android_system_core/logd/SerializedFlushToStateTest.cpp

290 lines
12 KiB
C++

/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SerializedFlushToState.h"
#include <map>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <gtest/gtest.h>
using android::base::Join;
using android::base::StringPrintf;
constexpr size_t kChunkSize = 3 * 4096;
class SerializedFlushToStateTest : public testing::Test {
protected:
void SetUp() override {
// This test spams many unneeded INFO logs, so we suppress them.
old_log_severity_ = android::base::SetMinimumLogSeverity(android::base::WARNING);
}
void TearDown() override { android::base::SetMinimumLogSeverity(old_log_severity_); }
std::string TestReport(const std::vector<uint64_t>& expected,
const std::vector<uint64_t>& read) {
auto sequence_to_log_id = [&](uint64_t sequence) -> int {
for (const auto& [log_id, sequences] : sequence_numbers_per_buffer_) {
if (std::find(sequences.begin(), sequences.end(), sequence) != sequences.end()) {
return log_id;
}
}
return -1;
};
std::map<int, std::vector<uint64_t>> missing_sequences;
std::vector<uint64_t> missing_expected;
std::set_difference(expected.begin(), expected.end(), read.begin(), read.end(),
std::back_inserter(missing_expected));
for (uint64_t sequence : missing_expected) {
int log_id = sequence_to_log_id(sequence);
missing_sequences[log_id].emplace_back(sequence);
}
std::map<int, std::vector<uint64_t>> extra_sequences;
std::vector<uint64_t> extra_read;
std::set_difference(read.begin(), read.end(), expected.begin(), expected.end(),
std::back_inserter(extra_read));
for (uint64_t sequence : extra_read) {
int log_id = sequence_to_log_id(sequence);
extra_sequences[log_id].emplace_back(sequence);
}
std::vector<std::string> errors;
for (const auto& [log_id, sequences] : missing_sequences) {
errors.emplace_back(
StringPrintf("Log id %d missing %zu sequences", log_id, sequences.size()));
}
for (const auto& [log_id, sequences] : extra_sequences) {
errors.emplace_back(
StringPrintf("Log id %d has extra %zu sequences", log_id, sequences.size()));
}
return Join(errors, ", ");
}
// Read sequence numbers in order from SerializedFlushToState for every mask combination and all
// sequence numbers from 0 through the highest logged sequence number + 1.
// This assumes that all of the logs have already been written.
void TestAllReading() {
uint64_t max_sequence = sequence_ + 1;
uint32_t max_mask = (1 << LOG_ID_MAX) - 1;
for (uint64_t sequence = 0; sequence < max_sequence; ++sequence) {
for (uint32_t mask = 0; mask < max_mask; ++mask) {
auto state = SerializedFlushToState{sequence, mask};
state.InitializeLogs(log_chunks_);
TestReading(sequence, mask, state);
}
}
}
// Similar to TestAllReading() except that it doesn't assume any logs are in the buffer, instead
// it calls write_logs() in a loop for sequence/mask combination. It clears log_chunks_ and
// sequence_numbers_per_buffer_ between calls, such that only the sequence numbers written in
// the previous call to write_logs() are expected.
void TestAllReadingWithFutureMessages(const std::function<bool(int)>& write_logs) {
uint64_t max_sequence = sequence_ + 1;
uint32_t max_mask = (1 << LOG_ID_MAX) - 1;
for (uint64_t sequence = 1; sequence < max_sequence; ++sequence) {
for (uint32_t mask = 1; mask < max_mask; ++mask) {
log_id_for_each(i) { log_chunks_[i].clear(); }
auto state = SerializedFlushToState{sequence, mask};
state.InitializeLogs(log_chunks_);
int loop_count = 0;
while (write_logs(loop_count++)) {
TestReading(sequence, mask, state);
sequence_numbers_per_buffer_.clear();
}
}
}
}
void TestReading(uint64_t start, LogMask log_mask, SerializedFlushToState& state) {
std::vector<uint64_t> expected_sequence;
log_id_for_each(i) {
if (((1 << i) & log_mask) == 0) {
continue;
}
for (const auto& sequence : sequence_numbers_per_buffer_[i]) {
if (sequence >= start) {
expected_sequence.emplace_back(sequence);
}
}
}
std::sort(expected_sequence.begin(), expected_sequence.end());
std::vector<uint64_t> read_sequence;
while (state.HasUnreadLogs()) {
auto top = state.PopNextUnreadLog();
read_sequence.emplace_back(top.entry->sequence());
}
EXPECT_TRUE(std::is_sorted(read_sequence.begin(), read_sequence.end()));
EXPECT_EQ(expected_sequence.size(), read_sequence.size());
EXPECT_EQ(expected_sequence, read_sequence)
<< "start: " << start << " log_mask: " << log_mask << " "
<< TestReport(expected_sequence, read_sequence);
}
// Add a chunk with the given messages to the a given log buffer. Keep track of the sequence
// numbers for future validation. Optionally mark the block as having finished writing.
void AddChunkWithMessages(bool finish_writing, int buffer,
const std::vector<std::string>& messages) {
auto chunk = SerializedLogChunk{kChunkSize};
for (const auto& message : messages) {
auto sequence = sequence_++;
sequence_numbers_per_buffer_[buffer].emplace_back(sequence);
ASSERT_TRUE(chunk.CanLog(message.size() + 1));
chunk.Log(sequence, log_time(), 0, 1, 1, message.c_str(), message.size() + 1);
}
if (finish_writing) {
chunk.FinishWriting();
}
log_chunks_[buffer].emplace_back(std::move(chunk));
}
android::base::LogSeverity old_log_severity_;
std::map<int, std::vector<uint64_t>> sequence_numbers_per_buffer_;
std::list<SerializedLogChunk> log_chunks_[LOG_ID_MAX];
uint64_t sequence_ = 1;
};
// 0: multiple chunks, with variable number of entries, with/without finishing writing
// 1: 1 chunk with 1 log and finished writing
// 2: 1 chunk with 1 log and not finished writing
// 3: 1 chunk with 0 logs and not finished writing
// 4: 1 chunk with 0 logs and finished writing (impossible, but SerializedFlushToState handles it)
// 5-7: 0 chunks
TEST_F(SerializedFlushToStateTest, smoke) {
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 1, {"3rd"});
AddChunkWithMessages(false, 0, {"4th"});
AddChunkWithMessages(true, 0, {"4th", "5th", "more", "even", "more", "go", "here"});
AddChunkWithMessages(false, 2, {"6th"});
AddChunkWithMessages(true, 0, {"7th"});
AddChunkWithMessages(false, 3, {});
AddChunkWithMessages(true, 4, {});
TestAllReading();
}
TEST_F(SerializedFlushToStateTest, random) {
srand(1);
for (int count = 0; count < 20; ++count) {
unsigned int num_messages = 1 + rand() % 15;
auto messages = std::vector<std::string>{num_messages, "same message"};
bool compress = rand() % 2;
int buf = rand() % LOG_ID_MAX;
AddChunkWithMessages(compress, buf, messages);
}
TestAllReading();
}
// Same start as smoke, but we selectively write logs to the buffers and ensure they're read.
TEST_F(SerializedFlushToStateTest, future_writes) {
auto write_logs = [&](int loop_count) {
switch (loop_count) {
case 0:
// Initial writes.
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 1, {"3rd"});
AddChunkWithMessages(false, 0, {"4th"});
AddChunkWithMessages(true, 0, {"4th", "5th", "more", "even", "more", "go", "here"});
AddChunkWithMessages(false, 2, {"6th"});
AddChunkWithMessages(true, 0, {"7th"});
AddChunkWithMessages(false, 3, {});
AddChunkWithMessages(true, 4, {});
break;
case 1:
// Smoke test, add a simple chunk.
AddChunkWithMessages(true, 0, {"1st", "2nd"});
break;
case 2:
// Add chunks to all but one of the logs.
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 1, {"1st", "2nd"});
AddChunkWithMessages(true, 2, {"1st", "2nd"});
AddChunkWithMessages(true, 3, {"1st", "2nd"});
AddChunkWithMessages(true, 4, {"1st", "2nd"});
AddChunkWithMessages(true, 5, {"1st", "2nd"});
AddChunkWithMessages(true, 6, {"1st", "2nd"});
break;
case 3:
// Finally add chunks to all logs.
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 1, {"1st", "2nd"});
AddChunkWithMessages(true, 2, {"1st", "2nd"});
AddChunkWithMessages(true, 3, {"1st", "2nd"});
AddChunkWithMessages(true, 4, {"1st", "2nd"});
AddChunkWithMessages(true, 5, {"1st", "2nd"});
AddChunkWithMessages(true, 6, {"1st", "2nd"});
AddChunkWithMessages(true, 7, {"1st", "2nd"});
break;
default:
return false;
}
return true;
};
TestAllReadingWithFutureMessages(write_logs);
}
TEST_F(SerializedFlushToStateTest, no_dangling_references) {
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 0, {"3rd", "4th"});
auto state = SerializedFlushToState{1, kLogMaskAll};
state.InitializeLogs(log_chunks_);
ASSERT_EQ(log_chunks_[0].size(), 2U);
auto first_chunk = log_chunks_[0].begin();
auto second_chunk = std::next(first_chunk);
ASSERT_TRUE(state.HasUnreadLogs());
auto first_log = state.PopNextUnreadLog();
EXPECT_STREQ(first_log.entry->msg(), "1st");
EXPECT_EQ(first_chunk->reader_ref_count(), 1U);
EXPECT_EQ(second_chunk->reader_ref_count(), 0U);
ASSERT_TRUE(state.HasUnreadLogs());
auto second_log = state.PopNextUnreadLog();
EXPECT_STREQ(second_log.entry->msg(), "2nd");
EXPECT_EQ(first_chunk->reader_ref_count(), 1U);
EXPECT_EQ(second_chunk->reader_ref_count(), 0U);
ASSERT_TRUE(state.HasUnreadLogs());
auto third_log = state.PopNextUnreadLog();
EXPECT_STREQ(third_log.entry->msg(), "3rd");
EXPECT_EQ(first_chunk->reader_ref_count(), 0U);
EXPECT_EQ(second_chunk->reader_ref_count(), 1U);
ASSERT_TRUE(state.HasUnreadLogs());
auto fourth_log = state.PopNextUnreadLog();
EXPECT_STREQ(fourth_log.entry->msg(), "4th");
EXPECT_EQ(first_chunk->reader_ref_count(), 0U);
EXPECT_EQ(second_chunk->reader_ref_count(), 1U);
EXPECT_FALSE(state.HasUnreadLogs());
}