android_system_core/fs_mgr/fs_mgr.c

639 lines
17 KiB
C

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* TO DO:
* 1. Re-direct fsck output to the kernel log?
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <ctype.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <libgen.h>
#include <time.h>
#include <private/android_filesystem_config.h>
#include <cutils/partition_utils.h>
#include <cutils/properties.h>
#include "fs_mgr_priv.h"
#define KEY_LOC_PROP "ro.crypto.keyfile.userdata"
#define KEY_IN_FOOTER "footer"
#define E2FSCK_BIN "/system/bin/e2fsck"
struct flag_list {
const char *name;
unsigned flag;
};
static struct flag_list mount_flags[] = {
{ "noatime", MS_NOATIME },
{ "noexec", MS_NOEXEC },
{ "nosuid", MS_NOSUID },
{ "nodev", MS_NODEV },
{ "nodiratime", MS_NODIRATIME },
{ "ro", MS_RDONLY },
{ "rw", 0 },
{ "remount", MS_REMOUNT },
{ "bind", MS_BIND },
{ "rec", MS_REC },
{ "unbindable", MS_UNBINDABLE },
{ "private", MS_PRIVATE },
{ "slave", MS_SLAVE },
{ "shared", MS_SHARED },
{ "defaults", 0 },
{ 0, 0 },
};
static struct flag_list fs_mgr_flags[] = {
{ "wait", MF_WAIT },
{ "check", MF_CHECK },
{ "encryptable=",MF_CRYPT },
{ "defaults", 0 },
{ 0, 0 },
};
/*
* gettime() - returns the time in seconds of the system's monotonic clock or
* zero on error.
*/
static time_t gettime(void)
{
struct timespec ts;
int ret;
ret = clock_gettime(CLOCK_MONOTONIC, &ts);
if (ret < 0) {
ERROR("clock_gettime(CLOCK_MONOTONIC) failed: %s\n", strerror(errno));
return 0;
}
return ts.tv_sec;
}
static int wait_for_file(const char *filename, int timeout)
{
struct stat info;
time_t timeout_time = gettime() + timeout;
int ret = -1;
while (gettime() < timeout_time && ((ret = stat(filename, &info)) < 0))
usleep(10000);
return ret;
}
static int parse_flags(char *flags, struct flag_list *fl, char **key_loc,
char *fs_options, int fs_options_len)
{
int f = 0;
int i;
char *p;
char *savep;
/* initialize key_loc to null, if we find an MF_CRYPT flag,
* then we'll set key_loc to the proper value */
if (key_loc) {
*key_loc = NULL;
}
/* initialize fs_options to the null string */
if (fs_options && (fs_options_len > 0)) {
fs_options[0] = '\0';
}
p = strtok_r(flags, ",", &savep);
while (p) {
/* Look for the flag "p" in the flag list "fl"
* If not found, the loop exits with fl[i].name being null.
*/
for (i = 0; fl[i].name; i++) {
if (!strncmp(p, fl[i].name, strlen(fl[i].name))) {
f |= fl[i].flag;
if ((fl[i].flag == MF_CRYPT) && key_loc) {
/* The encryptable flag is followed by an = and the
* location of the keys. Get it and return it.
*/
*key_loc = strdup(strchr(p, '=') + 1);
}
break;
}
}
if (!fl[i].name) {
if (fs_options) {
/* It's not a known flag, so it must be a filesystem specific
* option. Add it to fs_options if it was passed in.
*/
strlcat(fs_options, p, fs_options_len);
strlcat(fs_options, ",", fs_options_len);
} else {
/* fs_options was not passed in, so if the flag is unknown
* it's an error.
*/
ERROR("Warning: unknown flag %s\n", p);
}
}
p = strtok_r(NULL, ",", &savep);
}
out:
if (fs_options && fs_options[0]) {
/* remove the last trailing comma from the list of options */
fs_options[strlen(fs_options) - 1] = '\0';
}
return f;
}
/* Read a line of text till the next newline character.
* If no newline is found before the buffer is full, continue reading till a new line is seen,
* then return an empty buffer. This effectively ignores lines that are too long.
* On EOF, return null.
*/
static char *getline(char *buf, int size, FILE *file)
{
int cnt = 0;
int eof = 0;
int eol = 0;
int c;
if (size < 1) {
return NULL;
}
while (cnt < (size - 1)) {
c = getc(file);
if (c == EOF) {
eof = 1;
break;
}
*(buf + cnt) = c;
cnt++;
if (c == '\n') {
eol = 1;
break;
}
}
/* Null terminate what we've read */
*(buf + cnt) = '\0';
if (eof) {
if (cnt) {
return buf;
} else {
return NULL;
}
} else if (eol) {
return buf;
} else {
/* The line is too long. Read till a newline or EOF.
* If EOF, return null, if newline, return an empty buffer.
*/
while(1) {
c = getc(file);
if (c == EOF) {
return NULL;
} else if (c == '\n') {
*buf = '\0';
return buf;
}
}
}
}
static struct fstab_rec *read_fstab(char *fstab_path)
{
FILE *fstab_file;
int cnt, entries;
int len;
char line[256];
const char *delim = " \t";
char *save_ptr, *p;
struct fstab_rec *fstab;
char *key_loc;
#define FS_OPTIONS_LEN 1024
char tmp_fs_options[FS_OPTIONS_LEN];
fstab_file = fopen(fstab_path, "r");
if (!fstab_file) {
ERROR("Cannot open file %s\n", fstab_path);
return 0;
}
entries = 0;
while (getline(line, sizeof(line), fstab_file)) {
/* if the last character is a newline, shorten the string by 1 byte */
len = strlen(line);
if (line[len - 1] == '\n') {
line[len - 1] = '\0';
}
/* Skip any leading whitespace */
p = line;
while (isspace(*p)) {
p++;
}
/* ignore comments or empty lines */
if (*p == '#' || *p == '\0')
continue;
entries++;
}
if (!entries) {
ERROR("No entries found in fstab\n");
return 0;
}
fstab = calloc(entries + 1, sizeof(struct fstab_rec));
fseek(fstab_file, 0, SEEK_SET);
cnt = 0;
while (getline(line, sizeof(line), fstab_file)) {
/* if the last character is a newline, shorten the string by 1 byte */
len = strlen(line);
if (line[len - 1] == '\n') {
line[len - 1] = '\0';
}
/* Skip any leading whitespace */
p = line;
while (isspace(*p)) {
p++;
}
/* ignore comments or empty lines */
if (*p == '#' || *p == '\0')
continue;
/* If a non-comment entry is greater than the size we allocated, give an
* error and quit. This can happen in the unlikely case the file changes
* between the two reads.
*/
if (cnt >= entries) {
ERROR("Tried to process more entries than counted\n");
break;
}
if (!(p = strtok_r(line, delim, &save_ptr))) {
ERROR("Error parsing mount source\n");
return 0;
}
fstab[cnt].blk_dev = strdup(p);
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
ERROR("Error parsing mnt_point\n");
return 0;
}
fstab[cnt].mnt_point = strdup(p);
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
ERROR("Error parsing fs_type\n");
return 0;
}
fstab[cnt].type = strdup(p);
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
ERROR("Error parsing mount_flags\n");
return 0;
}
tmp_fs_options[0] = '\0';
fstab[cnt].flags = parse_flags(p, mount_flags, 0, tmp_fs_options, FS_OPTIONS_LEN);
/* fs_options are optional */
if (tmp_fs_options[0]) {
fstab[cnt].fs_options = strdup(tmp_fs_options);
} else {
fstab[cnt].fs_options = NULL;
}
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
ERROR("Error parsing fs_mgr_options\n");
return 0;
}
fstab[cnt].fs_mgr_flags = parse_flags(p, fs_mgr_flags, &key_loc, 0, 0);
fstab[cnt].key_loc = key_loc;
cnt++;
}
fclose(fstab_file);
return fstab;
}
static void free_fstab(struct fstab_rec *fstab)
{
int i = 0;
while (fstab[i].blk_dev) {
/* Free the pointers return by strdup(3) */
free(fstab[i].blk_dev);
free(fstab[i].mnt_point);
free(fstab[i].type);
free(fstab[i].fs_options);
free(fstab[i].key_loc);
i++;
}
/* Free the actual fstab array created by calloc(3) */
free(fstab);
}
static void check_fs(char *blk_dev, char *type, char *target)
{
pid_t pid;
int status;
int ret;
long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
char *tmpmnt_opts = "nomblk_io_submit,errors=remount-ro";
/* Check for the types of filesystems we know how to check */
if (!strcmp(type, "ext2") || !strcmp(type, "ext3") || !strcmp(type, "ext4")) {
/*
* First try to mount and unmount the filesystem. We do this because
* the kernel is more efficient than e2fsck in running the journal and
* processing orphaned inodes, and on at least one device with a
* performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
* to do what the kernel does in about a second.
*
* After mounting and unmounting the filesystem, run e2fsck, and if an
* error is recorded in the filesystem superblock, e2fsck will do a full
* check. Otherwise, it does nothing. If the kernel cannot mount the
* filesytsem due to an error, e2fsck is still run to do a full check
* fix the filesystem.
*/
ret = mount(blk_dev, target, type, tmpmnt_flags, tmpmnt_opts);
if (! ret) {
umount(target);
}
INFO("Running %s on %s\n", E2FSCK_BIN, blk_dev);
pid = fork();
if (pid > 0) {
/* Parent, wait for the child to return */
waitpid(pid, &status, 0);
} else if (pid == 0) {
/* child, run checker */
execlp(E2FSCK_BIN, E2FSCK_BIN, "-y", blk_dev, (char *)NULL);
/* Only gets here on error */
ERROR("Cannot run fs_mgr binary %s\n", E2FSCK_BIN);
} else {
/* No need to check for error in fork, we can't really handle it now */
ERROR("Fork failed trying to run %s\n", E2FSCK_BIN);
}
}
return;
}
static void remove_trailing_slashes(char *n)
{
int len;
len = strlen(n) - 1;
while ((*(n + len) == '/') && len) {
*(n + len) = '\0';
len--;
}
}
static int fs_match(char *in1, char *in2)
{
char *n1;
char *n2;
int ret;
n1 = strdup(in1);
n2 = strdup(in2);
remove_trailing_slashes(n1);
remove_trailing_slashes(n2);
ret = !strcmp(n1, n2);
free(n1);
free(n2);
return ret;
}
int fs_mgr_mount_all(char *fstab_file)
{
int i = 0;
int encrypted = 0;
int ret = -1;
int mret;
struct fstab_rec *fstab = 0;
if (!(fstab = read_fstab(fstab_file))) {
return ret;
}
for (i = 0; fstab[i].blk_dev; i++) {
if (fstab[i].fs_mgr_flags & MF_WAIT) {
wait_for_file(fstab[i].blk_dev, WAIT_TIMEOUT);
}
if (fstab[i].fs_mgr_flags & MF_CHECK) {
check_fs(fstab[i].blk_dev, fstab[i].type, fstab[i].mnt_point);
}
mret = mount(fstab[i].blk_dev, fstab[i].mnt_point, fstab[i].type,
fstab[i].flags, fstab[i].fs_options);
if (!mret) {
/* Success! Go get the next one */
continue;
}
/* mount(2) returned an error, check if it's encrypted and deal with it */
if ((fstab[i].fs_mgr_flags & MF_CRYPT) && !partition_wiped(fstab[i].blk_dev)) {
/* Need to mount a tmpfs at this mountpoint for now, and set
* properties that vold will query later for decrypting
*/
if (mount("tmpfs", fstab[i].mnt_point, "tmpfs",
MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS) < 0) {
ERROR("Cannot mount tmpfs filesystem for encrypted fs at %s\n",
fstab[i].mnt_point);
goto out;
}
encrypted = 1;
} else {
ERROR("Cannot mount filesystem on %s at %s\n",
fstab[i].blk_dev, fstab[i].mnt_point);
goto out;
}
}
if (encrypted) {
ret = 1;
} else {
ret = 0;
}
out:
free_fstab(fstab);
return ret;
}
/* If tmp_mnt_point is non-null, mount the filesystem there. This is for the
* tmp mount we do to check the user password
*/
int fs_mgr_do_mount(char *fstab_file, char *n_name, char *n_blk_dev, char *tmp_mnt_point)
{
int i = 0;
int ret = -1;
struct fstab_rec *fstab = 0;
char *m;
if (!(fstab = read_fstab(fstab_file))) {
return ret;
}
for (i = 0; fstab[i].blk_dev; i++) {
if (!fs_match(fstab[i].mnt_point, n_name)) {
continue;
}
/* We found our match */
/* First check the filesystem if requested */
if (fstab[i].fs_mgr_flags & MF_WAIT) {
wait_for_file(fstab[i].blk_dev, WAIT_TIMEOUT);
}
if (fstab[i].fs_mgr_flags & MF_CHECK) {
check_fs(fstab[i].blk_dev, fstab[i].type, fstab[i].mnt_point);
}
/* Now mount it where requested */
if (tmp_mnt_point) {
m = tmp_mnt_point;
} else {
m = fstab[i].mnt_point;
}
if (mount(n_blk_dev, m, fstab[i].type,
fstab[i].flags, fstab[i].fs_options)) {
ERROR("Cannot mount filesystem on %s at %s\n",
n_blk_dev, m);
goto out;
} else {
ret = 0;
goto out;
}
}
/* We didn't find a match, say so and return an error */
ERROR("Cannot find mount point %s in fstab\n", fstab[i].mnt_point);
out:
free_fstab(fstab);
return ret;
}
/*
* mount a tmpfs filesystem at the given point.
* return 0 on success, non-zero on failure.
*/
int fs_mgr_do_tmpfs_mount(char *n_name)
{
int ret;
ret = mount("tmpfs", n_name, "tmpfs",
MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS);
if (ret < 0) {
ERROR("Cannot mount tmpfs filesystem at %s\n", n_name);
return -1;
}
/* Success */
return 0;
}
int fs_mgr_unmount_all(char *fstab_file)
{
int i = 0;
int ret = 0;
struct fstab_rec *fstab = 0;
if (!(fstab = read_fstab(fstab_file))) {
return -1;
}
while (fstab[i].blk_dev) {
if (umount(fstab[i].mnt_point)) {
ERROR("Cannot unmount filesystem at %s\n", fstab[i].mnt_point);
ret = -1;
}
i++;
}
free_fstab(fstab);
return ret;
}
/*
* key_loc must be at least PROPERTY_VALUE_MAX bytes long
*
* real_blk_dev must be at least PROPERTY_VALUE_MAX bytes long
*/
int fs_mgr_get_crypt_info(char *fstab_file, char *key_loc, char *real_blk_dev, int size)
{
int i = 0;
struct fstab_rec *fstab = 0;
if (!(fstab = read_fstab(fstab_file))) {
return -1;
}
/* Initialize return values to null strings */
if (key_loc) {
*key_loc = '\0';
}
if (real_blk_dev) {
*real_blk_dev = '\0';
}
/* Look for the encryptable partition to find the data */
for (i = 0; fstab[i].blk_dev; i++) {
if (!(fstab[i].fs_mgr_flags & MF_CRYPT)) {
continue;
}
/* We found a match */
if (key_loc) {
strlcpy(key_loc, fstab[i].key_loc, size);
}
if (real_blk_dev) {
strlcpy(real_blk_dev, fstab[i].blk_dev, size);
}
break;
}
free_fstab(fstab);
return 0;
}