android_system_core/libunwindstack/DwarfOp.cpp

498 lines
13 KiB
C++

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <deque>
#include <string>
#include <vector>
#include <android-base/stringprintf.h>
#include <unwindstack/DwarfError.h>
#include <unwindstack/DwarfMemory.h>
#include <unwindstack/Log.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>
#include "DwarfOp.h"
namespace unwindstack {
template <typename AddressType>
constexpr typename DwarfOp<AddressType>::OpCallback DwarfOp<AddressType>::kCallbackTable[256];
template <typename AddressType>
bool DwarfOp<AddressType>::Eval(uint64_t start, uint64_t end) {
is_register_ = false;
stack_.clear();
memory_->set_cur_offset(start);
dex_pc_set_ = false;
// Unroll the first Decode calls to be able to check for a special
// sequence of ops and values that indicate this is the dex pc.
// The pattern is:
// OP_const4u (0x0c) 'D' 'E' 'X' '1'
// OP_drop (0x13)
if (memory_->cur_offset() < end) {
if (!Decode()) {
return false;
}
} else {
return true;
}
bool check_for_drop;
if (cur_op_ == 0x0c && operands_.back() == 0x31584544) {
check_for_drop = true;
} else {
check_for_drop = false;
}
if (memory_->cur_offset() < end) {
if (!Decode()) {
return false;
}
} else {
return true;
}
if (check_for_drop && cur_op_ == 0x13) {
dex_pc_set_ = true;
}
uint32_t iterations = 2;
while (memory_->cur_offset() < end) {
if (!Decode()) {
return false;
}
// To protect against a branch that creates an infinite loop,
// terminate if the number of iterations gets too high.
if (iterations++ == 1000) {
last_error_.code = DWARF_ERROR_TOO_MANY_ITERATIONS;
return false;
}
}
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::Decode() {
last_error_.code = DWARF_ERROR_NONE;
if (!memory_->ReadBytes(&cur_op_, 1)) {
last_error_.code = DWARF_ERROR_MEMORY_INVALID;
last_error_.address = memory_->cur_offset();
return false;
}
const auto* op = &kCallbackTable[cur_op_];
const auto handle_func = op->handle_func;
if (handle_func == nullptr) {
last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
return false;
}
// Make sure that the required number of stack elements is available.
if (stack_.size() < op->num_required_stack_values) {
last_error_.code = DWARF_ERROR_STACK_INDEX_NOT_VALID;
return false;
}
operands_.clear();
for (size_t i = 0; i < op->num_operands; i++) {
uint64_t value;
if (!memory_->ReadEncodedValue<AddressType>(op->operands[i], &value)) {
last_error_.code = DWARF_ERROR_MEMORY_INVALID;
last_error_.address = memory_->cur_offset();
return false;
}
operands_.push_back(value);
}
return (this->*handle_func)();
}
template <typename AddressType>
void DwarfOp<AddressType>::GetLogInfo(uint64_t start, uint64_t end,
std::vector<std::string>* lines) {
memory_->set_cur_offset(start);
while (memory_->cur_offset() < end) {
uint8_t cur_op;
if (!memory_->ReadBytes(&cur_op, 1)) {
return;
}
std::string raw_string(android::base::StringPrintf("Raw Data: 0x%02x", cur_op));
std::string log_string;
const auto* op = &kCallbackTable[cur_op];
if (op->handle_func == nullptr) {
log_string = "Illegal";
} else {
log_string = op->name;
uint64_t start_offset = memory_->cur_offset();
for (size_t i = 0; i < op->num_operands; i++) {
uint64_t value;
if (!memory_->ReadEncodedValue<AddressType>(op->operands[i], &value)) {
return;
}
log_string += ' ' + std::to_string(value);
}
uint64_t end_offset = memory_->cur_offset();
memory_->set_cur_offset(start_offset);
for (size_t i = start_offset; i < end_offset; i++) {
uint8_t byte;
if (!memory_->ReadBytes(&byte, 1)) {
return;
}
raw_string += android::base::StringPrintf(" 0x%02x", byte);
}
memory_->set_cur_offset(end_offset);
}
lines->push_back(std::move(log_string));
lines->push_back(std::move(raw_string));
}
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_deref() {
// Read the address and dereference it.
AddressType addr = StackPop();
AddressType value;
if (!regular_memory()->ReadFully(addr, &value, sizeof(value))) {
last_error_.code = DWARF_ERROR_MEMORY_INVALID;
last_error_.address = addr;
return false;
}
stack_.push_front(value);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_deref_size() {
AddressType bytes_to_read = OperandAt(0);
if (bytes_to_read > sizeof(AddressType) || bytes_to_read == 0) {
last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
return false;
}
// Read the address and dereference it.
AddressType addr = StackPop();
AddressType value = 0;
if (!regular_memory()->ReadFully(addr, &value, bytes_to_read)) {
last_error_.code = DWARF_ERROR_MEMORY_INVALID;
last_error_.address = addr;
return false;
}
stack_.push_front(value);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_push() {
// Push all of the operands.
for (auto operand : operands_) {
stack_.push_front(operand);
}
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_dup() {
stack_.push_front(StackAt(0));
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_drop() {
StackPop();
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_over() {
stack_.push_front(StackAt(1));
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_pick() {
AddressType index = OperandAt(0);
if (index > StackSize()) {
last_error_.code = DWARF_ERROR_STACK_INDEX_NOT_VALID;
return false;
}
stack_.push_front(StackAt(index));
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_swap() {
AddressType old_value = stack_[0];
stack_[0] = stack_[1];
stack_[1] = old_value;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_rot() {
AddressType top = stack_[0];
stack_[0] = stack_[1];
stack_[1] = stack_[2];
stack_[2] = top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_abs() {
SignedType signed_value = static_cast<SignedType>(stack_[0]);
if (signed_value < 0) {
signed_value = -signed_value;
}
stack_[0] = static_cast<AddressType>(signed_value);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_and() {
AddressType top = StackPop();
stack_[0] &= top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_div() {
AddressType top = StackPop();
if (top == 0) {
last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
return false;
}
SignedType signed_divisor = static_cast<SignedType>(top);
SignedType signed_dividend = static_cast<SignedType>(stack_[0]);
stack_[0] = static_cast<AddressType>(signed_dividend / signed_divisor);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_minus() {
AddressType top = StackPop();
stack_[0] -= top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_mod() {
AddressType top = StackPop();
if (top == 0) {
last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
return false;
}
stack_[0] %= top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_mul() {
AddressType top = StackPop();
stack_[0] *= top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_neg() {
SignedType signed_value = static_cast<SignedType>(stack_[0]);
stack_[0] = static_cast<AddressType>(-signed_value);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_not() {
stack_[0] = ~stack_[0];
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_or() {
AddressType top = StackPop();
stack_[0] |= top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_plus() {
AddressType top = StackPop();
stack_[0] += top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_plus_uconst() {
stack_[0] += OperandAt(0);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_shl() {
AddressType top = StackPop();
stack_[0] <<= top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_shr() {
AddressType top = StackPop();
stack_[0] >>= top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_shra() {
AddressType top = StackPop();
SignedType signed_value = static_cast<SignedType>(stack_[0]) >> top;
stack_[0] = static_cast<AddressType>(signed_value);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_xor() {
AddressType top = StackPop();
stack_[0] ^= top;
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_bra() {
// Requires one stack element.
AddressType top = StackPop();
int16_t offset = static_cast<int16_t>(OperandAt(0));
uint64_t cur_offset;
if (top != 0) {
cur_offset = memory_->cur_offset() + offset;
} else {
cur_offset = memory_->cur_offset() - offset;
}
memory_->set_cur_offset(cur_offset);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_eq() {
AddressType top = StackPop();
stack_[0] = bool_to_dwarf_bool(stack_[0] == top);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_ge() {
AddressType top = StackPop();
stack_[0] = bool_to_dwarf_bool(stack_[0] >= top);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_gt() {
AddressType top = StackPop();
stack_[0] = bool_to_dwarf_bool(stack_[0] > top);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_le() {
AddressType top = StackPop();
stack_[0] = bool_to_dwarf_bool(stack_[0] <= top);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_lt() {
AddressType top = StackPop();
stack_[0] = bool_to_dwarf_bool(stack_[0] < top);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_ne() {
AddressType top = StackPop();
stack_[0] = bool_to_dwarf_bool(stack_[0] != top);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_skip() {
int16_t offset = static_cast<int16_t>(OperandAt(0));
uint64_t cur_offset = memory_->cur_offset() + offset;
memory_->set_cur_offset(cur_offset);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_lit() {
stack_.push_front(cur_op() - 0x30);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_reg() {
is_register_ = true;
stack_.push_front(cur_op() - 0x50);
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_regx() {
is_register_ = true;
stack_.push_front(OperandAt(0));
return true;
}
// It's not clear for breg/bregx, if this op should read the current
// value of the register, or where we think that register is located.
// For simplicity, the code will read the value before doing the unwind.
template <typename AddressType>
bool DwarfOp<AddressType>::op_breg() {
uint16_t reg = cur_op() - 0x70;
if (reg >= regs_info_->Total()) {
last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
return false;
}
stack_.push_front(regs_info_->Get(reg) + OperandAt(0));
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_bregx() {
AddressType reg = OperandAt(0);
if (reg >= regs_info_->Total()) {
last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
return false;
}
stack_.push_front(regs_info_->Get(reg) + OperandAt(1));
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_nop() {
return true;
}
template <typename AddressType>
bool DwarfOp<AddressType>::op_not_implemented() {
last_error_.code = DWARF_ERROR_NOT_IMPLEMENTED;
return false;
}
// Explicitly instantiate DwarfOp.
template class DwarfOp<uint32_t>;
template class DwarfOp<uint64_t>;
} // namespace unwindstack