android_system_core/logd/LogBufferTest.cpp

460 lines
17 KiB
C++

/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "LogBufferTest.h"
#include <unistd.h>
#include <limits>
#include <memory>
#include <regex>
#include <vector>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include "LogBuffer.h"
#include "LogReaderThread.h"
#include "LogWriter.h"
using android::base::Join;
using android::base::Split;
using android::base::StringPrintf;
#ifndef __ANDROID__
unsigned long __android_logger_get_buffer_size(log_id_t) {
return 1024 * 1024;
}
bool __android_logger_valid_buffer_size(unsigned long) {
return true;
}
#endif
char* android::uidToName(uid_t) {
return nullptr;
}
static std::vector<std::string> CompareLoggerEntries(const logger_entry& expected,
const logger_entry& result, bool ignore_len) {
std::vector<std::string> errors;
if (!ignore_len && expected.len != result.len) {
errors.emplace_back(
StringPrintf("len: expected %" PRIu16 " vs %" PRIu16, expected.len, result.len));
}
if (expected.hdr_size != result.hdr_size) {
errors.emplace_back(StringPrintf("hdr_size: %" PRIu16 " vs %" PRIu16, expected.hdr_size,
result.hdr_size));
}
if (expected.pid != result.pid) {
errors.emplace_back(
StringPrintf("pid: expected %" PRIi32 " vs %" PRIi32, expected.pid, result.pid));
}
if (expected.tid != result.tid) {
errors.emplace_back(
StringPrintf("tid: expected %" PRIu32 " vs %" PRIu32, expected.tid, result.tid));
}
if (expected.sec != result.sec) {
errors.emplace_back(
StringPrintf("sec: expected %" PRIu32 " vs %" PRIu32, expected.sec, result.sec));
}
if (expected.nsec != result.nsec) {
errors.emplace_back(
StringPrintf("nsec: expected %" PRIu32 " vs %" PRIu32, expected.nsec, result.nsec));
}
if (expected.lid != result.lid) {
errors.emplace_back(
StringPrintf("lid: expected %" PRIu32 " vs %" PRIu32, expected.lid, result.lid));
}
if (expected.uid != result.uid) {
errors.emplace_back(
StringPrintf("uid: expected %" PRIu32 " vs %" PRIu32, expected.uid, result.uid));
}
return errors;
}
static std::string MakePrintable(std::string in) {
if (in.size() > 80) {
in = in.substr(0, 80) + "...";
}
std::string result;
for (const char c : in) {
if (isprint(c)) {
result.push_back(c);
} else {
result.append(StringPrintf("\\%02x", static_cast<int>(c) & 0xFF));
}
}
return result;
}
static std::string CompareMessages(const std::string& expected, const std::string& result) {
if (expected == result) {
return {};
}
size_t diff_index = 0;
for (; diff_index < std::min(expected.size(), result.size()); ++diff_index) {
if (expected[diff_index] != result[diff_index]) {
break;
}
}
if (diff_index < 80) {
auto expected_short = MakePrintable(expected);
auto result_short = MakePrintable(result);
return StringPrintf("msg: expected '%s' vs '%s'", expected_short.c_str(),
result_short.c_str());
}
auto expected_short = MakePrintable(expected.substr(diff_index));
auto result_short = MakePrintable(result.substr(diff_index));
return StringPrintf("msg: index %zu: expected '%s' vs '%s'", diff_index, expected_short.c_str(),
result_short.c_str());
}
static std::string CompareRegexMessages(const std::string& expected, const std::string& result) {
auto expected_pieces = Split(expected, std::string("\0", 1));
auto result_pieces = Split(result, std::string("\0", 1));
if (expected_pieces.size() != 3 || result_pieces.size() != 3) {
return StringPrintf(
"msg: should have 3 null delimited strings found %d in expected, %d in result: "
"'%s' vs '%s'",
static_cast<int>(expected_pieces.size()), static_cast<int>(result_pieces.size()),
MakePrintable(expected).c_str(), MakePrintable(result).c_str());
}
if (expected_pieces[0] != result_pieces[0]) {
return StringPrintf("msg: tag/priority mismatch expected '%s' vs '%s'",
MakePrintable(expected_pieces[0]).c_str(),
MakePrintable(result_pieces[0]).c_str());
}
std::regex expected_tag_regex(expected_pieces[1]);
if (!std::regex_search(result_pieces[1], expected_tag_regex)) {
return StringPrintf("msg: message regex mismatch expected '%s' vs '%s'",
MakePrintable(expected_pieces[1]).c_str(),
MakePrintable(result_pieces[1]).c_str());
}
if (expected_pieces[2] != result_pieces[2]) {
return StringPrintf("msg: nothing expected after final null character '%s' vs '%s'",
MakePrintable(expected_pieces[2]).c_str(),
MakePrintable(result_pieces[2]).c_str());
}
return {};
}
void CompareLogMessages(const std::vector<LogMessage>& expected,
const std::vector<LogMessage>& result) {
EXPECT_EQ(expected.size(), result.size());
size_t end = std::min(expected.size(), result.size());
size_t num_errors = 0;
for (size_t i = 0; i < end; ++i) {
auto errors =
CompareLoggerEntries(expected[i].entry, result[i].entry, expected[i].regex_compare);
auto msg_error = expected[i].regex_compare
? CompareRegexMessages(expected[i].message, result[i].message)
: CompareMessages(expected[i].message, result[i].message);
if (!msg_error.empty()) {
errors.emplace_back(msg_error);
}
if (!errors.empty()) {
GTEST_LOG_(ERROR) << "Mismatch log message " << i << "\n" << Join(errors, "\n");
++num_errors;
}
}
EXPECT_EQ(0U, num_errors);
}
void FixupMessages(std::vector<LogMessage>* messages) {
for (auto& [entry, message, _] : *messages) {
entry.hdr_size = sizeof(logger_entry);
entry.len = message.size();
}
}
TEST_P(LogBufferTest, smoke) {
std::vector<LogMessage> log_messages = {
{{
.pid = 1,
.tid = 1,
.sec = 1234,
.nsec = 323001,
.lid = LOG_ID_MAIN,
.uid = 0,
},
"smoke test"},
};
FixupMessages(&log_messages);
LogMessages(log_messages);
std::vector<LogMessage> read_log_messages;
std::unique_ptr<LogWriter> test_writer(new TestWriter(&read_log_messages, nullptr));
std::unique_ptr<FlushToState> flush_to_state = log_buffer_->CreateFlushToState(1, kLogMaskAll);
EXPECT_TRUE(log_buffer_->FlushTo(test_writer.get(), *flush_to_state, nullptr));
EXPECT_EQ(2ULL, flush_to_state->start());
CompareLogMessages(log_messages, read_log_messages);
}
TEST_P(LogBufferTest, smoke_with_reader_thread) {
std::vector<LogMessage> log_messages = {
{{.pid = 1, .tid = 2, .sec = 10000, .nsec = 20001, .lid = LOG_ID_MAIN, .uid = 0},
"first"},
{{.pid = 10, .tid = 2, .sec = 10000, .nsec = 20002, .lid = LOG_ID_MAIN, .uid = 0},
"second"},
{{.pid = 100, .tid = 2, .sec = 10000, .nsec = 20003, .lid = LOG_ID_KERNEL, .uid = 0},
"third"},
{{.pid = 10, .tid = 2, .sec = 10000, .nsec = 20004, .lid = LOG_ID_MAIN, .uid = 0},
"fourth"},
{{.pid = 1, .tid = 2, .sec = 10000, .nsec = 20005, .lid = LOG_ID_RADIO, .uid = 0},
"fifth"},
{{.pid = 2, .tid = 2, .sec = 10000, .nsec = 20006, .lid = LOG_ID_RADIO, .uid = 0},
"sixth"},
{{.pid = 3, .tid = 2, .sec = 10000, .nsec = 20007, .lid = LOG_ID_RADIO, .uid = 0},
"seventh"},
{{.pid = 4, .tid = 2, .sec = 10000, .nsec = 20008, .lid = LOG_ID_MAIN, .uid = 0},
"eighth"},
{{.pid = 5, .tid = 2, .sec = 10000, .nsec = 20009, .lid = LOG_ID_CRASH, .uid = 0},
"nineth"},
{{.pid = 6, .tid = 2, .sec = 10000, .nsec = 20011, .lid = LOG_ID_MAIN, .uid = 0},
"tenth"},
};
FixupMessages(&log_messages);
LogMessages(log_messages);
std::vector<LogMessage> read_log_messages;
bool released = false;
{
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
std::unique_ptr<LogWriter> test_writer(new TestWriter(&read_log_messages, &released));
std::unique_ptr<LogReaderThread> log_reader(
new LogReaderThread(log_buffer_.get(), &reader_list_, std::move(test_writer), true,
0, kLogMaskAll, 0, {}, 1, {}));
reader_list_.reader_threads().emplace_back(std::move(log_reader));
}
while (!released) {
usleep(5000);
}
{
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
EXPECT_EQ(0U, reader_list_.reader_threads().size());
}
CompareLogMessages(log_messages, read_log_messages);
}
// Generate random messages, set the 'sec' parameter explicit though, to be able to track the
// expected order of messages.
LogMessage GenerateRandomLogMessage(uint32_t sec) {
auto rand_uint32 = [](int max) -> uint32_t { return rand() % max; };
logger_entry entry = {
.hdr_size = sizeof(logger_entry),
.pid = rand() % 5000,
.tid = rand_uint32(5000),
.sec = sec,
.nsec = rand_uint32(NS_PER_SEC),
.lid = rand_uint32(LOG_ID_STATS),
.uid = rand_uint32(100000),
};
// See comment in ChattyLogBuffer::Log() for why this is disallowed.
if (entry.nsec % 1000 == 0) {
++entry.nsec;
}
if (entry.lid == LOG_ID_EVENTS) {
entry.lid = LOG_ID_KERNEL;
}
std::string message;
char priority = ANDROID_LOG_INFO + rand() % 2;
message.push_back(priority);
int tag_length = 2 + rand() % 10;
for (int i = 0; i < tag_length; ++i) {
message.push_back('a' + rand() % 26);
}
message.push_back('\0');
int msg_length = 2 + rand() % 1000;
for (int i = 0; i < msg_length; ++i) {
message.push_back('a' + rand() % 26);
}
message.push_back('\0');
entry.len = message.size();
return {entry, message};
}
TEST_P(LogBufferTest, random_messages) {
srand(1);
std::vector<LogMessage> log_messages;
for (size_t i = 0; i < 1000; ++i) {
log_messages.emplace_back(GenerateRandomLogMessage(i));
}
LogMessages(log_messages);
std::vector<LogMessage> read_log_messages;
bool released = false;
{
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
std::unique_ptr<LogWriter> test_writer(new TestWriter(&read_log_messages, &released));
std::unique_ptr<LogReaderThread> log_reader(
new LogReaderThread(log_buffer_.get(), &reader_list_, std::move(test_writer), true,
0, kLogMaskAll, 0, {}, 1, {}));
reader_list_.reader_threads().emplace_back(std::move(log_reader));
}
while (!released) {
usleep(5000);
}
{
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
EXPECT_EQ(0U, reader_list_.reader_threads().size());
}
CompareLogMessages(log_messages, read_log_messages);
}
TEST_P(LogBufferTest, read_last_sequence) {
std::vector<LogMessage> log_messages = {
{{.pid = 1, .tid = 2, .sec = 10000, .nsec = 20001, .lid = LOG_ID_MAIN, .uid = 0},
"first"},
{{.pid = 10, .tid = 2, .sec = 10000, .nsec = 20002, .lid = LOG_ID_MAIN, .uid = 0},
"second"},
{{.pid = 100, .tid = 2, .sec = 10000, .nsec = 20003, .lid = LOG_ID_MAIN, .uid = 0},
"third"},
};
FixupMessages(&log_messages);
LogMessages(log_messages);
std::vector<LogMessage> read_log_messages;
bool released = false;
{
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
std::unique_ptr<LogWriter> test_writer(new TestWriter(&read_log_messages, &released));
std::unique_ptr<LogReaderThread> log_reader(
new LogReaderThread(log_buffer_.get(), &reader_list_, std::move(test_writer), true,
0, kLogMaskAll, 0, {}, 3, {}));
reader_list_.reader_threads().emplace_back(std::move(log_reader));
}
while (!released) {
usleep(5000);
}
{
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
EXPECT_EQ(0U, reader_list_.reader_threads().size());
}
std::vector<LogMessage> expected_log_messages = {log_messages.back()};
CompareLogMessages(expected_log_messages, read_log_messages);
}
TEST_P(LogBufferTest, clear_logs) {
// Log 3 initial logs.
std::vector<LogMessage> log_messages = {
{{.pid = 1, .tid = 2, .sec = 10000, .nsec = 20001, .lid = LOG_ID_MAIN, .uid = 0},
"first"},
{{.pid = 10, .tid = 2, .sec = 10000, .nsec = 20002, .lid = LOG_ID_MAIN, .uid = 0},
"second"},
{{.pid = 100, .tid = 2, .sec = 10000, .nsec = 20003, .lid = LOG_ID_MAIN, .uid = 0},
"third"},
};
FixupMessages(&log_messages);
LogMessages(log_messages);
std::vector<LogMessage> read_log_messages;
bool released = false;
// Connect a blocking reader.
{
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
std::unique_ptr<LogWriter> test_writer(new TestWriter(&read_log_messages, &released));
std::unique_ptr<LogReaderThread> log_reader(
new LogReaderThread(log_buffer_.get(), &reader_list_, std::move(test_writer), false,
0, kLogMaskAll, 0, {}, 1, {}));
reader_list_.reader_threads().emplace_back(std::move(log_reader));
}
// Wait up to 250ms for the reader to read the first 3 logs.
constexpr int kMaxRetryCount = 50;
int count = 0;
for (; count < kMaxRetryCount; ++count) {
usleep(5000);
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
if (reader_list_.reader_threads().back()->start() == 4) {
break;
}
}
ASSERT_LT(count, kMaxRetryCount);
// Clear the log buffer.
log_buffer_->Clear(LOG_ID_MAIN, 0);
// Log 3 more logs.
std::vector<LogMessage> after_clear_messages = {
{{.pid = 1, .tid = 2, .sec = 10000, .nsec = 20001, .lid = LOG_ID_MAIN, .uid = 0},
"4th"},
{{.pid = 10, .tid = 2, .sec = 10000, .nsec = 20002, .lid = LOG_ID_MAIN, .uid = 0},
"5th"},
{{.pid = 100, .tid = 2, .sec = 10000, .nsec = 20003, .lid = LOG_ID_MAIN, .uid = 0},
"6th"},
};
FixupMessages(&after_clear_messages);
LogMessages(after_clear_messages);
// Wait up to 250ms for the reader to read the 3 additional logs.
for (count = 0; count < kMaxRetryCount; ++count) {
usleep(5000);
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
if (reader_list_.reader_threads().back()->start() == 7) {
break;
}
}
ASSERT_LT(count, kMaxRetryCount);
// Release the reader, wait for it to get the signal then check that it has been deleted.
{
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
reader_list_.reader_threads().back()->release_Locked();
}
while (!released) {
usleep(5000);
}
{
auto lock = std::unique_lock{reader_list_.reader_threads_lock()};
EXPECT_EQ(0U, reader_list_.reader_threads().size());
}
// Check that we have read all 6 messages.
std::vector<LogMessage> expected_log_messages = log_messages;
expected_log_messages.insert(expected_log_messages.end(), after_clear_messages.begin(),
after_clear_messages.end());
CompareLogMessages(expected_log_messages, read_log_messages);
// Finally, call FlushTo and ensure that only the 3 logs after the clear remain in the buffer.
std::vector<LogMessage> read_log_messages_after_clear;
std::unique_ptr<LogWriter> test_writer(new TestWriter(&read_log_messages_after_clear, nullptr));
std::unique_ptr<FlushToState> flush_to_state = log_buffer_->CreateFlushToState(1, kLogMaskAll);
EXPECT_TRUE(log_buffer_->FlushTo(test_writer.get(), *flush_to_state, nullptr));
EXPECT_EQ(7ULL, flush_to_state->start());
CompareLogMessages(after_clear_messages, read_log_messages_after_clear);
}
INSTANTIATE_TEST_CASE_P(LogBufferTests, LogBufferTest,
testing::Values("chatty", "serialized", "simple"));