Backtrace> ign1(Backtrace::Create(getpid(), thread_data.tid));
|
|
ASSERT_TRUE(ign1.get() != nullptr);
|
|
ASSERT_TRUE(ign1->Unwind(1));
|
|
|
|
std::unique_ptr<Backtrace> ign2(Backtrace::Create(getpid(), thread_data.tid));
|
|
ASSERT_TRUE(ign2.get() != nullptr);
|
|
ASSERT_TRUE(ign2->Unwind(2));
|
|
|
|
VerifyIgnoreFrames(all.get(), ign1.get(), ign2.get(), nullptr);
|
|
|
|
// Tell the thread to exit its infinite loop.
|
|
android_atomic_acquire_store(0, &thread_data.state);
|
|
}
|
|
|
|
void* ThreadMaxRun(void* data) {
|
|
thread_t* thread = reinterpret_cast<thread_t*>(data);
|
|
|
|
thread->tid = gettid();
|
|
EXPECT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, ThreadSetState, data), 0);
|
|
return nullptr;
|
|
}
|
|
|
|
TEST(libbacktrace, thread_max_trace) {
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
thread_t thread_data = { 0, 0, 0, nullptr };
|
|
pthread_t thread;
|
|
ASSERT_TRUE(pthread_create(&thread, &attr, ThreadMaxRun, &thread_data) == 0);
|
|
|
|
// Wait for the tid to be set.
|
|
ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));
|
|
|
|
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
|
|
VerifyMaxDump(backtrace.get());
|
|
|
|
// Tell the thread to exit its infinite loop.
|
|
android_atomic_acquire_store(0, &thread_data.state);
|
|
}
|
|
|
|
void* ThreadDump(void* data) {
|
|
dump_thread_t* dump = reinterpret_cast<dump_thread_t*>(data);
|
|
while (true) {
|
|
if (android_atomic_acquire_load(dump->now)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The status of the actual unwind will be checked elsewhere.
|
|
dump->backtrace = Backtrace::Create(getpid(), dump->thread.tid);
|
|
dump->backtrace->Unwind(0);
|
|
|
|
android_atomic_acquire_store(1, &dump->done);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
TEST(libbacktrace, thread_multiple_dump) {
|
|
// Dump NUM_THREADS simultaneously.
|
|
std::vector<thread_t> runners(NUM_THREADS);
|
|
std::vector<dump_thread_t> dumpers(NUM_THREADS);
|
|
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
for (size_t i = 0; i < NUM_THREADS; i++) {
|
|
// Launch the runners, they will spin in hard loops doing nothing.
|
|
runners[i].tid = 0;
|
|
runners[i].state = 0;
|
|
ASSERT_TRUE(pthread_create(&runners[i].threadId, &attr, ThreadMaxRun, &runners[i]) == 0);
|
|
}
|
|
|
|
// Wait for tids to be set.
|
|
for (std::vector<thread_t>::iterator it = runners.begin(); it != runners.end(); ++it) {
|
|
ASSERT_TRUE(WaitForNonZero(&it->state, 30));
|
|
}
|
|
|
|
// Start all of the dumpers at once, they will spin until they are signalled
|
|
// to begin their dump run.
|
|
int32_t dump_now = 0;
|
|
for (size_t i = 0; i < NUM_THREADS; i++) {
|
|
dumpers[i].thread.tid = runners[i].tid;
|
|
dumpers[i].thread.state = 0;
|
|
dumpers[i].done = 0;
|
|
dumpers[i].now = &dump_now;
|
|
|
|
ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0);
|
|
}
|
|
|
|
// Start all of the dumpers going at once.
|
|
android_atomic_acquire_store(1, &dump_now);
|
|
|
|
for (size_t i = 0; i < NUM_THREADS; i++) {
|
|
ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 30));
|
|
|
|
// Tell the runner thread to exit its infinite loop.
|
|
android_atomic_acquire_store(0, &runners[i].state);
|
|
|
|
ASSERT_TRUE(dumpers[i].backtrace != nullptr);
|
|
VerifyMaxDump(dumpers[i].backtrace);
|
|
|
|
delete dumpers[i].backtrace;
|
|
dumpers[i].backtrace = nullptr;
|
|
}
|
|
}
|
|
|
|
TEST(libbacktrace, thread_multiple_dump_same_thread) {
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
thread_t runner;
|
|
runner.tid = 0;
|
|
runner.state = 0;
|
|
ASSERT_TRUE(pthread_create(&runner.threadId, &attr, ThreadMaxRun, &runner) == 0);
|
|
|
|
// Wait for tids to be set.
|
|
ASSERT_TRUE(WaitForNonZero(&runner.state, 30));
|
|
|
|
// Start all of the dumpers at once, they will spin until they are signalled
|
|
// to begin their dump run.
|
|
int32_t dump_now = 0;
|
|
// Dump the same thread NUM_THREADS simultaneously.
|
|
std::vector<dump_thread_t> dumpers(NUM_THREADS);
|
|
for (size_t i = 0; i < NUM_THREADS; i++) {
|
|
dumpers[i].thread.tid = runner.tid;
|
|
dumpers[i].thread.state = 0;
|
|
dumpers[i].done = 0;
|
|
dumpers[i].now = &dump_now;
|
|
|
|
ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0);
|
|
}
|
|
|
|
// Start all of the dumpers going at once.
|
|
android_atomic_acquire_store(1, &dump_now);
|
|
|
|
for (size_t i = 0; i < NUM_THREADS; i++) {
|
|
ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 30));
|
|
|
|
ASSERT_TRUE(dumpers[i].backtrace != nullptr);
|
|
VerifyMaxDump(dumpers[i].backtrace);
|
|
|
|
delete dumpers[i].backtrace;
|
|
dumpers[i].backtrace = nullptr;
|
|
}
|
|
|
|
// Tell the runner thread to exit its infinite loop.
|
|
android_atomic_acquire_store(0, &runner.state);
|
|
}
|
|
|
|
// This test is for UnwindMaps that should share the same map cursor when
|
|
// multiple maps are created for the current process at the same time.
|
|
TEST(libbacktrace, simultaneous_maps) {
|
|
BacktraceMap* map1 = BacktraceMap::Create(getpid());
|
|
BacktraceMap* map2 = BacktraceMap::Create(getpid());
|
|
BacktraceMap* map3 = BacktraceMap::Create(getpid());
|
|
|
|
Backtrace* back1 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map1);
|
|
EXPECT_TRUE(back1->Unwind(0));
|
|
delete back1;
|
|
delete map1;
|
|
|
|
Backtrace* back2 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map2);
|
|
EXPECT_TRUE(back2->Unwind(0));
|
|
delete back2;
|
|
delete map2;
|
|
|
|
Backtrace* back3 = Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD, map3);
|
|
EXPECT_TRUE(back3->Unwind(0));
|
|
delete back3;
|
|
delete map3;
|
|
}
|
|
|
|
TEST(libbacktrace, fillin_erases) {
|
|
BacktraceMap* back_map = BacktraceMap::Create(getpid());
|
|
|
|
backtrace_map_t map;
|
|
|
|
map.start = 1;
|
|
map.end = 3;
|
|
map.flags = 1;
|
|
map.name = "Initialized";
|
|
back_map->FillIn(0, &map);
|
|
delete back_map;
|
|
|
|
ASSERT_FALSE(BacktraceMap::IsValid(map));
|
|
ASSERT_EQ(static_cast<uintptr_t>(0), map.start);
|
|
ASSERT_EQ(static_cast<uintptr_t>(0), map.end);
|
|
ASSERT_EQ(0, map.flags);
|
|
ASSERT_EQ("", map.name);
|
|
}
|
|
|
|
TEST(libbacktrace, format_test) {
|
|
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), BACKTRACE_CURRENT_THREAD));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
|
|
backtrace_frame_data_t frame;
|
|
frame.num = 1;
|
|
frame.pc = 2;
|
|
frame.sp = 0;
|
|
frame.stack_size = 0;
|
|
frame.func_offset = 0;
|
|
|
|
// Check no map set.
|
|
frame.num = 1;
|
|
#if defined(__LP64__)
|
|
EXPECT_EQ("#01 pc 0000000000000002 <unknown>",
|
|
#else
|
|
EXPECT_EQ("#01 pc 00000002 <unknown>",
|
|
#endif
|
|
backtrace->FormatFrameData(&frame));
|
|
|
|
// Check map name empty, but exists.
|
|
frame.map.start = 1;
|
|
frame.map.end = 1;
|
|
#if defined(__LP64__)
|
|
EXPECT_EQ("#01 pc 0000000000000001 <unknown>",
|
|
#else
|
|
EXPECT_EQ("#01 pc 00000001 <unknown>",
|
|
#endif
|
|
backtrace->FormatFrameData(&frame));
|
|
|
|
|
|
// Check relative pc is set and map name is set.
|
|
frame.pc = 0x12345679;
|
|
frame.map.name = "MapFake";
|
|
frame.map.start = 1;
|
|
frame.map.end = 1;
|
|
#if defined(__LP64__)
|
|
EXPECT_EQ("#01 pc 0000000012345678 MapFake",
|
|
#else
|
|
EXPECT_EQ("#01 pc 12345678 MapFake",
|
|
#endif
|
|
backtrace->FormatFrameData(&frame));
|
|
|
|
// Check func_name is set, but no func offset.
|
|
frame.func_name = "ProcFake";
|
|
#if defined(__LP64__)
|
|
EXPECT_EQ("#01 pc 0000000012345678 MapFake (ProcFake)",
|
|
#else
|
|
EXPECT_EQ("#01 pc 12345678 MapFake (ProcFake)",
|
|
#endif
|
|
backtrace->FormatFrameData(&frame));
|
|
|
|
// Check func_name is set, and func offset is non-zero.
|
|
frame.func_offset = 645;
|
|
#if defined(__LP64__)
|
|
EXPECT_EQ("#01 pc 0000000012345678 MapFake (ProcFake+645)",
|
|
#else
|
|
EXPECT_EQ("#01 pc 12345678 MapFake (ProcFake+645)",
|
|
#endif
|
|
backtrace->FormatFrameData(&frame));
|
|
}
|
|
|
|
struct map_test_t {
|
|
uintptr_t start;
|
|
uintptr_t end;
|
|
};
|
|
|
|
bool map_sort(map_test_t i, map_test_t j) {
|
|
return i.start < j.start;
|
|
}
|
|
|
|
void VerifyMap(pid_t pid) {
|
|
char buffer[4096];
|
|
snprintf(buffer, sizeof(buffer), "/proc/%d/maps", pid);
|
|
|
|
FILE* map_file = fopen(buffer, "r");
|
|
ASSERT_TRUE(map_file != nullptr);
|
|
std::vector<map_test_t> test_maps;
|
|
while (fgets(buffer, sizeof(buffer), map_file)) {
|
|
map_test_t map;
|
|
ASSERT_EQ(2, sscanf(buffer, "%" SCNxPTR "-%" SCNxPTR " ", &map.start, &map.end));
|
|
test_maps.push_back(map);
|
|
}
|
|
fclose(map_file);
|
|
std::sort(test_maps.begin(), test_maps.end(), map_sort);
|
|
|
|
std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(pid));
|
|
|
|
// Basic test that verifies that the map is in the expected order.
|
|
std::vector<map_test_t>::const_iterator test_it = test_maps.begin();
|
|
for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) {
|
|
ASSERT_TRUE(test_it != test_maps.end());
|
|
ASSERT_EQ(test_it->start, it->start);
|
|
ASSERT_EQ(test_it->end, it->end);
|
|
++test_it;
|
|
}
|
|
ASSERT_TRUE(test_it == test_maps.end());
|
|
}
|
|
|
|
TEST(libbacktrace, verify_map_remote) {
|
|
pid_t pid;
|
|
|
|
if ((pid = fork()) == 0) {
|
|
while (true) {
|
|
}
|
|
_exit(0);
|
|
}
|
|
ASSERT_LT(0, pid);
|
|
|
|
ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0);
|
|
|
|
// Wait for the process to get to a stopping point.
|
|
WaitForStop(pid);
|
|
|
|
// The maps should match exactly since the forked process has been paused.
|
|
VerifyMap(pid);
|
|
|
|
ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);
|
|
|
|
kill(pid, SIGKILL);
|
|
ASSERT_EQ(waitpid(pid, nullptr, 0), pid);
|
|
}
|
|
|
|
void* ThreadReadTest(void* data) {
|
|
thread_t* thread_data = reinterpret_cast<thread_t*>(data);
|
|
|
|
thread_data->tid = gettid();
|
|
|
|
// Create two map pages.
|
|
// Mark the second page as not-readable.
|
|
size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE));
|
|
uint8_t* memory;
|
|
if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) {
|
|
return reinterpret_cast<void*>(-1);
|
|
}
|
|
|
|
if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) {
|
|
return reinterpret_cast<void*>(-1);
|
|
}
|
|
|
|
// Set up a simple pattern in memory.
|
|
for (size_t i = 0; i < pagesize; i++) {
|
|
memory[i] = i;
|
|
}
|
|
|
|
thread_data->data = memory;
|
|
|
|
// Tell the caller it's okay to start reading memory.
|
|
android_atomic_acquire_store(1, &thread_data->state);
|
|
|
|
// Loop waiting for everything
|
|
while (thread_data->state) {
|
|
}
|
|
|
|
free(memory);
|
|
|
|
android_atomic_acquire_store(1, &thread_data->state);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void RunReadTest(Backtrace* backtrace, uintptr_t read_addr) {
|
|
size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE));
|
|
|
|
// Create a page of data to use to do quick compares.
|
|
uint8_t* expected = new uint8_t[pagesize];
|
|
for (size_t i = 0; i < pagesize; i++) {
|
|
expected[i] = i;
|
|
}
|
|
uint8_t* data = new uint8_t[2*pagesize];
|
|
// Verify that we can only read one page worth of data.
|
|
size_t bytes_read = backtrace->Read(read_addr, data, 2 * pagesize);
|
|
ASSERT_EQ(pagesize, bytes_read);
|
|
ASSERT_TRUE(memcmp(data, expected, pagesize) == 0);
|
|
|
|
// Verify unaligned reads.
|
|
for (size_t i = 1; i < sizeof(word_t); i++) {
|
|
bytes_read = backtrace->Read(read_addr + i, data, 2 * sizeof(word_t));
|
|
ASSERT_EQ(2 * sizeof(word_t), bytes_read);
|
|
ASSERT_TRUE(memcmp(data, &expected[i], 2 * sizeof(word_t)) == 0)
|
|
<< "Offset at " << i << " failed";
|
|
}
|
|
delete data;
|
|
delete expected;
|
|
}
|
|
|
|
TEST(libbacktrace, thread_read) {
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
pthread_t thread;
|
|
thread_t thread_data = { 0, 0, 0, nullptr };
|
|
ASSERT_TRUE(pthread_create(&thread, &attr, ThreadReadTest, &thread_data) == 0);
|
|
|
|
ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10));
|
|
|
|
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), thread_data.tid));
|
|
ASSERT_TRUE(backtrace.get() != nullptr);
|
|
|
|
RunReadTest(backtrace.get(), reinterpret_cast<uintptr_t>(thread_data.data));
|
|
|
|
android_atomic_acquire_store(0, &thread_data.state);
|
|
|
|
ASSERT_TRUE(WaitForNonZero(&thread_data.state, 10));
|
|
}
|
|
|
|
volatile uintptr_t g_ready = 0;
|
|
volatile uintptr_t g_addr = 0;
|
|
|
|
void ForkedReadTest() {
|
|
// Create two map pages.
|
|
size_t pagesize = static_cast<size_t>(sysconf(_SC_PAGE_SIZE));
|
|
uint8_t* memory;
|
|
if (posix_memalign(reinterpret_cast<void**>(&memory), pagesize, 2 * pagesize) != 0) {
|
|
perror("Failed to allocate memory\n");
|
|
exit(1);
|
|
}
|
|
|
|
// Mark the second page as not-readable.
|
|
if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) {
|
|
perror("Failed to mprotect memory\n");
|
|
exit(1);
|
|
}
|
|
|
|
// Set up a simple pattern in memory.
|
|
for (size_t i = 0; i < pagesize; i++) {
|
|
memory[i] = i;
|
|
}
|
|
|
|
g_addr = reinterpret_cast<uintptr_t>(memory);
|
|
g_ready = 1;
|
|
|
|
while (1) {
|
|
usleep(US_PER_MSEC);
|
|
}
|
|
}
|
|
|
|
TEST(libbacktrace, process_read) {
|
|
pid_t pid;
|
|
if ((pid = fork()) == 0) {
|
|
ForkedReadTest();
|
|
exit(0);
|
|
}
|
|
ASSERT_NE(-1, pid);
|
|
|
|
bool test_executed = false;
|
|
uint64_t start = NanoTime();
|
|
while (1) {
|
|
if (ptrace(PTRACE_ATTACH, pid, 0, 0) == 0) {
|
|
WaitForStop(pid);
|
|
|
|
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, pid));
|
|
|
|
uintptr_t read_addr;
|
|
size_t bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(&g_ready),
|
|
reinterpret_cast<uint8_t*>(&read_addr),
|
|
sizeof(uintptr_t));
|
|
ASSERT_EQ(sizeof(uintptr_t), bytes_read);
|
|
if (read_addr) {
|
|
// The forked process is ready to be read.
|
|
bytes_read = backtrace->Read(reinterpret_cast<uintptr_t>(&g_addr),
|
|
reinterpret_cast<uint8_t*>(&read_addr),
|
|
sizeof(uintptr_t));
|
|
ASSERT_EQ(sizeof(uintptr_t), bytes_read);
|
|
|
|
RunReadTest(backtrace.get(), read_addr);
|
|
|
|
test_executed = true;
|
|
break;
|
|
}
|
|
ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);
|
|
}
|
|
if ((NanoTime() - start) > 5 * NS_PER_SEC) {
|
|
break;
|
|
}
|
|
usleep(US_PER_MSEC);
|
|
}
|
|
kill(pid, SIGKILL);
|
|
ASSERT_EQ(waitpid(pid, nullptr, 0), pid);
|
|
|
|
ASSERT_TRUE(test_executed);
|
|
}
|
|
|
|
#if defined(ENABLE_PSS_TESTS)
|
|
#include "GetPss.h"
|
|
|
|
#define MAX_LEAK_BYTES 32*1024UL
|
|
|
|
void CheckForLeak(pid_t pid, pid_t tid) {
|
|
// Do a few runs to get the PSS stable.
|
|
for (size_t i = 0; i < 100; i++) {
|
|
Backtrace* backtrace = Backtrace::Create(pid, tid);
|
|
ASSERT_TRUE(backtrace != nullptr);
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
delete backtrace;
|
|
}
|
|
size_t stable_pss = GetPssBytes();
|
|
|
|
// Loop enough that even a small leak should be detectable.
|
|
for (size_t i = 0; i < 4096; i++) {
|
|
Backtrace* backtrace = Backtrace::Create(pid, tid);
|
|
ASSERT_TRUE(backtrace != nullptr);
|
|
ASSERT_TRUE(backtrace->Unwind(0));
|
|
delete backtrace;
|
|
}
|
|
size_t new_pss = GetPssBytes();
|
|
size_t abs_diff = (new_pss > stable_pss) ? new_pss - stable_pss : stable_pss - new_pss;
|
|
// As long as the new pss is within a certain amount, consider everything okay.
|
|
ASSERT_LE(abs_diff, MAX_LEAK_BYTES);
|
|
}
|
|
|
|
TEST(libbacktrace, check_for_leak_local) {
|
|
CheckForLeak(BACKTRACE_CURRENT_PROCESS, BACKTRACE_CURRENT_THREAD);
|
|
}
|
|
|
|
TEST(libbacktrace, check_for_leak_local_thread) {
|
|
thread_t thread_data = { 0, 0, 0, nullptr };
|
|
pthread_t thread;
|
|
ASSERT_TRUE(pthread_create(&thread, nullptr, ThreadLevelRun, &thread_data) == 0);
|
|
|
|
// Wait up to 2 seconds for the tid to be set.
|
|
ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));
|
|
|
|
CheckForLeak(BACKTRACE_CURRENT_PROCESS, thread_data.tid);
|
|
|
|
// Tell the thread to exit its infinite loop.
|
|
android_atomic_acquire_store(0, &thread_data.state);
|
|
|
|
ASSERT_TRUE(pthread_join(thread, nullptr) == 0);
|
|
}
|
|
|
|
TEST(libbacktrace, check_for_leak_remote) {
|
|
pid_t pid;
|
|
|
|
if ((pid = fork()) == 0) {
|
|
while (true) {
|
|
}
|
|
_exit(0);
|
|
}
|
|
ASSERT_LT(0, pid);
|
|
|
|
ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0);
|
|
|
|
// Wait for the process to get to a stopping point.
|
|
WaitForStop(pid);
|
|
|
|
CheckForLeak(pid, BACKTRACE_CURRENT_THREAD);
|
|
|
|
ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);
|
|
|
|
kill(pid, SIGKILL);
|
|
ASSERT_EQ(waitpid(pid, nullptr, 0), pid);
|
|
}
|
|
#endif
|