android_system_core/libunwindstack/Regs.cpp

661 lines
18 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <stdint.h>
#include <sys/ptrace.h>
#include <sys/uio.h>
#include <vector>
#include <unwindstack/Elf.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>
#include "Check.h"
#include "Machine.h"
#include "Ucontext.h"
#include "User.h"
namespace unwindstack {
RegsArm::RegsArm()
: RegsImpl<uint32_t>(ARM_REG_LAST, ARM_REG_SP, Location(LOCATION_REGISTER, ARM_REG_LR)) {}
uint32_t RegsArm::MachineType() {
return EM_ARM;
}
uint64_t RegsArm::GetAdjustedPc(uint64_t rel_pc, Elf* elf) {
if (!elf->valid()) {
return rel_pc;
}
uint64_t load_bias = elf->GetLoadBias();
if (rel_pc < load_bias) {
return rel_pc;
}
uint64_t adjusted_rel_pc = rel_pc - load_bias;
if (adjusted_rel_pc < 5) {
return rel_pc;
}
if (adjusted_rel_pc & 1) {
// This is a thumb instruction, it could be 2 or 4 bytes.
uint32_t value;
if (rel_pc < 5 || !elf->memory()->ReadFully(adjusted_rel_pc - 5, &value, sizeof(value)) ||
(value & 0xe000f000) != 0xe000f000) {
return rel_pc - 2;
}
}
return rel_pc - 4;
}
void RegsArm::SetFromRaw() {
set_pc(regs_[ARM_REG_PC]);
set_sp(regs_[ARM_REG_SP]);
}
bool RegsArm::SetPcFromReturnAddress(Memory*) {
if (pc() == regs_[ARM_REG_LR]) {
return false;
}
set_pc(regs_[ARM_REG_LR]);
return true;
}
void RegsArm::IterateRegisters(std::function<void(const char*, uint64_t)> fn) {
fn("r0", regs_[ARM_REG_R0]);
fn("r1", regs_[ARM_REG_R1]);
fn("r2", regs_[ARM_REG_R2]);
fn("r3", regs_[ARM_REG_R3]);
fn("r4", regs_[ARM_REG_R4]);
fn("r5", regs_[ARM_REG_R5]);
fn("r6", regs_[ARM_REG_R6]);
fn("r7", regs_[ARM_REG_R7]);
fn("r8", regs_[ARM_REG_R8]);
fn("r9", regs_[ARM_REG_R9]);
fn("r10", regs_[ARM_REG_R10]);
fn("r11", regs_[ARM_REG_R11]);
fn("ip", regs_[ARM_REG_R12]);
fn("sp", regs_[ARM_REG_SP]);
fn("lr", regs_[ARM_REG_LR]);
fn("pc", regs_[ARM_REG_PC]);
}
RegsArm64::RegsArm64()
: RegsImpl<uint64_t>(ARM64_REG_LAST, ARM64_REG_SP, Location(LOCATION_REGISTER, ARM64_REG_LR)) {}
uint32_t RegsArm64::MachineType() {
return EM_AARCH64;
}
uint64_t RegsArm64::GetAdjustedPc(uint64_t rel_pc, Elf* elf) {
if (!elf->valid()) {
return rel_pc;
}
if (rel_pc < 4) {
return rel_pc;
}
return rel_pc - 4;
}
void RegsArm64::SetFromRaw() {
set_pc(regs_[ARM64_REG_PC]);
set_sp(regs_[ARM64_REG_SP]);
}
bool RegsArm64::SetPcFromReturnAddress(Memory*) {
if (pc() == regs_[ARM64_REG_LR]) {
return false;
}
set_pc(regs_[ARM64_REG_LR]);
return true;
}
void RegsArm64::IterateRegisters(std::function<void(const char*, uint64_t)> fn) {
fn("x0", regs_[ARM64_REG_R0]);
fn("x1", regs_[ARM64_REG_R1]);
fn("x2", regs_[ARM64_REG_R2]);
fn("x3", regs_[ARM64_REG_R3]);
fn("x4", regs_[ARM64_REG_R4]);
fn("x5", regs_[ARM64_REG_R5]);
fn("x6", regs_[ARM64_REG_R6]);
fn("x7", regs_[ARM64_REG_R7]);
fn("x8", regs_[ARM64_REG_R8]);
fn("x9", regs_[ARM64_REG_R9]);
fn("x10", regs_[ARM64_REG_R10]);
fn("x11", regs_[ARM64_REG_R11]);
fn("x12", regs_[ARM64_REG_R12]);
fn("x13", regs_[ARM64_REG_R13]);
fn("x14", regs_[ARM64_REG_R14]);
fn("x15", regs_[ARM64_REG_R15]);
fn("x16", regs_[ARM64_REG_R16]);
fn("x17", regs_[ARM64_REG_R17]);
fn("x18", regs_[ARM64_REG_R18]);
fn("x19", regs_[ARM64_REG_R19]);
fn("x20", regs_[ARM64_REG_R20]);
fn("x21", regs_[ARM64_REG_R21]);
fn("x22", regs_[ARM64_REG_R22]);
fn("x23", regs_[ARM64_REG_R23]);
fn("x24", regs_[ARM64_REG_R24]);
fn("x25", regs_[ARM64_REG_R25]);
fn("x26", regs_[ARM64_REG_R26]);
fn("x27", regs_[ARM64_REG_R27]);
fn("x28", regs_[ARM64_REG_R28]);
fn("x29", regs_[ARM64_REG_R29]);
fn("sp", regs_[ARM64_REG_SP]);
fn("lr", regs_[ARM64_REG_LR]);
fn("pc", regs_[ARM64_REG_PC]);
}
RegsX86::RegsX86()
: RegsImpl<uint32_t>(X86_REG_LAST, X86_REG_SP, Location(LOCATION_SP_OFFSET, -4)) {}
uint32_t RegsX86::MachineType() {
return EM_386;
}
uint64_t RegsX86::GetAdjustedPc(uint64_t rel_pc, Elf* elf) {
if (!elf->valid()) {
return rel_pc;
}
if (rel_pc == 0) {
return 0;
}
return rel_pc - 1;
}
void RegsX86::SetFromRaw() {
set_pc(regs_[X86_REG_PC]);
set_sp(regs_[X86_REG_SP]);
}
bool RegsX86::SetPcFromReturnAddress(Memory* process_memory) {
// Attempt to get the return address from the top of the stack.
uint32_t new_pc;
if (!process_memory->ReadFully(sp_, &new_pc, sizeof(new_pc)) || new_pc == pc()) {
return false;
}
set_pc(new_pc);
return true;
}
void RegsX86::IterateRegisters(std::function<void(const char*, uint64_t)> fn) {
fn("eax", regs_[X86_REG_EAX]);
fn("ebx", regs_[X86_REG_EBX]);
fn("ecx", regs_[X86_REG_ECX]);
fn("edx", regs_[X86_REG_EDX]);
fn("ebp", regs_[X86_REG_EBP]);
fn("edi", regs_[X86_REG_EDI]);
fn("esi", regs_[X86_REG_ESI]);
fn("esp", regs_[X86_REG_ESP]);
fn("eip", regs_[X86_REG_EIP]);
}
RegsX86_64::RegsX86_64()
: RegsImpl<uint64_t>(X86_64_REG_LAST, X86_64_REG_SP, Location(LOCATION_SP_OFFSET, -8)) {}
uint32_t RegsX86_64::MachineType() {
return EM_X86_64;
}
uint64_t RegsX86_64::GetAdjustedPc(uint64_t rel_pc, Elf* elf) {
if (!elf->valid()) {
return rel_pc;
}
if (rel_pc == 0) {
return 0;
}
return rel_pc - 1;
}
void RegsX86_64::SetFromRaw() {
set_pc(regs_[X86_64_REG_PC]);
set_sp(regs_[X86_64_REG_SP]);
}
bool RegsX86_64::SetPcFromReturnAddress(Memory* process_memory) {
// Attempt to get the return address from the top of the stack.
uint64_t new_pc;
if (!process_memory->ReadFully(sp_, &new_pc, sizeof(new_pc)) || new_pc == pc()) {
return false;
}
set_pc(new_pc);
return true;
}
void RegsX86_64::IterateRegisters(std::function<void(const char*, uint64_t)> fn) {
fn("rax", regs_[X86_64_REG_RAX]);
fn("rbx", regs_[X86_64_REG_RBX]);
fn("rcx", regs_[X86_64_REG_RCX]);
fn("rdx", regs_[X86_64_REG_RDX]);
fn("r8", regs_[X86_64_REG_R8]);
fn("r9", regs_[X86_64_REG_R9]);
fn("r10", regs_[X86_64_REG_R10]);
fn("r11", regs_[X86_64_REG_R11]);
fn("r12", regs_[X86_64_REG_R12]);
fn("r13", regs_[X86_64_REG_R13]);
fn("r14", regs_[X86_64_REG_R14]);
fn("r15", regs_[X86_64_REG_R15]);
fn("rdi", regs_[X86_64_REG_RDI]);
fn("rsi", regs_[X86_64_REG_RSI]);
fn("rbp", regs_[X86_64_REG_RBP]);
fn("rsp", regs_[X86_64_REG_RSP]);
fn("rip", regs_[X86_64_REG_RIP]);
}
static Regs* ReadArm(void* remote_data) {
arm_user_regs* user = reinterpret_cast<arm_user_regs*>(remote_data);
RegsArm* regs = new RegsArm();
memcpy(regs->RawData(), &user->regs[0], ARM_REG_LAST * sizeof(uint32_t));
regs->SetFromRaw();
return regs;
}
static Regs* ReadArm64(void* remote_data) {
arm64_user_regs* user = reinterpret_cast<arm64_user_regs*>(remote_data);
RegsArm64* regs = new RegsArm64();
memcpy(regs->RawData(), &user->regs[0], (ARM64_REG_R31 + 1) * sizeof(uint64_t));
uint64_t* reg_data = reinterpret_cast<uint64_t*>(regs->RawData());
reg_data[ARM64_REG_PC] = user->pc;
reg_data[ARM64_REG_SP] = user->sp;
regs->SetFromRaw();
return regs;
}
static Regs* ReadX86(void* remote_data) {
x86_user_regs* user = reinterpret_cast<x86_user_regs*>(remote_data);
RegsX86* regs = new RegsX86();
(*regs)[X86_REG_EAX] = user->eax;
(*regs)[X86_REG_EBX] = user->ebx;
(*regs)[X86_REG_ECX] = user->ecx;
(*regs)[X86_REG_EDX] = user->edx;
(*regs)[X86_REG_EBP] = user->ebp;
(*regs)[X86_REG_EDI] = user->edi;
(*regs)[X86_REG_ESI] = user->esi;
(*regs)[X86_REG_ESP] = user->esp;
(*regs)[X86_REG_EIP] = user->eip;
regs->SetFromRaw();
return regs;
}
static Regs* ReadX86_64(void* remote_data) {
x86_64_user_regs* user = reinterpret_cast<x86_64_user_regs*>(remote_data);
RegsX86_64* regs = new RegsX86_64();
(*regs)[X86_64_REG_RAX] = user->rax;
(*regs)[X86_64_REG_RBX] = user->rbx;
(*regs)[X86_64_REG_RCX] = user->rcx;
(*regs)[X86_64_REG_RDX] = user->rdx;
(*regs)[X86_64_REG_R8] = user->r8;
(*regs)[X86_64_REG_R9] = user->r9;
(*regs)[X86_64_REG_R10] = user->r10;
(*regs)[X86_64_REG_R11] = user->r11;
(*regs)[X86_64_REG_R12] = user->r12;
(*regs)[X86_64_REG_R13] = user->r13;
(*regs)[X86_64_REG_R14] = user->r14;
(*regs)[X86_64_REG_R15] = user->r15;
(*regs)[X86_64_REG_RDI] = user->rdi;
(*regs)[X86_64_REG_RSI] = user->rsi;
(*regs)[X86_64_REG_RBP] = user->rbp;
(*regs)[X86_64_REG_RSP] = user->rsp;
(*regs)[X86_64_REG_RIP] = user->rip;
regs->SetFromRaw();
return regs;
}
// This function assumes that reg_data is already aligned to a 64 bit value.
// If not this could crash with an unaligned access.
Regs* Regs::RemoteGet(pid_t pid) {
// Make the buffer large enough to contain the largest registers type.
std::vector<uint64_t> buffer(MAX_USER_REGS_SIZE / sizeof(uint64_t));
struct iovec io;
io.iov_base = buffer.data();
io.iov_len = buffer.size() * sizeof(uint64_t);
if (ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, reinterpret_cast<void*>(&io)) == -1) {
return nullptr;
}
switch (io.iov_len) {
case sizeof(x86_user_regs):
return ReadX86(buffer.data());
case sizeof(x86_64_user_regs):
return ReadX86_64(buffer.data());
case sizeof(arm_user_regs):
return ReadArm(buffer.data());
case sizeof(arm64_user_regs):
return ReadArm64(buffer.data());
}
return nullptr;
}
static Regs* CreateFromArmUcontext(void* ucontext) {
arm_ucontext_t* arm_ucontext = reinterpret_cast<arm_ucontext_t*>(ucontext);
RegsArm* regs = new RegsArm();
memcpy(regs->RawData(), &arm_ucontext->uc_mcontext.regs[0], ARM_REG_LAST * sizeof(uint32_t));
regs->SetFromRaw();
return regs;
}
static Regs* CreateFromArm64Ucontext(void* ucontext) {
arm64_ucontext_t* arm64_ucontext = reinterpret_cast<arm64_ucontext_t*>(ucontext);
RegsArm64* regs = new RegsArm64();
memcpy(regs->RawData(), &arm64_ucontext->uc_mcontext.regs[0], ARM64_REG_LAST * sizeof(uint64_t));
regs->SetFromRaw();
return regs;
}
void RegsX86::SetFromUcontext(x86_ucontext_t* ucontext) {
// Put the registers in the expected order.
regs_[X86_REG_EDI] = ucontext->uc_mcontext.edi;
regs_[X86_REG_ESI] = ucontext->uc_mcontext.esi;
regs_[X86_REG_EBP] = ucontext->uc_mcontext.ebp;
regs_[X86_REG_ESP] = ucontext->uc_mcontext.esp;
regs_[X86_REG_EBX] = ucontext->uc_mcontext.ebx;
regs_[X86_REG_EDX] = ucontext->uc_mcontext.edx;
regs_[X86_REG_ECX] = ucontext->uc_mcontext.ecx;
regs_[X86_REG_EAX] = ucontext->uc_mcontext.eax;
regs_[X86_REG_EIP] = ucontext->uc_mcontext.eip;
SetFromRaw();
}
static Regs* CreateFromX86Ucontext(void* ucontext) {
x86_ucontext_t* x86_ucontext = reinterpret_cast<x86_ucontext_t*>(ucontext);
RegsX86* regs = new RegsX86();
regs->SetFromUcontext(x86_ucontext);
return regs;
}
void RegsX86_64::SetFromUcontext(x86_64_ucontext_t* ucontext) {
// R8-R15
memcpy(&regs_[X86_64_REG_R8], &ucontext->uc_mcontext.r8, 8 * sizeof(uint64_t));
// Rest of the registers.
regs_[X86_64_REG_RDI] = ucontext->uc_mcontext.rdi;
regs_[X86_64_REG_RSI] = ucontext->uc_mcontext.rsi;
regs_[X86_64_REG_RBP] = ucontext->uc_mcontext.rbp;
regs_[X86_64_REG_RBX] = ucontext->uc_mcontext.rbx;
regs_[X86_64_REG_RDX] = ucontext->uc_mcontext.rdx;
regs_[X86_64_REG_RAX] = ucontext->uc_mcontext.rax;
regs_[X86_64_REG_RCX] = ucontext->uc_mcontext.rcx;
regs_[X86_64_REG_RSP] = ucontext->uc_mcontext.rsp;
regs_[X86_64_REG_RIP] = ucontext->uc_mcontext.rip;
SetFromRaw();
}
static Regs* CreateFromX86_64Ucontext(void* ucontext) {
x86_64_ucontext_t* x86_64_ucontext = reinterpret_cast<x86_64_ucontext_t*>(ucontext);
RegsX86_64* regs = new RegsX86_64();
regs->SetFromUcontext(x86_64_ucontext);
return regs;
}
Regs* Regs::CreateFromUcontext(uint32_t machine_type, void* ucontext) {
switch (machine_type) {
case EM_386:
return CreateFromX86Ucontext(ucontext);
case EM_X86_64:
return CreateFromX86_64Ucontext(ucontext);
case EM_ARM:
return CreateFromArmUcontext(ucontext);
case EM_AARCH64:
return CreateFromArm64Ucontext(ucontext);
}
return nullptr;
}
uint32_t Regs::CurrentMachineType() {
#if defined(__arm__)
return EM_ARM;
#elif defined(__aarch64__)
return EM_AARCH64;
#elif defined(__i386__)
return EM_386;
#elif defined(__x86_64__)
return EM_X86_64;
#else
abort();
#endif
}
Regs* Regs::CreateFromLocal() {
Regs* regs;
#if defined(__arm__)
regs = new RegsArm();
#elif defined(__aarch64__)
regs = new RegsArm64();
#elif defined(__i386__)
regs = new RegsX86();
#elif defined(__x86_64__)
regs = new RegsX86_64();
#else
abort();
#endif
return regs;
}
bool RegsArm::StepIfSignalHandler(uint64_t rel_pc, Elf* elf, Memory* process_memory) {
uint32_t data;
Memory* elf_memory = elf->memory();
// Read from elf memory since it is usually more expensive to read from
// process memory.
if (!elf_memory->ReadFully(rel_pc, &data, sizeof(data))) {
return false;
}
uint64_t offset = 0;
if (data == 0xe3a07077 || data == 0xef900077 || data == 0xdf002777) {
// non-RT sigreturn call.
// __restore:
//
// Form 1 (arm):
// 0x77 0x70 mov r7, #0x77
// 0xa0 0xe3 svc 0x00000000
//
// Form 2 (arm):
// 0x77 0x00 0x90 0xef svc 0x00900077
//
// Form 3 (thumb):
// 0x77 0x27 movs r7, #77
// 0x00 0xdf svc 0
if (!process_memory->ReadFully(sp(), &data, sizeof(data))) {
return false;
}
if (data == 0x5ac3c35a) {
// SP + uc_mcontext offset + r0 offset.
offset = sp() + 0x14 + 0xc;
} else {
// SP + r0 offset
offset = sp() + 0xc;
}
} else if (data == 0xe3a070ad || data == 0xef9000ad || data == 0xdf0027ad) {
// RT sigreturn call.
// __restore_rt:
//
// Form 1 (arm):
// 0xad 0x70 mov r7, #0xad
// 0xa0 0xe3 svc 0x00000000
//
// Form 2 (arm):
// 0xad 0x00 0x90 0xef svc 0x009000ad
//
// Form 3 (thumb):
// 0xad 0x27 movs r7, #ad
// 0x00 0xdf svc 0
if (!process_memory->ReadFully(sp(), &data, sizeof(data))) {
return false;
}
if (data == sp() + 8) {
// SP + 8 + sizeof(siginfo_t) + uc_mcontext_offset + r0 offset
offset = sp() + 8 + 0x80 + 0x14 + 0xc;
} else {
// SP + sizeof(siginfo_t) + uc_mcontext_offset + r0 offset
offset = sp() + 0x80 + 0x14 + 0xc;
}
}
if (offset == 0) {
return false;
}
if (!process_memory->ReadFully(offset, regs_.data(), sizeof(uint32_t) * ARM_REG_LAST)) {
return false;
}
SetFromRaw();
return true;
}
bool RegsArm64::StepIfSignalHandler(uint64_t rel_pc, Elf* elf, Memory* process_memory) {
uint64_t data;
Memory* elf_memory = elf->memory();
// Read from elf memory since it is usually more expensive to read from
// process memory.
if (!elf_memory->ReadFully(rel_pc, &data, sizeof(data))) {
return false;
}
// Look for the kernel sigreturn function.
// __kernel_rt_sigreturn:
// 0xd2801168 mov x8, #0x8b
// 0xd4000001 svc #0x0
if (data != 0xd4000001d2801168ULL) {
return false;
}
// SP + sizeof(siginfo_t) + uc_mcontext offset + X0 offset.
if (!process_memory->ReadFully(sp() + 0x80 + 0xb0 + 0x08, regs_.data(),
sizeof(uint64_t) * ARM64_REG_LAST)) {
return false;
}
SetFromRaw();
return true;
}
bool RegsX86::StepIfSignalHandler(uint64_t rel_pc, Elf* elf, Memory* process_memory) {
uint64_t data;
Memory* elf_memory = elf->memory();
// Read from elf memory since it is usually more expensive to read from
// process memory.
if (!elf_memory->ReadFully(rel_pc, &data, sizeof(data))) {
return false;
}
if (data == 0x80cd00000077b858ULL) {
// Without SA_SIGINFO set, the return sequence is:
//
// __restore:
// 0x58 pop %eax
// 0xb8 0x77 0x00 0x00 0x00 movl 0x77,%eax
// 0xcd 0x80 int 0x80
//
// SP points at arguments:
// int signum
// struct sigcontext (same format as mcontext)
struct x86_mcontext_t context;
if (!process_memory->ReadFully(sp() + 4, &context, sizeof(context))) {
return false;
}
regs_[X86_REG_EBP] = context.ebp;
regs_[X86_REG_ESP] = context.esp;
regs_[X86_REG_EBX] = context.ebx;
regs_[X86_REG_EDX] = context.edx;
regs_[X86_REG_ECX] = context.ecx;
regs_[X86_REG_EAX] = context.eax;
regs_[X86_REG_EIP] = context.eip;
SetFromRaw();
return true;
} else if ((data & 0x00ffffffffffffffULL) == 0x0080cd000000adb8ULL) {
// With SA_SIGINFO set, the return sequence is:
//
// __restore_rt:
// 0xb8 0xad 0x00 0x00 0x00 movl 0xad,%eax
// 0xcd 0x80 int 0x80
//
// SP points at arguments:
// int signum
// siginfo*
// ucontext*
// Get the location of the sigcontext data.
uint32_t ptr;
if (!process_memory->ReadFully(sp() + 8, &ptr, sizeof(ptr))) {
return false;
}
// Only read the portion of the data structure we care about.
x86_ucontext_t x86_ucontext;
if (!process_memory->ReadFully(ptr + 0x14, &x86_ucontext.uc_mcontext, sizeof(x86_mcontext_t))) {
return false;
}
SetFromUcontext(&x86_ucontext);
return true;
}
return false;
}
bool RegsX86_64::StepIfSignalHandler(uint64_t rel_pc, Elf* elf, Memory* process_memory) {
uint64_t data;
Memory* elf_memory = elf->memory();
// Read from elf memory since it is usually more expensive to read from
// process memory.
if (!elf_memory->ReadFully(rel_pc, &data, sizeof(data)) || data != 0x0f0000000fc0c748) {
return false;
}
uint16_t data2;
if (!elf_memory->ReadFully(rel_pc + 8, &data2, sizeof(data2)) || data2 != 0x0f05) {
return false;
}
// __restore_rt:
// 0x48 0xc7 0xc0 0x0f 0x00 0x00 0x00 mov $0xf,%rax
// 0x0f 0x05 syscall
// 0x0f nopl 0x0($rax)
// Read the mcontext data from the stack.
// sp points to the ucontext data structure, read only the mcontext part.
x86_64_ucontext_t x86_64_ucontext;
if (!process_memory->ReadFully(sp() + 0x28, &x86_64_ucontext.uc_mcontext,
sizeof(x86_64_mcontext_t))) {
return false;
}
SetFromUcontext(&x86_64_ucontext);
return true;
}
} // namespace unwindstack