1716 lines
63 KiB
C++
1716 lines
63 KiB
C++
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "fs_mgr.h"
|
|
|
|
#include <ctype.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <libgen.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/swap.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include <functional>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <android-base/file.h>
|
|
#include <android-base/properties.h>
|
|
#include <android-base/stringprintf.h>
|
|
#include <android-base/strings.h>
|
|
#include <android-base/unique_fd.h>
|
|
#include <cutils/android_filesystem_config.h>
|
|
#include <cutils/android_reboot.h>
|
|
#include <cutils/partition_utils.h>
|
|
#include <cutils/properties.h>
|
|
#include <ext4_utils/ext4.h>
|
|
#include <ext4_utils/ext4_sb.h>
|
|
#include <ext4_utils/ext4_utils.h>
|
|
#include <ext4_utils/wipe.h>
|
|
#include <fs_avb/fs_avb.h>
|
|
#include <fs_mgr_overlayfs.h>
|
|
#include <libdm/dm.h>
|
|
#include <liblp/metadata_format.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/loop.h>
|
|
#include <linux/magic.h>
|
|
#include <log/log_properties.h>
|
|
#include <logwrap/logwrap.h>
|
|
|
|
#include "fs_mgr_priv.h"
|
|
|
|
#define KEY_LOC_PROP "ro.crypto.keyfile.userdata"
|
|
#define KEY_IN_FOOTER "footer"
|
|
|
|
#define E2FSCK_BIN "/system/bin/e2fsck"
|
|
#define F2FS_FSCK_BIN "/system/bin/fsck.f2fs"
|
|
#define MKSWAP_BIN "/system/bin/mkswap"
|
|
#define TUNE2FS_BIN "/system/bin/tune2fs"
|
|
|
|
#define FSCK_LOG_FILE "/dev/fscklogs/log"
|
|
|
|
#define ZRAM_CONF_DEV "/sys/block/zram0/disksize"
|
|
#define ZRAM_CONF_MCS "/sys/block/zram0/max_comp_streams"
|
|
#define ZRAM_BACK_DEV "/sys/block/zram0/backing_dev"
|
|
|
|
#define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity"
|
|
|
|
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
|
|
|
|
using android::base::Basename;
|
|
using android::base::Realpath;
|
|
using android::base::StartsWith;
|
|
using android::base::unique_fd;
|
|
using android::dm::DeviceMapper;
|
|
using android::dm::DmDeviceState;
|
|
|
|
// Realistically, this file should be part of the android::fs_mgr namespace;
|
|
using namespace android::fs_mgr;
|
|
|
|
using namespace std::literals;
|
|
|
|
// record fs stat
|
|
enum FsStatFlags {
|
|
FS_STAT_IS_EXT4 = 0x0001,
|
|
FS_STAT_NEW_IMAGE_VERSION = 0x0002,
|
|
FS_STAT_E2FSCK_F_ALWAYS = 0x0004,
|
|
FS_STAT_UNCLEAN_SHUTDOWN = 0x0008,
|
|
FS_STAT_QUOTA_ENABLED = 0x0010,
|
|
FS_STAT_RO_MOUNT_FAILED = 0x0040,
|
|
FS_STAT_RO_UNMOUNT_FAILED = 0x0080,
|
|
FS_STAT_FULL_MOUNT_FAILED = 0x0100,
|
|
FS_STAT_E2FSCK_FAILED = 0x0200,
|
|
FS_STAT_E2FSCK_FS_FIXED = 0x0400,
|
|
FS_STAT_INVALID_MAGIC = 0x0800,
|
|
FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000,
|
|
FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000,
|
|
FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000,
|
|
FS_STAT_ENABLE_VERITY_FAILED = 0x80000,
|
|
};
|
|
|
|
// TODO: switch to inotify()
|
|
bool fs_mgr_wait_for_file(const std::string& filename,
|
|
const std::chrono::milliseconds relative_timeout,
|
|
FileWaitMode file_wait_mode) {
|
|
auto start_time = std::chrono::steady_clock::now();
|
|
|
|
while (true) {
|
|
int rv = access(filename.c_str(), F_OK);
|
|
if (file_wait_mode == FileWaitMode::Exists) {
|
|
if (!rv || errno != ENOENT) return true;
|
|
} else if (file_wait_mode == FileWaitMode::DoesNotExist) {
|
|
if (rv && errno == ENOENT) return true;
|
|
}
|
|
|
|
std::this_thread::sleep_for(50ms);
|
|
|
|
auto now = std::chrono::steady_clock::now();
|
|
auto time_elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(now - start_time);
|
|
if (time_elapsed > relative_timeout) return false;
|
|
}
|
|
}
|
|
|
|
static void log_fs_stat(const std::string& blk_device, int fs_stat) {
|
|
if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4
|
|
std::string msg =
|
|
android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat);
|
|
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC |
|
|
O_APPEND | O_CREAT, 0664)));
|
|
if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) {
|
|
LWARNING << __FUNCTION__ << "() cannot log " << msg;
|
|
}
|
|
}
|
|
|
|
static bool is_extfs(const std::string& fs_type) {
|
|
return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2";
|
|
}
|
|
|
|
static bool is_f2fs(const std::string& fs_type) {
|
|
return fs_type == "f2fs";
|
|
}
|
|
|
|
static std::string realpath(const std::string& blk_device) {
|
|
std::string real_path;
|
|
if (!Realpath(blk_device, &real_path)) {
|
|
real_path = blk_device;
|
|
}
|
|
return real_path;
|
|
}
|
|
|
|
static bool should_force_check(int fs_stat) {
|
|
return fs_stat &
|
|
(FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED |
|
|
FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED |
|
|
FS_STAT_E2FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED |
|
|
FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED);
|
|
}
|
|
|
|
static void check_fs(const std::string& blk_device, const std::string& fs_type,
|
|
const std::string& target, int* fs_stat) {
|
|
int status;
|
|
int ret;
|
|
long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
|
|
auto tmpmnt_opts = "errors=remount-ro"s;
|
|
const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()};
|
|
const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()};
|
|
|
|
if (*fs_stat & FS_STAT_INVALID_MAGIC) { // will fail, so do not try
|
|
return;
|
|
}
|
|
|
|
/* Check for the types of filesystems we know how to check */
|
|
if (is_extfs(fs_type)) {
|
|
/*
|
|
* First try to mount and unmount the filesystem. We do this because
|
|
* the kernel is more efficient than e2fsck in running the journal and
|
|
* processing orphaned inodes, and on at least one device with a
|
|
* performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
|
|
* to do what the kernel does in about a second.
|
|
*
|
|
* After mounting and unmounting the filesystem, run e2fsck, and if an
|
|
* error is recorded in the filesystem superblock, e2fsck will do a full
|
|
* check. Otherwise, it does nothing. If the kernel cannot mount the
|
|
* filesytsem due to an error, e2fsck is still run to do a full check
|
|
* fix the filesystem.
|
|
*/
|
|
if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) { // already tried if full mount failed
|
|
errno = 0;
|
|
if (fs_type == "ext4") {
|
|
// This option is only valid with ext4
|
|
tmpmnt_opts += ",nomblk_io_submit";
|
|
}
|
|
ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags,
|
|
tmpmnt_opts.c_str());
|
|
PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type
|
|
<< ")=" << ret;
|
|
if (!ret) {
|
|
bool umounted = false;
|
|
int retry_count = 5;
|
|
while (retry_count-- > 0) {
|
|
umounted = umount(target.c_str()) == 0;
|
|
if (umounted) {
|
|
LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded";
|
|
break;
|
|
}
|
|
PERROR << __FUNCTION__ << "(): umount(" << target << ") failed";
|
|
if (retry_count) sleep(1);
|
|
}
|
|
if (!umounted) {
|
|
// boot may fail but continue and leave it to later stage for now.
|
|
PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out";
|
|
*fs_stat |= FS_STAT_RO_UNMOUNT_FAILED;
|
|
}
|
|
} else {
|
|
*fs_stat |= FS_STAT_RO_MOUNT_FAILED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some system images do not have e2fsck for licensing reasons
|
|
* (e.g. recent SDK system images). Detect these and skip the check.
|
|
*/
|
|
if (access(E2FSCK_BIN, X_OK)) {
|
|
LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device)
|
|
<< " (executable not in system image)";
|
|
} else {
|
|
LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device);
|
|
if (should_force_check(*fs_stat)) {
|
|
ret = android_fork_execvp_ext(
|
|
ARRAY_SIZE(e2fsck_forced_argv), const_cast<char**>(e2fsck_forced_argv), &status,
|
|
true, LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0);
|
|
} else {
|
|
ret = android_fork_execvp_ext(
|
|
ARRAY_SIZE(e2fsck_argv), const_cast<char**>(e2fsck_argv), &status, true,
|
|
LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
/* No need to check for error in fork, we can't really handle it now */
|
|
LERROR << "Failed trying to run " << E2FSCK_BIN;
|
|
*fs_stat |= FS_STAT_E2FSCK_FAILED;
|
|
} else if (status != 0) {
|
|
LINFO << "e2fsck returned status 0x" << std::hex << status;
|
|
*fs_stat |= FS_STAT_E2FSCK_FS_FIXED;
|
|
}
|
|
}
|
|
} else if (is_f2fs(fs_type)) {
|
|
const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN, "-a", blk_device.c_str()};
|
|
LINFO << "Running " << F2FS_FSCK_BIN << " -a " << realpath(blk_device);
|
|
|
|
ret = android_fork_execvp_ext(ARRAY_SIZE(f2fs_fsck_argv),
|
|
const_cast<char **>(f2fs_fsck_argv),
|
|
&status, true, LOG_KLOG | LOG_FILE,
|
|
true, const_cast<char *>(FSCK_LOG_FILE),
|
|
NULL, 0);
|
|
if (ret < 0) {
|
|
/* No need to check for error in fork, we can't really handle it now */
|
|
LERROR << "Failed trying to run " << F2FS_FSCK_BIN;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) {
|
|
return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) |
|
|
le32_to_cpu(es->s_blocks_count_lo);
|
|
}
|
|
|
|
static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) {
|
|
return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) |
|
|
le32_to_cpu(es->s_r_blocks_count_lo);
|
|
}
|
|
|
|
static bool is_ext4_superblock_valid(const struct ext4_super_block* es) {
|
|
if (es->s_magic != EXT4_SUPER_MAGIC) return false;
|
|
if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false;
|
|
if (EXT4_INODES_PER_GROUP(es) == 0) return false;
|
|
return true;
|
|
}
|
|
|
|
// Read the primary superblock from an ext4 filesystem. On failure return
|
|
// false. If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC.
|
|
static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb,
|
|
int* fs_stat) {
|
|
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
|
|
|
|
if (fd < 0) {
|
|
PERROR << "Failed to open '" << blk_device << "'";
|
|
return false;
|
|
}
|
|
|
|
if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) {
|
|
PERROR << "Can't read '" << blk_device << "' superblock";
|
|
return false;
|
|
}
|
|
|
|
if (!is_ext4_superblock_valid(sb)) {
|
|
LINFO << "Invalid ext4 superblock on '" << blk_device << "'";
|
|
// not a valid fs, tune2fs, fsck, and mount will all fail.
|
|
*fs_stat |= FS_STAT_INVALID_MAGIC;
|
|
return false;
|
|
}
|
|
*fs_stat |= FS_STAT_IS_EXT4;
|
|
LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device;
|
|
if (sb->s_max_mnt_count == 0xffff) { // -1 (int16) in ext2, but uint16 in ext4
|
|
*fs_stat |= FS_STAT_NEW_IMAGE_VERSION;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// exported silent version of the above that just answer the question is_ext4
|
|
bool fs_mgr_is_ext4(const std::string& blk_device) {
|
|
android::base::ErrnoRestorer restore;
|
|
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
|
|
if (fd < 0) return false;
|
|
ext4_super_block sb;
|
|
if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false;
|
|
if (!is_ext4_superblock_valid(&sb)) return false;
|
|
return true;
|
|
}
|
|
|
|
// Some system images do not have tune2fs for licensing reasons.
|
|
// Detect these and skip running it.
|
|
static bool tune2fs_available(void) {
|
|
return access(TUNE2FS_BIN, X_OK) == 0;
|
|
}
|
|
|
|
static bool run_tune2fs(const char* argv[], int argc) {
|
|
int ret;
|
|
|
|
ret = android_fork_execvp_ext(argc, const_cast<char**>(argv), nullptr, true,
|
|
LOG_KLOG | LOG_FILE, true, nullptr, nullptr, 0);
|
|
return ret == 0;
|
|
}
|
|
|
|
// Enable/disable quota support on the filesystem if needed.
|
|
static void tune_quota(const std::string& blk_device, const FstabEntry& entry,
|
|
const struct ext4_super_block* sb, int* fs_stat) {
|
|
bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0;
|
|
bool want_quota = entry.fs_mgr_flags.quota;
|
|
|
|
if (has_quota == want_quota) {
|
|
return;
|
|
}
|
|
|
|
if (!tune2fs_available()) {
|
|
LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device
|
|
<< " because " TUNE2FS_BIN " is missing";
|
|
return;
|
|
}
|
|
|
|
const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()};
|
|
|
|
if (want_quota) {
|
|
LINFO << "Enabling quotas on " << blk_device;
|
|
argv[1] = "-Oquota";
|
|
argv[2] = "-Qusrquota,grpquota";
|
|
*fs_stat |= FS_STAT_QUOTA_ENABLED;
|
|
} else {
|
|
LINFO << "Disabling quotas on " << blk_device;
|
|
argv[1] = "-O^quota";
|
|
argv[2] = "-Q^usrquota,^grpquota";
|
|
}
|
|
|
|
if (!run_tune2fs(argv, ARRAY_SIZE(argv))) {
|
|
LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable")
|
|
<< " quotas on " << blk_device;
|
|
*fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED;
|
|
}
|
|
}
|
|
|
|
// Set the number of reserved filesystem blocks if needed.
|
|
static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry,
|
|
const struct ext4_super_block* sb, int* fs_stat) {
|
|
if (entry.reserved_size != 0) {
|
|
return;
|
|
}
|
|
|
|
// The size to reserve is given in the fstab, but we won't reserve more
|
|
// than 2% of the filesystem.
|
|
const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02;
|
|
uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb);
|
|
|
|
if (reserved_blocks > max_reserved_blocks) {
|
|
LWARNING << "Reserved blocks " << reserved_blocks << " is too large; "
|
|
<< "capping to " << max_reserved_blocks;
|
|
reserved_blocks = max_reserved_blocks;
|
|
}
|
|
|
|
if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) {
|
|
return;
|
|
}
|
|
|
|
if (!tune2fs_available()) {
|
|
LERROR << "Unable to set the number of reserved blocks on " << blk_device
|
|
<< " because " TUNE2FS_BIN " is missing";
|
|
return;
|
|
}
|
|
|
|
LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks;
|
|
|
|
auto reserved_blocks_str = std::to_string(reserved_blocks);
|
|
auto reserved_gid_str = std::to_string(AID_RESERVED_DISK);
|
|
const char* argv[] = {
|
|
TUNE2FS_BIN, "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(),
|
|
blk_device.c_str()};
|
|
if (!run_tune2fs(argv, ARRAY_SIZE(argv))) {
|
|
LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on "
|
|
<< blk_device;
|
|
*fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED;
|
|
}
|
|
}
|
|
|
|
// Enable file-based encryption if needed.
|
|
static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry,
|
|
const struct ext4_super_block* sb, int* fs_stat) {
|
|
bool has_encrypt = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) != 0;
|
|
bool want_encrypt = entry.fs_mgr_flags.file_encryption;
|
|
|
|
if (has_encrypt || !want_encrypt) {
|
|
return;
|
|
}
|
|
|
|
if (!tune2fs_available()) {
|
|
LERROR << "Unable to enable ext4 encryption on " << blk_device
|
|
<< " because " TUNE2FS_BIN " is missing";
|
|
return;
|
|
}
|
|
|
|
const char* argv[] = {TUNE2FS_BIN, "-Oencrypt", blk_device.c_str()};
|
|
|
|
LINFO << "Enabling ext4 encryption on " << blk_device;
|
|
if (!run_tune2fs(argv, ARRAY_SIZE(argv))) {
|
|
LERROR << "Failed to run " TUNE2FS_BIN " to enable "
|
|
<< "ext4 encryption on " << blk_device;
|
|
*fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED;
|
|
}
|
|
}
|
|
|
|
// Enable fs-verity if needed.
|
|
static void tune_verity(const std::string& blk_device, const FstabEntry& entry,
|
|
const struct ext4_super_block* sb, int* fs_stat) {
|
|
bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0;
|
|
bool want_verity = entry.fs_mgr_flags.fs_verity;
|
|
|
|
if (has_verity || !want_verity) {
|
|
return;
|
|
}
|
|
|
|
std::string verity_support;
|
|
if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) {
|
|
LERROR << "Failed to open " << SYSFS_EXT4_VERITY;
|
|
return;
|
|
}
|
|
|
|
if (!(android::base::Trim(verity_support) == "supported")) {
|
|
LERROR << "Current ext4 verity not supported by kernel";
|
|
return;
|
|
}
|
|
|
|
if (!tune2fs_available()) {
|
|
LERROR << "Unable to enable ext4 verity on " << blk_device
|
|
<< " because " TUNE2FS_BIN " is missing";
|
|
return;
|
|
}
|
|
|
|
LINFO << "Enabling ext4 verity on " << blk_device;
|
|
|
|
const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()};
|
|
if (!run_tune2fs(argv, ARRAY_SIZE(argv))) {
|
|
LERROR << "Failed to run " TUNE2FS_BIN " to enable "
|
|
<< "ext4 verity on " << blk_device;
|
|
*fs_stat |= FS_STAT_ENABLE_VERITY_FAILED;
|
|
}
|
|
}
|
|
|
|
// Read the primary superblock from an f2fs filesystem. On failure return
|
|
// false. If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC.
|
|
#define F2FS_BLKSIZE 4096
|
|
#define F2FS_SUPER_OFFSET 1024
|
|
static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) {
|
|
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
|
|
__le32 sb1, sb2;
|
|
|
|
if (fd < 0) {
|
|
PERROR << "Failed to open '" << blk_device << "'";
|
|
return false;
|
|
}
|
|
|
|
if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) {
|
|
PERROR << "Can't read '" << blk_device << "' superblock1";
|
|
return false;
|
|
}
|
|
if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
|
|
sizeof(sb2)) {
|
|
PERROR << "Can't read '" << blk_device << "' superblock2";
|
|
return false;
|
|
}
|
|
|
|
if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) {
|
|
LINFO << "Invalid f2fs superblock on '" << blk_device << "'";
|
|
*fs_stat |= FS_STAT_INVALID_MAGIC;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// exported silent version of the above that just answer the question is_f2fs
|
|
bool fs_mgr_is_f2fs(const std::string& blk_device) {
|
|
android::base::ErrnoRestorer restore;
|
|
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
|
|
if (fd < 0) return false;
|
|
__le32 sb;
|
|
if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) {
|
|
return false;
|
|
}
|
|
if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true;
|
|
if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
|
|
sizeof(sb)) {
|
|
return false;
|
|
}
|
|
return sb == cpu_to_le32(F2FS_SUPER_MAGIC);
|
|
}
|
|
|
|
//
|
|
// Prepare the filesystem on the given block device to be mounted.
|
|
//
|
|
// If the "check" option was given in the fstab record, or it seems that the
|
|
// filesystem was uncleanly shut down, we'll run fsck on the filesystem.
|
|
//
|
|
// If needed, we'll also enable (or disable) filesystem features as specified by
|
|
// the fstab record.
|
|
//
|
|
static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry) {
|
|
int fs_stat = 0;
|
|
|
|
if (is_extfs(entry.fs_type)) {
|
|
struct ext4_super_block sb;
|
|
|
|
if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
|
|
if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 ||
|
|
(sb.s_state & EXT4_VALID_FS) == 0) {
|
|
LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; "
|
|
<< "state flags: 0x" << std::hex << sb.s_state << ", "
|
|
<< "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat;
|
|
fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN;
|
|
}
|
|
|
|
// Note: quotas should be enabled before running fsck.
|
|
tune_quota(blk_device, entry, &sb, &fs_stat);
|
|
} else {
|
|
return fs_stat;
|
|
}
|
|
} else if (is_f2fs(entry.fs_type)) {
|
|
if (!read_f2fs_superblock(blk_device, &fs_stat)) {
|
|
return fs_stat;
|
|
}
|
|
}
|
|
|
|
if (entry.fs_mgr_flags.check ||
|
|
(fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) {
|
|
check_fs(blk_device, entry.fs_type, entry.mount_point, &fs_stat);
|
|
}
|
|
|
|
if (is_extfs(entry.fs_type) &&
|
|
(entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption ||
|
|
entry.fs_mgr_flags.fs_verity)) {
|
|
struct ext4_super_block sb;
|
|
|
|
if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
|
|
tune_reserved_size(blk_device, entry, &sb, &fs_stat);
|
|
tune_encrypt(blk_device, entry, &sb, &fs_stat);
|
|
tune_verity(blk_device, entry, &sb, &fs_stat);
|
|
}
|
|
}
|
|
|
|
return fs_stat;
|
|
}
|
|
|
|
// Mark the given block device as read-only, using the BLKROSET ioctl.
|
|
bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) {
|
|
unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC)));
|
|
if (fd < 0) {
|
|
return false;
|
|
}
|
|
|
|
int ON = readonly;
|
|
return ioctl(fd, BLKROSET, &ON) == 0;
|
|
}
|
|
|
|
// Orange state means the device is unlocked, see the following link for details.
|
|
// https://source.android.com/security/verifiedboot/verified-boot#device_state
|
|
bool fs_mgr_is_device_unlocked() {
|
|
std::string verified_boot_state;
|
|
if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) {
|
|
return verified_boot_state == "orange";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// __mount(): wrapper around the mount() system call which also
|
|
// sets the underlying block device to read-only if the mount is read-only.
|
|
// See "man 2 mount" for return values.
|
|
static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry) {
|
|
// We need this because sometimes we have legacy symlinks that are
|
|
// lingering around and need cleaning up.
|
|
struct stat info;
|
|
if (lstat(target.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) {
|
|
unlink(target.c_str());
|
|
}
|
|
mkdir(target.c_str(), 0755);
|
|
errno = 0;
|
|
unsigned long mountflags = entry.flags;
|
|
int ret = 0;
|
|
int save_errno = 0;
|
|
do {
|
|
if (save_errno == EAGAIN) {
|
|
PINFO << "Retrying mount (source=" << source << ",target=" << target
|
|
<< ",type=" << entry.fs_type << ")=" << ret << "(" << save_errno << ")";
|
|
}
|
|
ret = mount(source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags,
|
|
entry.fs_options.c_str());
|
|
save_errno = errno;
|
|
} while (ret && save_errno == EAGAIN);
|
|
const char* target_missing = "";
|
|
const char* source_missing = "";
|
|
if (save_errno == ENOENT) {
|
|
if (access(target.c_str(), F_OK)) {
|
|
target_missing = "(missing)";
|
|
} else if (access(source.c_str(), F_OK)) {
|
|
source_missing = "(missing)";
|
|
}
|
|
errno = save_errno;
|
|
}
|
|
PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target
|
|
<< target_missing << ",type=" << entry.fs_type << ")=" << ret;
|
|
if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
|
|
fs_mgr_set_blk_ro(source);
|
|
}
|
|
errno = save_errno;
|
|
return ret;
|
|
}
|
|
|
|
static bool fs_match(const std::string& in1, const std::string& in2) {
|
|
if (in1.empty() || in2.empty()) {
|
|
return false;
|
|
}
|
|
|
|
auto in1_end = in1.size() - 1;
|
|
while (in1_end > 0 && in1[in1_end] == '/') {
|
|
in1_end--;
|
|
}
|
|
|
|
auto in2_end = in2.size() - 1;
|
|
while (in2_end > 0 && in2[in2_end] == '/') {
|
|
in2_end--;
|
|
}
|
|
|
|
if (in1_end != in2_end) {
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i <= in1_end; ++i) {
|
|
if (in1[i] != in2[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Tries to mount any of the consecutive fstab entries that match
|
|
// the mountpoint of the one given by fstab[start_idx].
|
|
//
|
|
// end_idx: On return, will be the last entry that was looked at.
|
|
// attempted_idx: On return, will indicate which fstab entry
|
|
// succeeded. In case of failure, it will be the start_idx.
|
|
// Sets errno to match the 1st mount failure on failure.
|
|
static bool mount_with_alternatives(const Fstab& fstab, int start_idx, int* end_idx,
|
|
int* attempted_idx) {
|
|
unsigned long i;
|
|
int mount_errno = 0;
|
|
bool mounted = false;
|
|
|
|
// Hunt down an fstab entry for the same mount point that might succeed.
|
|
for (i = start_idx;
|
|
// We required that fstab entries for the same mountpoint be consecutive.
|
|
i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) {
|
|
// Don't try to mount/encrypt the same mount point again.
|
|
// Deal with alternate entries for the same point which are required to be all following
|
|
// each other.
|
|
if (mounted) {
|
|
LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point
|
|
<< " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as "
|
|
<< fstab[*attempted_idx].fs_type;
|
|
continue;
|
|
}
|
|
|
|
int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]);
|
|
if (fs_stat & FS_STAT_INVALID_MAGIC) {
|
|
LERROR << __FUNCTION__
|
|
<< "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point
|
|
<< " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i
|
|
<< "].fs_type=" << fstab[i].fs_type;
|
|
mount_errno = EINVAL; // continue bootup for FDE
|
|
continue;
|
|
}
|
|
|
|
int retry_count = 2;
|
|
while (retry_count-- > 0) {
|
|
if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i])) {
|
|
*attempted_idx = i;
|
|
mounted = true;
|
|
if (i != start_idx) {
|
|
LERROR << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on "
|
|
<< fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type
|
|
<< " instead of " << fstab[start_idx].fs_type;
|
|
}
|
|
fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
|
|
mount_errno = 0;
|
|
break;
|
|
} else {
|
|
if (retry_count <= 0) break; // run check_fs only once
|
|
fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
|
|
// back up the first errno for crypto decisions.
|
|
if (mount_errno == 0) {
|
|
mount_errno = errno;
|
|
}
|
|
// retry after fsck
|
|
check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat);
|
|
}
|
|
}
|
|
log_fs_stat(fstab[i].blk_device, fs_stat);
|
|
}
|
|
|
|
/* Adjust i for the case where it was still withing the recs[] */
|
|
if (i < fstab.size()) --i;
|
|
|
|
*end_idx = i;
|
|
if (!mounted) {
|
|
*attempted_idx = start_idx;
|
|
errno = mount_errno;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool TranslateExtLabels(FstabEntry* entry) {
|
|
if (!StartsWith(entry->blk_device, "LABEL=")) {
|
|
return true;
|
|
}
|
|
|
|
std::string label = entry->blk_device.substr(6);
|
|
if (label.size() > 16) {
|
|
LERROR << "FS label is longer than allowed by filesystem";
|
|
return false;
|
|
}
|
|
|
|
auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir};
|
|
if (!blockdir) {
|
|
LERROR << "couldn't open /dev/block";
|
|
return false;
|
|
}
|
|
|
|
struct dirent* ent;
|
|
while ((ent = readdir(blockdir.get()))) {
|
|
if (ent->d_type != DT_BLK)
|
|
continue;
|
|
|
|
unique_fd fd(TEMP_FAILURE_RETRY(
|
|
openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC)));
|
|
if (fd < 0) {
|
|
LERROR << "Cannot open block device /dev/block/" << ent->d_name;
|
|
return false;
|
|
}
|
|
|
|
ext4_super_block super_block;
|
|
if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 ||
|
|
TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) !=
|
|
sizeof(super_block)) {
|
|
// Probably a loopback device or something else without a readable superblock.
|
|
continue;
|
|
}
|
|
|
|
if (super_block.s_magic != EXT4_SUPER_MAGIC) {
|
|
LINFO << "/dev/block/" << ent->d_name << " not ext{234}";
|
|
continue;
|
|
}
|
|
|
|
if (label == super_block.s_volume_name) {
|
|
std::string new_blk_device = "/dev/block/"s + ent->d_name;
|
|
|
|
LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device;
|
|
|
|
entry->blk_device = new_blk_device;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool needs_block_encryption(const FstabEntry& entry) {
|
|
if (android::base::GetBoolProperty("ro.vold.forceencryption", false) && entry.is_encryptable())
|
|
return true;
|
|
if (entry.fs_mgr_flags.force_crypt) return true;
|
|
if (entry.fs_mgr_flags.crypt) {
|
|
// Check for existence of convert_fde breadcrumb file.
|
|
auto convert_fde_name = entry.mount_point + "/misc/vold/convert_fde";
|
|
if (access(convert_fde_name.c_str(), F_OK) == 0) return true;
|
|
}
|
|
if (entry.fs_mgr_flags.force_fde_or_fbe) {
|
|
// Check for absence of convert_fbe breadcrumb file.
|
|
auto convert_fbe_name = entry.mount_point + "/convert_fbe";
|
|
if (access(convert_fbe_name.c_str(), F_OK) != 0) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool should_use_metadata_encryption(const FstabEntry& entry) {
|
|
return !entry.key_dir.empty() &&
|
|
(entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe);
|
|
}
|
|
|
|
// Check to see if a mountable volume has encryption requirements
|
|
static int handle_encryptable(const FstabEntry& entry) {
|
|
// If this is block encryptable, need to trigger encryption.
|
|
if (needs_block_encryption(entry)) {
|
|
if (umount(entry.mount_point.c_str()) == 0) {
|
|
return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION;
|
|
} else {
|
|
PWARNING << "Could not umount " << entry.mount_point << " - allow continue unencrypted";
|
|
return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
|
|
}
|
|
} else if (should_use_metadata_encryption(entry)) {
|
|
if (umount(entry.mount_point.c_str()) == 0) {
|
|
return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION;
|
|
} else {
|
|
PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt";
|
|
return FS_MGR_MNTALL_FAIL;
|
|
}
|
|
} else if (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe) {
|
|
LINFO << entry.mount_point << " is file encrypted";
|
|
return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED;
|
|
} else if (entry.is_encryptable()) {
|
|
return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
|
|
} else {
|
|
return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
|
|
}
|
|
}
|
|
|
|
static bool call_vdc(const std::vector<std::string>& args) {
|
|
std::vector<char const*> argv;
|
|
argv.emplace_back("/system/bin/vdc");
|
|
for (auto& arg : args) {
|
|
argv.emplace_back(arg.c_str());
|
|
}
|
|
LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
|
|
int ret =
|
|
android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), nullptr, false, true);
|
|
if (ret != 0) {
|
|
LOG(ERROR) << "vdc returned error code: " << ret;
|
|
return false;
|
|
}
|
|
LOG(DEBUG) << "vdc finished successfully";
|
|
return true;
|
|
}
|
|
|
|
static bool call_vdc_ret(const std::vector<std::string>& args, int* ret) {
|
|
std::vector<char const*> argv;
|
|
argv.emplace_back("/system/bin/vdc");
|
|
for (auto& arg : args) {
|
|
argv.emplace_back(arg.c_str());
|
|
}
|
|
LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
|
|
int err = android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), ret, false, true);
|
|
if (err != 0) {
|
|
LOG(ERROR) << "vdc call failed with error code: " << err;
|
|
return false;
|
|
}
|
|
LOG(DEBUG) << "vdc finished successfully";
|
|
*ret = WEXITSTATUS(*ret);
|
|
return true;
|
|
}
|
|
|
|
bool fs_mgr_update_logical_partition(FstabEntry* entry) {
|
|
// Logical partitions are specified with a named partition rather than a
|
|
// block device, so if the block device is a path, then it has already
|
|
// been updated.
|
|
if (entry->blk_device[0] == '/') {
|
|
return true;
|
|
}
|
|
|
|
DeviceMapper& dm = DeviceMapper::Instance();
|
|
std::string device_name;
|
|
if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) {
|
|
return false;
|
|
}
|
|
|
|
entry->blk_device = device_name;
|
|
return true;
|
|
}
|
|
|
|
class CheckpointManager {
|
|
public:
|
|
CheckpointManager(int needs_checkpoint = -1) : needs_checkpoint_(needs_checkpoint) {}
|
|
|
|
bool Update(FstabEntry* entry) {
|
|
if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) {
|
|
return true;
|
|
}
|
|
|
|
if (entry->fs_mgr_flags.checkpoint_blk) {
|
|
call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device});
|
|
}
|
|
|
|
if (needs_checkpoint_ == UNKNOWN &&
|
|
!call_vdc_ret({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) {
|
|
LERROR << "Failed to find if checkpointing is needed. Assuming no.";
|
|
needs_checkpoint_ = NO;
|
|
}
|
|
|
|
if (needs_checkpoint_ != YES) {
|
|
return true;
|
|
}
|
|
|
|
if (!UpdateCheckpointPartition(entry)) {
|
|
LERROR << "Could not set up checkpoint partition, skipping!";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Revert(FstabEntry* entry) {
|
|
if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) {
|
|
return true;
|
|
}
|
|
|
|
if (device_map_.find(entry->blk_device) == device_map_.end()) {
|
|
return true;
|
|
}
|
|
|
|
std::string bow_device = entry->blk_device;
|
|
entry->blk_device = device_map_[bow_device];
|
|
device_map_.erase(bow_device);
|
|
|
|
DeviceMapper& dm = DeviceMapper::Instance();
|
|
if (!dm.DeleteDevice("bow")) {
|
|
PERROR << "Failed to remove bow device";
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
bool UpdateCheckpointPartition(FstabEntry* entry) {
|
|
if (entry->fs_mgr_flags.checkpoint_fs) {
|
|
if (is_f2fs(entry->fs_type)) {
|
|
entry->fs_options += ",checkpoint=disable";
|
|
} else {
|
|
LERROR << entry->fs_type << " does not implement checkpoints.";
|
|
}
|
|
} else if (entry->fs_mgr_flags.checkpoint_blk) {
|
|
unique_fd fd(TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
|
|
if (fd < 0) {
|
|
PERROR << "Cannot open device " << entry->blk_device;
|
|
return false;
|
|
}
|
|
|
|
uint64_t size = get_block_device_size(fd) / 512;
|
|
if (!size) {
|
|
PERROR << "Cannot get device size";
|
|
return false;
|
|
}
|
|
|
|
android::dm::DmTable table;
|
|
if (!table.AddTarget(
|
|
std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device))) {
|
|
LERROR << "Failed to add bow target";
|
|
return false;
|
|
}
|
|
|
|
DeviceMapper& dm = DeviceMapper::Instance();
|
|
if (!dm.CreateDevice("bow", table)) {
|
|
PERROR << "Failed to create bow device";
|
|
return false;
|
|
}
|
|
|
|
std::string name;
|
|
if (!dm.GetDmDevicePathByName("bow", &name)) {
|
|
PERROR << "Failed to get bow device name";
|
|
return false;
|
|
}
|
|
|
|
device_map_[name] = entry->blk_device;
|
|
entry->blk_device = name;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
enum { UNKNOWN = -1, NO = 0, YES = 1 };
|
|
int needs_checkpoint_;
|
|
std::map<std::string, std::string> device_map_;
|
|
};
|
|
|
|
static bool IsMountPointMounted(const std::string& mount_point) {
|
|
// Check if this is already mounted.
|
|
Fstab fstab;
|
|
if (!ReadFstabFromFile("/proc/mounts", &fstab)) {
|
|
return false;
|
|
}
|
|
return GetEntryForMountPoint(&fstab, mount_point) != nullptr;
|
|
}
|
|
|
|
// When multiple fstab records share the same mount_point, it will try to mount each
|
|
// one in turn, and ignore any duplicates after a first successful mount.
|
|
// Returns -1 on error, and FS_MGR_MNTALL_* otherwise.
|
|
int fs_mgr_mount_all(Fstab* fstab, int mount_mode) {
|
|
int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
|
|
int error_count = 0;
|
|
CheckpointManager checkpoint_manager;
|
|
AvbUniquePtr avb_handle(nullptr);
|
|
|
|
if (fstab->empty()) {
|
|
return FS_MGR_MNTALL_FAIL;
|
|
}
|
|
|
|
for (size_t i = 0; i < fstab->size(); i++) {
|
|
auto& current_entry = (*fstab)[i];
|
|
|
|
// If a filesystem should have been mounted in the first stage, we
|
|
// ignore it here. With one exception, if the filesystem is
|
|
// formattable, then it can only be formatted in the second stage,
|
|
// so we allow it to mount here.
|
|
if (current_entry.fs_mgr_flags.first_stage_mount &&
|
|
(!current_entry.fs_mgr_flags.formattable ||
|
|
IsMountPointMounted(current_entry.mount_point))) {
|
|
continue;
|
|
}
|
|
|
|
// Don't mount entries that are managed by vold or not for the mount mode.
|
|
if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only ||
|
|
((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) ||
|
|
((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) {
|
|
continue;
|
|
}
|
|
|
|
// Skip swap and raw partition entries such as boot, recovery, etc.
|
|
if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" ||
|
|
current_entry.fs_type == "mtd") {
|
|
continue;
|
|
}
|
|
|
|
// Skip mounting the root partition, as it will already have been mounted.
|
|
if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") {
|
|
if ((current_entry.flags & MS_RDONLY) != 0) {
|
|
fs_mgr_set_blk_ro(current_entry.blk_device);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Translate LABEL= file system labels into block devices.
|
|
if (is_extfs(current_entry.fs_type)) {
|
|
if (!TranslateExtLabels(¤t_entry)) {
|
|
LERROR << "Could not translate label to block device";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (current_entry.fs_mgr_flags.logical) {
|
|
if (!fs_mgr_update_logical_partition(¤t_entry)) {
|
|
LERROR << "Could not set up logical partition, skipping!";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!checkpoint_manager.Update(¤t_entry)) {
|
|
continue;
|
|
}
|
|
|
|
if (current_entry.fs_mgr_flags.wait &&
|
|
!fs_mgr_wait_for_file(current_entry.blk_device, 20s)) {
|
|
LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all";
|
|
continue;
|
|
}
|
|
|
|
if (current_entry.fs_mgr_flags.avb) {
|
|
if (!avb_handle) {
|
|
avb_handle = AvbHandle::Open();
|
|
if (!avb_handle) {
|
|
LERROR << "Failed to open AvbHandle";
|
|
return FS_MGR_MNTALL_FAIL;
|
|
}
|
|
}
|
|
if (avb_handle->SetUpAvbHashtree(¤t_entry, true /* wait_for_verity_dev */) ==
|
|
AvbHashtreeResult::kFail) {
|
|
LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point
|
|
<< ", skipping!";
|
|
// Skips mounting the device.
|
|
continue;
|
|
}
|
|
} else if (!current_entry.avb_keys.empty()) {
|
|
if (AvbHandle::SetUpStandaloneAvbHashtree(¤t_entry) == AvbHashtreeResult::kFail) {
|
|
LERROR << "Failed to set up AVB on standalone partition: "
|
|
<< current_entry.mount_point << ", skipping!";
|
|
// Skips mounting the device.
|
|
continue;
|
|
}
|
|
} else if ((current_entry.fs_mgr_flags.verify)) {
|
|
int rc = fs_mgr_setup_verity(¤t_entry, true);
|
|
if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
|
|
LINFO << "Verity disabled";
|
|
} else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
|
|
LERROR << "Could not set up verified partition, skipping!";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
int last_idx_inspected;
|
|
int top_idx = i;
|
|
int attempted_idx = -1;
|
|
|
|
bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx);
|
|
auto& attempted_entry = (*fstab)[attempted_idx];
|
|
i = last_idx_inspected;
|
|
int mount_errno = errno;
|
|
|
|
// Handle success and deal with encryptability.
|
|
if (mret) {
|
|
int status = handle_encryptable(attempted_entry);
|
|
|
|
if (status == FS_MGR_MNTALL_FAIL) {
|
|
// Fatal error - no point continuing.
|
|
return status;
|
|
}
|
|
|
|
if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
|
|
if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
|
|
// Log and continue
|
|
LERROR << "Only one encryptable/encrypted partition supported";
|
|
}
|
|
encryptable = status;
|
|
if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) {
|
|
if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.mount_point})) {
|
|
LERROR << "Encryption failed";
|
|
return FS_MGR_MNTALL_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Success! Go get the next one.
|
|
continue;
|
|
}
|
|
|
|
// Mounting failed, understand why and retry.
|
|
bool wiped = partition_wiped(current_entry.blk_device.c_str());
|
|
bool crypt_footer = false;
|
|
if (mount_errno != EBUSY && mount_errno != EACCES &&
|
|
current_entry.fs_mgr_flags.formattable && wiped) {
|
|
// current_entry and attempted_entry point at the same partition, but sometimes
|
|
// at two different lines in the fstab. Use current_entry for formatting
|
|
// as that is the preferred one.
|
|
LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
|
|
<< " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type
|
|
<< " is formattable. Format it.";
|
|
|
|
checkpoint_manager.Revert(¤t_entry);
|
|
|
|
if (current_entry.is_encryptable() && current_entry.key_loc != KEY_IN_FOOTER) {
|
|
unique_fd fd(TEMP_FAILURE_RETRY(
|
|
open(current_entry.key_loc.c_str(), O_WRONLY | O_CLOEXEC)));
|
|
if (fd >= 0) {
|
|
LINFO << __FUNCTION__ << "(): also wipe " << current_entry.key_loc;
|
|
wipe_block_device(fd, get_file_size(fd));
|
|
} else {
|
|
PERROR << __FUNCTION__ << "(): " << current_entry.key_loc << " wouldn't open";
|
|
}
|
|
} else if (current_entry.is_encryptable() && current_entry.key_loc == KEY_IN_FOOTER) {
|
|
crypt_footer = true;
|
|
}
|
|
if (fs_mgr_do_format(current_entry, crypt_footer) == 0) {
|
|
// Let's replay the mount actions.
|
|
i = top_idx - 1;
|
|
continue;
|
|
} else {
|
|
LERROR << __FUNCTION__ << "(): Format failed. "
|
|
<< "Suggest recovery...";
|
|
encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// mount(2) returned an error, handle the encryptable/formattable case.
|
|
if (mount_errno != EBUSY && mount_errno != EACCES && attempted_entry.is_encryptable()) {
|
|
if (wiped) {
|
|
LERROR << __FUNCTION__ << "(): " << attempted_entry.blk_device << " is wiped and "
|
|
<< attempted_entry.mount_point << " " << attempted_entry.fs_type
|
|
<< " is encryptable. Suggest recovery...";
|
|
encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
|
|
continue;
|
|
} else {
|
|
// Need to mount a tmpfs at this mountpoint for now, and set
|
|
// properties that vold will query later for decrypting
|
|
LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev "
|
|
<< attempted_entry.blk_device << " for mount " << attempted_entry.mount_point
|
|
<< " type " << attempted_entry.fs_type;
|
|
if (fs_mgr_do_tmpfs_mount(attempted_entry.mount_point.c_str()) < 0) {
|
|
++error_count;
|
|
continue;
|
|
}
|
|
}
|
|
encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED;
|
|
} else if (mount_errno != EBUSY && mount_errno != EACCES &&
|
|
should_use_metadata_encryption(attempted_entry)) {
|
|
if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.mount_point})) {
|
|
++error_count;
|
|
}
|
|
encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
|
|
continue;
|
|
} else {
|
|
// fs_options might be null so we cannot use PERROR << directly.
|
|
// Use StringPrintf to output "(null)" instead.
|
|
if (attempted_entry.fs_mgr_flags.no_fail) {
|
|
PERROR << android::base::StringPrintf(
|
|
"Ignoring failure to mount an un-encryptable or wiped "
|
|
"partition on %s at %s options: %s",
|
|
attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
|
|
attempted_entry.fs_options.c_str());
|
|
} else {
|
|
PERROR << android::base::StringPrintf(
|
|
"Failed to mount an un-encryptable or wiped partition "
|
|
"on %s at %s options: %s",
|
|
attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
|
|
attempted_entry.fs_options.c_str());
|
|
++error_count;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
#if ALLOW_ADBD_DISABLE_VERITY == 1 // "userdebug" build
|
|
fs_mgr_overlayfs_mount_all(fstab);
|
|
#endif
|
|
|
|
if (error_count) {
|
|
return FS_MGR_MNTALL_FAIL;
|
|
} else {
|
|
return encryptable;
|
|
}
|
|
}
|
|
|
|
int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) {
|
|
AvbUniquePtr avb_handle(nullptr);
|
|
int ret = FsMgrUmountStatus::SUCCESS;
|
|
for (auto& current_entry : *fstab) {
|
|
if (!IsMountPointMounted(current_entry.mount_point)) {
|
|
continue;
|
|
}
|
|
|
|
if (umount(current_entry.mount_point.c_str()) == -1) {
|
|
PERROR << "Failed to umount " << current_entry.mount_point;
|
|
ret |= FsMgrUmountStatus::ERROR_UMOUNT;
|
|
continue;
|
|
}
|
|
|
|
if (current_entry.fs_mgr_flags.logical) {
|
|
if (!fs_mgr_update_logical_partition(¤t_entry)) {
|
|
LERROR << "Could not get logical partition blk_device, skipping!";
|
|
ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) {
|
|
if (!AvbHandle::TearDownAvbHashtree(¤t_entry, true /* wait */)) {
|
|
LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point;
|
|
ret |= FsMgrUmountStatus::ERROR_VERITY;
|
|
continue;
|
|
}
|
|
} else if ((current_entry.fs_mgr_flags.verify)) {
|
|
if (!fs_mgr_teardown_verity(¤t_entry, true /* wait */)) {
|
|
LERROR << "Failed to tear down verified partition on mount point: "
|
|
<< current_entry.mount_point;
|
|
ret |= FsMgrUmountStatus::ERROR_VERITY;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// wrapper to __mount() and expects a fully prepared fstab_rec,
|
|
// unlike fs_mgr_do_mount which does more things with avb / verity etc.
|
|
int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& mount_point) {
|
|
// Run fsck if needed
|
|
prepare_fs_for_mount(entry.blk_device, entry);
|
|
|
|
int ret =
|
|
__mount(entry.blk_device, mount_point.empty() ? entry.mount_point : mount_point, entry);
|
|
if (ret) {
|
|
ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// If tmp_mount_point is non-null, mount the filesystem there. This is for the
|
|
// tmp mount we do to check the user password
|
|
// If multiple fstab entries are to be mounted on "n_name", it will try to mount each one
|
|
// in turn, and stop on 1st success, or no more match.
|
|
static int fs_mgr_do_mount_helper(Fstab* fstab, const std::string& n_name,
|
|
const std::string& n_blk_device, const char* tmp_mount_point,
|
|
int needs_checkpoint) {
|
|
int mount_errors = 0;
|
|
int first_mount_errno = 0;
|
|
std::string mount_point;
|
|
CheckpointManager checkpoint_manager(needs_checkpoint);
|
|
AvbUniquePtr avb_handle(nullptr);
|
|
|
|
if (!fstab) {
|
|
return FS_MGR_DOMNT_FAILED;
|
|
}
|
|
|
|
for (auto& fstab_entry : *fstab) {
|
|
if (!fs_match(fstab_entry.mount_point, n_name)) {
|
|
continue;
|
|
}
|
|
|
|
// We found our match.
|
|
// If this swap or a raw partition, report an error.
|
|
if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" ||
|
|
fstab_entry.fs_type == "mtd") {
|
|
LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on "
|
|
<< n_blk_device;
|
|
return FS_MGR_DOMNT_FAILED;
|
|
}
|
|
|
|
if (fstab_entry.fs_mgr_flags.logical) {
|
|
if (!fs_mgr_update_logical_partition(&fstab_entry)) {
|
|
LERROR << "Could not set up logical partition, skipping!";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!checkpoint_manager.Update(&fstab_entry)) {
|
|
LERROR << "Could not set up checkpoint partition, skipping!";
|
|
continue;
|
|
}
|
|
|
|
// First check the filesystem if requested.
|
|
if (fstab_entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(n_blk_device, 20s)) {
|
|
LERROR << "Skipping mounting '" << n_blk_device << "'";
|
|
continue;
|
|
}
|
|
|
|
int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry);
|
|
|
|
if (fstab_entry.fs_mgr_flags.avb) {
|
|
if (!avb_handle) {
|
|
avb_handle = AvbHandle::Open();
|
|
if (!avb_handle) {
|
|
LERROR << "Failed to open AvbHandle";
|
|
return FS_MGR_DOMNT_FAILED;
|
|
}
|
|
}
|
|
if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) ==
|
|
AvbHashtreeResult::kFail) {
|
|
LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point
|
|
<< ", skipping!";
|
|
// Skips mounting the device.
|
|
continue;
|
|
}
|
|
} else if (!fstab_entry.avb_keys.empty()) {
|
|
if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) {
|
|
LERROR << "Failed to set up AVB on standalone partition: "
|
|
<< fstab_entry.mount_point << ", skipping!";
|
|
// Skips mounting the device.
|
|
continue;
|
|
}
|
|
} else if (fstab_entry.fs_mgr_flags.verify) {
|
|
int rc = fs_mgr_setup_verity(&fstab_entry, true);
|
|
if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
|
|
LINFO << "Verity disabled";
|
|
} else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
|
|
LERROR << "Could not set up verified partition, skipping!";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Now mount it where requested */
|
|
if (tmp_mount_point) {
|
|
mount_point = tmp_mount_point;
|
|
} else {
|
|
mount_point = fstab_entry.mount_point;
|
|
}
|
|
int retry_count = 2;
|
|
while (retry_count-- > 0) {
|
|
if (!__mount(n_blk_device, mount_point, fstab_entry)) {
|
|
fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
|
|
return FS_MGR_DOMNT_SUCCESS;
|
|
} else {
|
|
if (retry_count <= 0) break; // run check_fs only once
|
|
if (!first_mount_errno) first_mount_errno = errno;
|
|
mount_errors++;
|
|
fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
|
|
// try again after fsck
|
|
check_fs(n_blk_device, fstab_entry.fs_type, fstab_entry.mount_point, &fs_stat);
|
|
}
|
|
}
|
|
log_fs_stat(fstab_entry.blk_device, fs_stat);
|
|
}
|
|
|
|
// Reach here means the mount attempt fails.
|
|
if (mount_errors) {
|
|
PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point;
|
|
if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY;
|
|
} else {
|
|
// We didn't find a match, say so and return an error.
|
|
LERROR << "Cannot find mount point " << n_name << " in fstab";
|
|
}
|
|
return FS_MGR_DOMNT_FAILED;
|
|
}
|
|
|
|
int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point) {
|
|
return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, -1);
|
|
}
|
|
|
|
int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point,
|
|
bool needs_checkpoint) {
|
|
return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, needs_checkpoint);
|
|
}
|
|
|
|
/*
|
|
* mount a tmpfs filesystem at the given point.
|
|
* return 0 on success, non-zero on failure.
|
|
*/
|
|
int fs_mgr_do_tmpfs_mount(const char *n_name)
|
|
{
|
|
int ret;
|
|
|
|
ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV | MS_NOEXEC,
|
|
CRYPTO_TMPFS_OPTIONS);
|
|
if (ret < 0) {
|
|
LERROR << "Cannot mount tmpfs filesystem at " << n_name;
|
|
return -1;
|
|
}
|
|
|
|
/* Success */
|
|
return 0;
|
|
}
|
|
|
|
static bool InstallZramDevice(const std::string& device) {
|
|
if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) {
|
|
PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV;
|
|
return false;
|
|
}
|
|
LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV;
|
|
return true;
|
|
}
|
|
|
|
static bool PrepareZramDevice(const std::string& loop, off64_t size, const std::string& bdev) {
|
|
if (loop.empty() && bdev.empty()) return true;
|
|
|
|
if (bdev.length()) {
|
|
return InstallZramDevice(bdev);
|
|
}
|
|
|
|
// Get free loopback
|
|
unique_fd loop_fd(TEMP_FAILURE_RETRY(open("/dev/loop-control", O_RDWR | O_CLOEXEC)));
|
|
if (loop_fd.get() == -1) {
|
|
PERROR << "Cannot open loop-control";
|
|
return false;
|
|
}
|
|
|
|
int num = ioctl(loop_fd.get(), LOOP_CTL_GET_FREE);
|
|
if (num == -1) {
|
|
PERROR << "Cannot get free loop slot";
|
|
return false;
|
|
}
|
|
|
|
// Prepare target path
|
|
unique_fd target_fd(TEMP_FAILURE_RETRY(open(loop.c_str(), O_RDWR | O_CREAT | O_CLOEXEC, 0600)));
|
|
if (target_fd.get() == -1) {
|
|
PERROR << "Cannot open target path: " << loop;
|
|
return false;
|
|
}
|
|
if (fallocate(target_fd.get(), 0, 0, size) < 0) {
|
|
PERROR << "Cannot truncate target path: " << loop;
|
|
return false;
|
|
}
|
|
|
|
// Connect loopback (device_fd) to target path (target_fd)
|
|
std::string device = android::base::StringPrintf("/dev/block/loop%d", num);
|
|
unique_fd device_fd(TEMP_FAILURE_RETRY(open(device.c_str(), O_RDWR | O_CLOEXEC)));
|
|
if (device_fd.get() == -1) {
|
|
PERROR << "Cannot open /dev/block/loop" << num;
|
|
return false;
|
|
}
|
|
|
|
if (ioctl(device_fd.get(), LOOP_SET_FD, target_fd.get())) {
|
|
PERROR << "Cannot set loopback to target path";
|
|
return false;
|
|
}
|
|
|
|
// set block size & direct IO
|
|
if (ioctl(device_fd.get(), LOOP_SET_BLOCK_SIZE, 4096)) {
|
|
PWARNING << "Cannot set 4KB blocksize to /dev/block/loop" << num;
|
|
}
|
|
if (ioctl(device_fd.get(), LOOP_SET_DIRECT_IO, 1)) {
|
|
PWARNING << "Cannot set direct_io to /dev/block/loop" << num;
|
|
}
|
|
|
|
return InstallZramDevice(device);
|
|
}
|
|
|
|
bool fs_mgr_swapon_all(const Fstab& fstab) {
|
|
bool ret = true;
|
|
for (const auto& entry : fstab) {
|
|
// Skip non-swap entries.
|
|
if (entry.fs_type != "swap") {
|
|
continue;
|
|
}
|
|
|
|
if (!PrepareZramDevice(entry.zram_loopback_path, entry.zram_loopback_size, entry.zram_backing_dev_path)) {
|
|
LERROR << "Skipping losetup for '" << entry.blk_device << "'";
|
|
}
|
|
|
|
if (entry.zram_size > 0) {
|
|
// A zram_size was specified, so we need to configure the
|
|
// device. There is no point in having multiple zram devices
|
|
// on a system (all the memory comes from the same pool) so
|
|
// we can assume the device number is 0.
|
|
if (entry.max_comp_streams >= 0) {
|
|
auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{
|
|
fopen(ZRAM_CONF_MCS, "re"), fclose};
|
|
if (zram_mcs_fp == nullptr) {
|
|
LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS;
|
|
ret = false;
|
|
continue;
|
|
}
|
|
fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams);
|
|
}
|
|
|
|
auto zram_fp =
|
|
std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose};
|
|
if (zram_fp == nullptr) {
|
|
LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV;
|
|
ret = false;
|
|
continue;
|
|
}
|
|
fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size);
|
|
}
|
|
|
|
if (entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(entry.blk_device, 20s)) {
|
|
LERROR << "Skipping mkswap for '" << entry.blk_device << "'";
|
|
ret = false;
|
|
continue;
|
|
}
|
|
|
|
// Initialize the swap area.
|
|
const char* mkswap_argv[2] = {
|
|
MKSWAP_BIN,
|
|
entry.blk_device.c_str(),
|
|
};
|
|
int err = 0;
|
|
int status;
|
|
err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), const_cast<char**>(mkswap_argv),
|
|
&status, true, LOG_KLOG, false, nullptr, nullptr, 0);
|
|
if (err) {
|
|
LERROR << "mkswap failed for " << entry.blk_device;
|
|
ret = false;
|
|
continue;
|
|
}
|
|
|
|
/* If -1, then no priority was specified in fstab, so don't set
|
|
* SWAP_FLAG_PREFER or encode the priority */
|
|
int flags = 0;
|
|
if (entry.swap_prio >= 0) {
|
|
flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK;
|
|
flags |= SWAP_FLAG_PREFER;
|
|
} else {
|
|
flags = 0;
|
|
}
|
|
err = swapon(entry.blk_device.c_str(), flags);
|
|
if (err) {
|
|
LERROR << "swapon failed for " << entry.blk_device;
|
|
ret = false;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool fs_mgr_load_verity_state(int* mode) {
|
|
/* return the default mode, unless any of the verified partitions are in
|
|
* logging mode, in which case return that */
|
|
*mode = VERITY_MODE_DEFAULT;
|
|
|
|
Fstab fstab;
|
|
if (!ReadDefaultFstab(&fstab)) {
|
|
LERROR << "Failed to read default fstab";
|
|
return false;
|
|
}
|
|
|
|
for (const auto& entry : fstab) {
|
|
if (entry.fs_mgr_flags.avb) {
|
|
*mode = VERITY_MODE_RESTART; // avb only supports restart mode.
|
|
break;
|
|
} else if (!entry.fs_mgr_flags.verify) {
|
|
continue;
|
|
}
|
|
|
|
int current;
|
|
if (load_verity_state(entry, ¤t) < 0) {
|
|
continue;
|
|
}
|
|
if (current != VERITY_MODE_DEFAULT) {
|
|
*mode = current;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool fs_mgr_is_verity_enabled(const FstabEntry& entry) {
|
|
if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
|
|
return false;
|
|
}
|
|
|
|
DeviceMapper& dm = DeviceMapper::Instance();
|
|
|
|
std::string mount_point = GetVerityDeviceName(entry);
|
|
if (dm.GetState(mount_point) == DmDeviceState::INVALID) {
|
|
return false;
|
|
}
|
|
|
|
const char* status;
|
|
std::vector<DeviceMapper::TargetInfo> table;
|
|
if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) {
|
|
if (!entry.fs_mgr_flags.verify_at_boot) {
|
|
return false;
|
|
}
|
|
status = "V";
|
|
} else {
|
|
status = table[0].data.c_str();
|
|
}
|
|
|
|
if (*status == 'C' || *status == 'V') {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) {
|
|
if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
|
|
return false;
|
|
}
|
|
|
|
DeviceMapper& dm = DeviceMapper::Instance();
|
|
std::string device = GetVerityDeviceName(entry);
|
|
|
|
std::vector<DeviceMapper::TargetInfo> table;
|
|
if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
|
|
return false;
|
|
}
|
|
for (const auto& target : table) {
|
|
if (strcmp(target.spec.target_type, "verity") == 0 &&
|
|
target.data.find("check_at_most_once") != std::string::npos) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::string fs_mgr_get_super_partition_name(int slot) {
|
|
// Devices upgrading to dynamic partitions are allowed to specify a super
|
|
// partition name. This includes cuttlefish, which is a non-A/B device.
|
|
std::string super_partition;
|
|
if (fs_mgr_get_boot_config_from_kernel_cmdline("super_partition", &super_partition)) {
|
|
if (fs_mgr_get_slot_suffix().empty()) {
|
|
return super_partition;
|
|
}
|
|
std::string suffix;
|
|
if (slot == 0) {
|
|
suffix = "_a";
|
|
} else if (slot == 1) {
|
|
suffix = "_b";
|
|
} else if (slot == -1) {
|
|
suffix = fs_mgr_get_slot_suffix();
|
|
}
|
|
return super_partition + suffix;
|
|
}
|
|
return LP_METADATA_DEFAULT_PARTITION_NAME;
|
|
}
|