913 lines
26 KiB
C
913 lines
26 KiB
C
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <ctype.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/stat.h>
|
|
#include <errno.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <libgen.h>
|
|
#include <time.h>
|
|
#include <sys/swap.h>
|
|
/* XXX These need to be obtained from kernel headers. See b/9336527 */
|
|
#define SWAP_FLAG_PREFER 0x8000
|
|
#define SWAP_FLAG_PRIO_MASK 0x7fff
|
|
#define SWAP_FLAG_PRIO_SHIFT 0
|
|
#define SWAP_FLAG_DISCARD 0x10000
|
|
|
|
#include <private/android_filesystem_config.h>
|
|
#include <cutils/partition_utils.h>
|
|
#include <cutils/properties.h>
|
|
#include <logwrap/logwrap.h>
|
|
|
|
#include "fs_mgr_priv.h"
|
|
|
|
#define KEY_LOC_PROP "ro.crypto.keyfile.userdata"
|
|
#define KEY_IN_FOOTER "footer"
|
|
|
|
#define E2FSCK_BIN "/system/bin/e2fsck"
|
|
#define MKSWAP_BIN "/system/bin/mkswap"
|
|
|
|
#define ZRAM_CONF_DEV "/sys/block/zram0/disksize"
|
|
|
|
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
|
|
|
|
struct flag_list {
|
|
const char *name;
|
|
unsigned flag;
|
|
};
|
|
|
|
static struct flag_list mount_flags[] = {
|
|
{ "noatime", MS_NOATIME },
|
|
{ "noexec", MS_NOEXEC },
|
|
{ "nosuid", MS_NOSUID },
|
|
{ "nodev", MS_NODEV },
|
|
{ "nodiratime", MS_NODIRATIME },
|
|
{ "ro", MS_RDONLY },
|
|
{ "rw", 0 },
|
|
{ "remount", MS_REMOUNT },
|
|
{ "bind", MS_BIND },
|
|
{ "rec", MS_REC },
|
|
{ "unbindable", MS_UNBINDABLE },
|
|
{ "private", MS_PRIVATE },
|
|
{ "slave", MS_SLAVE },
|
|
{ "shared", MS_SHARED },
|
|
{ "defaults", 0 },
|
|
{ 0, 0 },
|
|
};
|
|
|
|
static struct flag_list fs_mgr_flags[] = {
|
|
{ "wait", MF_WAIT },
|
|
{ "check", MF_CHECK },
|
|
{ "encryptable=",MF_CRYPT },
|
|
{ "nonremovable",MF_NONREMOVABLE },
|
|
{ "voldmanaged=",MF_VOLDMANAGED},
|
|
{ "length=", MF_LENGTH },
|
|
{ "recoveryonly",MF_RECOVERYONLY },
|
|
{ "swapprio=", MF_SWAPPRIO },
|
|
{ "zramsize=", MF_ZRAMSIZE },
|
|
{ "defaults", 0 },
|
|
{ 0, 0 },
|
|
};
|
|
|
|
struct fs_mgr_flag_values {
|
|
char *key_loc;
|
|
long long part_length;
|
|
char *label;
|
|
int partnum;
|
|
int swap_prio;
|
|
unsigned int zram_size;
|
|
};
|
|
|
|
/*
|
|
* gettime() - returns the time in seconds of the system's monotonic clock or
|
|
* zero on error.
|
|
*/
|
|
static time_t gettime(void)
|
|
{
|
|
struct timespec ts;
|
|
int ret;
|
|
|
|
ret = clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
if (ret < 0) {
|
|
ERROR("clock_gettime(CLOCK_MONOTONIC) failed: %s\n", strerror(errno));
|
|
return 0;
|
|
}
|
|
|
|
return ts.tv_sec;
|
|
}
|
|
|
|
static int wait_for_file(const char *filename, int timeout)
|
|
{
|
|
struct stat info;
|
|
time_t timeout_time = gettime() + timeout;
|
|
int ret = -1;
|
|
|
|
while (gettime() < timeout_time && ((ret = stat(filename, &info)) < 0))
|
|
usleep(10000);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int parse_flags(char *flags, struct flag_list *fl,
|
|
struct fs_mgr_flag_values *flag_vals,
|
|
char *fs_options, int fs_options_len)
|
|
{
|
|
int f = 0;
|
|
int i;
|
|
char *p;
|
|
char *savep;
|
|
|
|
/* initialize flag values. If we find a relevant flag, we'll
|
|
* update the value */
|
|
if (flag_vals) {
|
|
memset(flag_vals, 0, sizeof(*flag_vals));
|
|
flag_vals->partnum = -1;
|
|
flag_vals->swap_prio = -1; /* negative means it wasn't specified. */
|
|
}
|
|
|
|
/* initialize fs_options to the null string */
|
|
if (fs_options && (fs_options_len > 0)) {
|
|
fs_options[0] = '\0';
|
|
}
|
|
|
|
p = strtok_r(flags, ",", &savep);
|
|
while (p) {
|
|
/* Look for the flag "p" in the flag list "fl"
|
|
* If not found, the loop exits with fl[i].name being null.
|
|
*/
|
|
for (i = 0; fl[i].name; i++) {
|
|
if (!strncmp(p, fl[i].name, strlen(fl[i].name))) {
|
|
f |= fl[i].flag;
|
|
if ((fl[i].flag == MF_CRYPT) && flag_vals) {
|
|
/* The encryptable flag is followed by an = and the
|
|
* location of the keys. Get it and return it.
|
|
*/
|
|
flag_vals->key_loc = strdup(strchr(p, '=') + 1);
|
|
} else if ((fl[i].flag == MF_LENGTH) && flag_vals) {
|
|
/* The length flag is followed by an = and the
|
|
* size of the partition. Get it and return it.
|
|
*/
|
|
flag_vals->part_length = strtoll(strchr(p, '=') + 1, NULL, 0);
|
|
} else if ((fl[i].flag == MF_VOLDMANAGED) && flag_vals) {
|
|
/* The voldmanaged flag is followed by an = and the
|
|
* label, a colon and the partition number or the
|
|
* word "auto", e.g.
|
|
* voldmanaged=sdcard:3
|
|
* Get and return them.
|
|
*/
|
|
char *label_start;
|
|
char *label_end;
|
|
char *part_start;
|
|
|
|
label_start = strchr(p, '=') + 1;
|
|
label_end = strchr(p, ':');
|
|
if (label_end) {
|
|
flag_vals->label = strndup(label_start,
|
|
(int) (label_end - label_start));
|
|
part_start = strchr(p, ':') + 1;
|
|
if (!strcmp(part_start, "auto")) {
|
|
flag_vals->partnum = -1;
|
|
} else {
|
|
flag_vals->partnum = strtol(part_start, NULL, 0);
|
|
}
|
|
} else {
|
|
ERROR("Warning: voldmanaged= flag malformed\n");
|
|
}
|
|
} else if ((fl[i].flag == MF_SWAPPRIO) && flag_vals) {
|
|
flag_vals->swap_prio = strtoll(strchr(p, '=') + 1, NULL, 0);
|
|
} else if ((fl[i].flag == MF_ZRAMSIZE) && flag_vals) {
|
|
flag_vals->zram_size = strtoll(strchr(p, '=') + 1, NULL, 0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!fl[i].name) {
|
|
if (fs_options) {
|
|
/* It's not a known flag, so it must be a filesystem specific
|
|
* option. Add it to fs_options if it was passed in.
|
|
*/
|
|
strlcat(fs_options, p, fs_options_len);
|
|
strlcat(fs_options, ",", fs_options_len);
|
|
} else {
|
|
/* fs_options was not passed in, so if the flag is unknown
|
|
* it's an error.
|
|
*/
|
|
ERROR("Warning: unknown flag %s\n", p);
|
|
}
|
|
}
|
|
p = strtok_r(NULL, ",", &savep);
|
|
}
|
|
|
|
out:
|
|
if (fs_options && fs_options[0]) {
|
|
/* remove the last trailing comma from the list of options */
|
|
fs_options[strlen(fs_options) - 1] = '\0';
|
|
}
|
|
|
|
return f;
|
|
}
|
|
|
|
/* Read a line of text till the next newline character.
|
|
* If no newline is found before the buffer is full, continue reading till a new line is seen,
|
|
* then return an empty buffer. This effectively ignores lines that are too long.
|
|
* On EOF, return null.
|
|
*/
|
|
static char *fs_getline(char *buf, int size, FILE *file)
|
|
{
|
|
int cnt = 0;
|
|
int eof = 0;
|
|
int eol = 0;
|
|
int c;
|
|
|
|
if (size < 1) {
|
|
return NULL;
|
|
}
|
|
|
|
while (cnt < (size - 1)) {
|
|
c = getc(file);
|
|
if (c == EOF) {
|
|
eof = 1;
|
|
break;
|
|
}
|
|
|
|
*(buf + cnt) = c;
|
|
cnt++;
|
|
|
|
if (c == '\n') {
|
|
eol = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Null terminate what we've read */
|
|
*(buf + cnt) = '\0';
|
|
|
|
if (eof) {
|
|
if (cnt) {
|
|
return buf;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
} else if (eol) {
|
|
return buf;
|
|
} else {
|
|
/* The line is too long. Read till a newline or EOF.
|
|
* If EOF, return null, if newline, return an empty buffer.
|
|
*/
|
|
while(1) {
|
|
c = getc(file);
|
|
if (c == EOF) {
|
|
return NULL;
|
|
} else if (c == '\n') {
|
|
*buf = '\0';
|
|
return buf;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct fstab *fs_mgr_read_fstab(const char *fstab_path)
|
|
{
|
|
FILE *fstab_file;
|
|
int cnt, entries;
|
|
int len;
|
|
char line[256];
|
|
const char *delim = " \t";
|
|
char *save_ptr, *p;
|
|
struct fstab *fstab;
|
|
struct fstab_rec *recs;
|
|
struct fs_mgr_flag_values flag_vals;
|
|
#define FS_OPTIONS_LEN 1024
|
|
char tmp_fs_options[FS_OPTIONS_LEN];
|
|
|
|
fstab_file = fopen(fstab_path, "r");
|
|
if (!fstab_file) {
|
|
ERROR("Cannot open file %s\n", fstab_path);
|
|
return 0;
|
|
}
|
|
|
|
entries = 0;
|
|
while (fs_getline(line, sizeof(line), fstab_file)) {
|
|
/* if the last character is a newline, shorten the string by 1 byte */
|
|
len = strlen(line);
|
|
if (line[len - 1] == '\n') {
|
|
line[len - 1] = '\0';
|
|
}
|
|
/* Skip any leading whitespace */
|
|
p = line;
|
|
while (isspace(*p)) {
|
|
p++;
|
|
}
|
|
/* ignore comments or empty lines */
|
|
if (*p == '#' || *p == '\0')
|
|
continue;
|
|
entries++;
|
|
}
|
|
|
|
if (!entries) {
|
|
ERROR("No entries found in fstab\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate and init the fstab structure */
|
|
fstab = calloc(1, sizeof(struct fstab));
|
|
fstab->num_entries = entries;
|
|
fstab->fstab_filename = strdup(fstab_path);
|
|
fstab->recs = calloc(fstab->num_entries, sizeof(struct fstab_rec));
|
|
|
|
fseek(fstab_file, 0, SEEK_SET);
|
|
|
|
cnt = 0;
|
|
while (fs_getline(line, sizeof(line), fstab_file)) {
|
|
/* if the last character is a newline, shorten the string by 1 byte */
|
|
len = strlen(line);
|
|
if (line[len - 1] == '\n') {
|
|
line[len - 1] = '\0';
|
|
}
|
|
|
|
/* Skip any leading whitespace */
|
|
p = line;
|
|
while (isspace(*p)) {
|
|
p++;
|
|
}
|
|
/* ignore comments or empty lines */
|
|
if (*p == '#' || *p == '\0')
|
|
continue;
|
|
|
|
/* If a non-comment entry is greater than the size we allocated, give an
|
|
* error and quit. This can happen in the unlikely case the file changes
|
|
* between the two reads.
|
|
*/
|
|
if (cnt >= entries) {
|
|
ERROR("Tried to process more entries than counted\n");
|
|
break;
|
|
}
|
|
|
|
if (!(p = strtok_r(line, delim, &save_ptr))) {
|
|
ERROR("Error parsing mount source\n");
|
|
return 0;
|
|
}
|
|
fstab->recs[cnt].blk_device = strdup(p);
|
|
|
|
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
|
|
ERROR("Error parsing mount_point\n");
|
|
return 0;
|
|
}
|
|
fstab->recs[cnt].mount_point = strdup(p);
|
|
|
|
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
|
|
ERROR("Error parsing fs_type\n");
|
|
return 0;
|
|
}
|
|
fstab->recs[cnt].fs_type = strdup(p);
|
|
|
|
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
|
|
ERROR("Error parsing mount_flags\n");
|
|
return 0;
|
|
}
|
|
tmp_fs_options[0] = '\0';
|
|
fstab->recs[cnt].flags = parse_flags(p, mount_flags, NULL,
|
|
tmp_fs_options, FS_OPTIONS_LEN);
|
|
|
|
/* fs_options are optional */
|
|
if (tmp_fs_options[0]) {
|
|
fstab->recs[cnt].fs_options = strdup(tmp_fs_options);
|
|
} else {
|
|
fstab->recs[cnt].fs_options = NULL;
|
|
}
|
|
|
|
if (!(p = strtok_r(NULL, delim, &save_ptr))) {
|
|
ERROR("Error parsing fs_mgr_options\n");
|
|
return 0;
|
|
}
|
|
fstab->recs[cnt].fs_mgr_flags = parse_flags(p, fs_mgr_flags,
|
|
&flag_vals, NULL, 0);
|
|
fstab->recs[cnt].key_loc = flag_vals.key_loc;
|
|
fstab->recs[cnt].length = flag_vals.part_length;
|
|
fstab->recs[cnt].label = flag_vals.label;
|
|
fstab->recs[cnt].partnum = flag_vals.partnum;
|
|
fstab->recs[cnt].swap_prio = flag_vals.swap_prio;
|
|
fstab->recs[cnt].zram_size = flag_vals.zram_size;
|
|
cnt++;
|
|
}
|
|
fclose(fstab_file);
|
|
|
|
return fstab;
|
|
}
|
|
|
|
void fs_mgr_free_fstab(struct fstab *fstab)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
/* Free the pointers return by strdup(3) */
|
|
free(fstab->recs[i].blk_device);
|
|
free(fstab->recs[i].mount_point);
|
|
free(fstab->recs[i].fs_type);
|
|
free(fstab->recs[i].fs_options);
|
|
free(fstab->recs[i].key_loc);
|
|
free(fstab->recs[i].label);
|
|
i++;
|
|
}
|
|
|
|
/* Free the fstab_recs array created by calloc(3) */
|
|
free(fstab->recs);
|
|
|
|
/* Free the fstab filename */
|
|
free(fstab->fstab_filename);
|
|
|
|
/* Free fstab */
|
|
free(fstab);
|
|
}
|
|
|
|
static void check_fs(char *blk_device, char *fs_type, char *target)
|
|
{
|
|
int status;
|
|
int ret;
|
|
long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
|
|
char *tmpmnt_opts = "nomblk_io_submit,errors=remount-ro";
|
|
char *e2fsck_argv[] = {
|
|
E2FSCK_BIN,
|
|
"-y",
|
|
blk_device
|
|
};
|
|
|
|
/* Check for the types of filesystems we know how to check */
|
|
if (!strcmp(fs_type, "ext2") || !strcmp(fs_type, "ext3") || !strcmp(fs_type, "ext4")) {
|
|
/*
|
|
* First try to mount and unmount the filesystem. We do this because
|
|
* the kernel is more efficient than e2fsck in running the journal and
|
|
* processing orphaned inodes, and on at least one device with a
|
|
* performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
|
|
* to do what the kernel does in about a second.
|
|
*
|
|
* After mounting and unmounting the filesystem, run e2fsck, and if an
|
|
* error is recorded in the filesystem superblock, e2fsck will do a full
|
|
* check. Otherwise, it does nothing. If the kernel cannot mount the
|
|
* filesytsem due to an error, e2fsck is still run to do a full check
|
|
* fix the filesystem.
|
|
*/
|
|
ret = mount(blk_device, target, fs_type, tmpmnt_flags, tmpmnt_opts);
|
|
if (!ret) {
|
|
umount(target);
|
|
}
|
|
|
|
INFO("Running %s on %s\n", E2FSCK_BIN, blk_device);
|
|
|
|
ret = android_fork_execvp_ext(ARRAY_SIZE(e2fsck_argv), e2fsck_argv,
|
|
&status, true, LOG_KLOG, true);
|
|
|
|
if (ret < 0) {
|
|
/* No need to check for error in fork, we can't really handle it now */
|
|
ERROR("Failed trying to run %s\n", E2FSCK_BIN);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void remove_trailing_slashes(char *n)
|
|
{
|
|
int len;
|
|
|
|
len = strlen(n) - 1;
|
|
while ((*(n + len) == '/') && len) {
|
|
*(n + len) = '\0';
|
|
len--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the given block device as read-only, using the BLKROSET ioctl.
|
|
* Return 0 on success, and -1 on error.
|
|
*/
|
|
static void fs_set_blk_ro(const char *blockdev)
|
|
{
|
|
int fd;
|
|
int ON = 1;
|
|
|
|
fd = open(blockdev, O_RDONLY);
|
|
if (fd < 0) {
|
|
// should never happen
|
|
return;
|
|
}
|
|
|
|
ioctl(fd, BLKROSET, &ON);
|
|
close(fd);
|
|
}
|
|
|
|
/*
|
|
* __mount(): wrapper around the mount() system call which also
|
|
* sets the underlying block device to read-only if the mount is read-only.
|
|
* See "man 2 mount" for return values.
|
|
*/
|
|
static int __mount(const char *source, const char *target,
|
|
const char *filesystemtype, unsigned long mountflags,
|
|
const void *data)
|
|
{
|
|
int ret = mount(source, target, filesystemtype, mountflags, data);
|
|
|
|
if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
|
|
fs_set_blk_ro(source);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fs_match(char *in1, char *in2)
|
|
{
|
|
char *n1;
|
|
char *n2;
|
|
int ret;
|
|
|
|
n1 = strdup(in1);
|
|
n2 = strdup(in2);
|
|
|
|
remove_trailing_slashes(n1);
|
|
remove_trailing_slashes(n2);
|
|
|
|
ret = !strcmp(n1, n2);
|
|
|
|
free(n1);
|
|
free(n2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int fs_mgr_mount_all(struct fstab *fstab)
|
|
{
|
|
int i = 0;
|
|
int encrypted = 0;
|
|
int ret = -1;
|
|
int mret;
|
|
|
|
if (!fstab) {
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
/* Don't mount entries that are managed by vold */
|
|
if (fstab->recs[i].fs_mgr_flags & (MF_VOLDMANAGED | MF_RECOVERYONLY)) {
|
|
continue;
|
|
}
|
|
|
|
/* Skip swap and raw partition entries such as boot, recovery, etc */
|
|
if (!strcmp(fstab->recs[i].fs_type, "swap") ||
|
|
!strcmp(fstab->recs[i].fs_type, "emmc") ||
|
|
!strcmp(fstab->recs[i].fs_type, "mtd")) {
|
|
continue;
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
|
|
wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT);
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_CHECK) {
|
|
check_fs(fstab->recs[i].blk_device, fstab->recs[i].fs_type,
|
|
fstab->recs[i].mount_point);
|
|
}
|
|
|
|
mret = __mount(fstab->recs[i].blk_device, fstab->recs[i].mount_point,
|
|
fstab->recs[i].fs_type, fstab->recs[i].flags,
|
|
fstab->recs[i].fs_options);
|
|
if (!mret) {
|
|
/* Success! Go get the next one */
|
|
continue;
|
|
}
|
|
|
|
/* mount(2) returned an error, check if it's encrypted and deal with it */
|
|
if ((fstab->recs[i].fs_mgr_flags & MF_CRYPT) &&
|
|
!partition_wiped(fstab->recs[i].blk_device)) {
|
|
/* Need to mount a tmpfs at this mountpoint for now, and set
|
|
* properties that vold will query later for decrypting
|
|
*/
|
|
if (mount("tmpfs", fstab->recs[i].mount_point, "tmpfs",
|
|
MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS) < 0) {
|
|
ERROR("Cannot mount tmpfs filesystem for encrypted fs at %s\n",
|
|
fstab->recs[i].mount_point);
|
|
goto out;
|
|
}
|
|
encrypted = 1;
|
|
} else {
|
|
ERROR("Cannot mount filesystem on %s at %s\n",
|
|
fstab->recs[i].blk_device, fstab->recs[i].mount_point);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (encrypted) {
|
|
ret = 1;
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* If tmp_mount_point is non-null, mount the filesystem there. This is for the
|
|
* tmp mount we do to check the user password
|
|
*/
|
|
int fs_mgr_do_mount(struct fstab *fstab, char *n_name, char *n_blk_device,
|
|
char *tmp_mount_point)
|
|
{
|
|
int i = 0;
|
|
int ret = -1;
|
|
char *m;
|
|
|
|
if (!fstab) {
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
if (!fs_match(fstab->recs[i].mount_point, n_name)) {
|
|
continue;
|
|
}
|
|
|
|
/* We found our match */
|
|
/* If this swap or a raw partition, report an error */
|
|
if (!strcmp(fstab->recs[i].fs_type, "swap") ||
|
|
!strcmp(fstab->recs[i].fs_type, "emmc") ||
|
|
!strcmp(fstab->recs[i].fs_type, "mtd")) {
|
|
ERROR("Cannot mount filesystem of type %s on %s\n",
|
|
fstab->recs[i].fs_type, n_blk_device);
|
|
goto out;
|
|
}
|
|
|
|
/* First check the filesystem if requested */
|
|
if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
|
|
wait_for_file(n_blk_device, WAIT_TIMEOUT);
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_CHECK) {
|
|
check_fs(n_blk_device, fstab->recs[i].fs_type,
|
|
fstab->recs[i].mount_point);
|
|
}
|
|
|
|
/* Now mount it where requested */
|
|
if (tmp_mount_point) {
|
|
m = tmp_mount_point;
|
|
} else {
|
|
m = fstab->recs[i].mount_point;
|
|
}
|
|
if (__mount(n_blk_device, m, fstab->recs[i].fs_type,
|
|
fstab->recs[i].flags, fstab->recs[i].fs_options)) {
|
|
ERROR("Cannot mount filesystem on %s at %s\n",
|
|
n_blk_device, m);
|
|
goto out;
|
|
} else {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* We didn't find a match, say so and return an error */
|
|
ERROR("Cannot find mount point %s in fstab\n", fstab->recs[i].mount_point);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* mount a tmpfs filesystem at the given point.
|
|
* return 0 on success, non-zero on failure.
|
|
*/
|
|
int fs_mgr_do_tmpfs_mount(char *n_name)
|
|
{
|
|
int ret;
|
|
|
|
ret = mount("tmpfs", n_name, "tmpfs",
|
|
MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS);
|
|
if (ret < 0) {
|
|
ERROR("Cannot mount tmpfs filesystem at %s\n", n_name);
|
|
return -1;
|
|
}
|
|
|
|
/* Success */
|
|
return 0;
|
|
}
|
|
|
|
int fs_mgr_unmount_all(struct fstab *fstab)
|
|
{
|
|
int i = 0;
|
|
int ret = 0;
|
|
|
|
if (!fstab) {
|
|
return -1;
|
|
}
|
|
|
|
while (fstab->recs[i].blk_device) {
|
|
if (umount(fstab->recs[i].mount_point)) {
|
|
ERROR("Cannot unmount filesystem at %s\n", fstab->recs[i].mount_point);
|
|
ret = -1;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This must be called after mount_all, because the mkswap command needs to be
|
|
* available.
|
|
*/
|
|
int fs_mgr_swapon_all(struct fstab *fstab)
|
|
{
|
|
int i = 0;
|
|
int flags = 0;
|
|
int err = 0;
|
|
int ret = 0;
|
|
int status;
|
|
char *mkswap_argv[2] = {
|
|
MKSWAP_BIN,
|
|
NULL
|
|
};
|
|
|
|
if (!fstab) {
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
/* Skip non-swap entries */
|
|
if (strcmp(fstab->recs[i].fs_type, "swap")) {
|
|
continue;
|
|
}
|
|
|
|
if (fstab->recs[i].zram_size > 0) {
|
|
/* A zram_size was specified, so we need to configure the
|
|
* device. There is no point in having multiple zram devices
|
|
* on a system (all the memory comes from the same pool) so
|
|
* we can assume the device number is 0.
|
|
*/
|
|
FILE *zram_fp;
|
|
|
|
zram_fp = fopen(ZRAM_CONF_DEV, "r+");
|
|
if (zram_fp == NULL) {
|
|
ERROR("Unable to open zram conf device " ZRAM_CONF_DEV);
|
|
ret = -1;
|
|
continue;
|
|
}
|
|
fprintf(zram_fp, "%d\n", fstab->recs[i].zram_size);
|
|
fclose(zram_fp);
|
|
}
|
|
|
|
if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
|
|
wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT);
|
|
}
|
|
|
|
/* Initialize the swap area */
|
|
mkswap_argv[1] = fstab->recs[i].blk_device;
|
|
err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), mkswap_argv,
|
|
&status, true, LOG_KLOG, false);
|
|
if (err) {
|
|
ERROR("mkswap failed for %s\n", fstab->recs[i].blk_device);
|
|
ret = -1;
|
|
continue;
|
|
}
|
|
|
|
/* If -1, then no priority was specified in fstab, so don't set
|
|
* SWAP_FLAG_PREFER or encode the priority */
|
|
if (fstab->recs[i].swap_prio >= 0) {
|
|
flags = (fstab->recs[i].swap_prio << SWAP_FLAG_PRIO_SHIFT) &
|
|
SWAP_FLAG_PRIO_MASK;
|
|
flags |= SWAP_FLAG_PREFER;
|
|
} else {
|
|
flags = 0;
|
|
}
|
|
err = swapon(fstab->recs[i].blk_device, flags);
|
|
if (err) {
|
|
ERROR("swapon failed for %s\n", fstab->recs[i].blk_device);
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* key_loc must be at least PROPERTY_VALUE_MAX bytes long
|
|
*
|
|
* real_blk_device must be at least PROPERTY_VALUE_MAX bytes long
|
|
*/
|
|
int fs_mgr_get_crypt_info(struct fstab *fstab, char *key_loc, char *real_blk_device, int size)
|
|
{
|
|
int i = 0;
|
|
|
|
if (!fstab) {
|
|
return -1;
|
|
}
|
|
/* Initialize return values to null strings */
|
|
if (key_loc) {
|
|
*key_loc = '\0';
|
|
}
|
|
if (real_blk_device) {
|
|
*real_blk_device = '\0';
|
|
}
|
|
|
|
/* Look for the encryptable partition to find the data */
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
/* Don't deal with vold managed enryptable partitions here */
|
|
if (fstab->recs[i].fs_mgr_flags & MF_VOLDMANAGED) {
|
|
continue;
|
|
}
|
|
if (!(fstab->recs[i].fs_mgr_flags & MF_CRYPT)) {
|
|
continue;
|
|
}
|
|
|
|
/* We found a match */
|
|
if (key_loc) {
|
|
strlcpy(key_loc, fstab->recs[i].key_loc, size);
|
|
}
|
|
if (real_blk_device) {
|
|
strlcpy(real_blk_device, fstab->recs[i].blk_device, size);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add an entry to the fstab, and return 0 on success or -1 on error */
|
|
int fs_mgr_add_entry(struct fstab *fstab,
|
|
const char *mount_point, const char *fs_type,
|
|
const char *blk_device, long long length)
|
|
{
|
|
struct fstab_rec *new_fstab_recs;
|
|
int n = fstab->num_entries;
|
|
|
|
new_fstab_recs = (struct fstab_rec *)
|
|
realloc(fstab->recs, sizeof(struct fstab_rec) * (n + 1));
|
|
|
|
if (!new_fstab_recs) {
|
|
return -1;
|
|
}
|
|
|
|
/* A new entry was added, so initialize it */
|
|
memset(&new_fstab_recs[n], 0, sizeof(struct fstab_rec));
|
|
new_fstab_recs[n].mount_point = strdup(mount_point);
|
|
new_fstab_recs[n].fs_type = strdup(fs_type);
|
|
new_fstab_recs[n].blk_device = strdup(blk_device);
|
|
new_fstab_recs[n].length = 0;
|
|
|
|
/* Update the fstab struct */
|
|
fstab->recs = new_fstab_recs;
|
|
fstab->num_entries++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct fstab_rec *fs_mgr_get_entry_for_mount_point(struct fstab *fstab, const char *path)
|
|
{
|
|
int i;
|
|
|
|
if (!fstab) {
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < fstab->num_entries; i++) {
|
|
int len = strlen(fstab->recs[i].mount_point);
|
|
if (strncmp(path, fstab->recs[i].mount_point, len) == 0 &&
|
|
(path[len] == '\0' || path[len] == '/')) {
|
|
return &fstab->recs[i];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int fs_mgr_is_voldmanaged(struct fstab_rec *fstab)
|
|
{
|
|
return fstab->fs_mgr_flags & MF_VOLDMANAGED;
|
|
}
|
|
|
|
int fs_mgr_is_nonremovable(struct fstab_rec *fstab)
|
|
{
|
|
return fstab->fs_mgr_flags & MF_NONREMOVABLE;
|
|
}
|
|
|
|
int fs_mgr_is_encryptable(struct fstab_rec *fstab)
|
|
{
|
|
return fstab->fs_mgr_flags & MF_CRYPT;
|
|
}
|
|
|