/* * Copyright 2014 Google, Inc * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "libprocessgroup" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::base::GetBoolProperty; using android::base::StartsWith; using android::base::StringPrintf; using android::base::WriteStringToFile; using namespace std::chrono_literals; #define PROCESSGROUP_CGROUP_PROCS_FILE "/cgroup.procs" bool CgroupGetControllerPath(const std::string& cgroup_name, std::string* path) { auto controller = CgroupMap::GetInstance().FindController(cgroup_name); if (!controller.HasValue()) { return false; } if (path) { *path = controller.path(); } return true; } bool CgroupGetAttributePath(const std::string& attr_name, std::string* path) { const TaskProfiles& tp = TaskProfiles::GetInstance(); const ProfileAttribute* attr = tp.GetAttribute(attr_name); if (attr == nullptr) { return false; } if (path) { *path = StringPrintf("%s/%s", attr->controller()->path(), attr->file_name().c_str()); } return true; } bool CgroupGetAttributePathForTask(const std::string& attr_name, int tid, std::string* path) { const TaskProfiles& tp = TaskProfiles::GetInstance(); const ProfileAttribute* attr = tp.GetAttribute(attr_name); if (attr == nullptr) { return false; } if (!attr->GetPathForTask(tid, path)) { PLOG(ERROR) << "Failed to find cgroup for tid " << tid; return false; } return true; } bool UsePerAppMemcg() { bool low_ram_device = GetBoolProperty("ro.config.low_ram", false); return GetBoolProperty("ro.config.per_app_memcg", low_ram_device); } static bool isMemoryCgroupSupported() { static bool memcg_supported = CgroupMap::GetInstance().FindController("memory").IsUsable(); return memcg_supported; } void DropTaskProfilesResourceCaching() { TaskProfiles::GetInstance().DropResourceCaching(); } bool SetProcessProfiles(uid_t uid, pid_t pid, const std::vector& profiles) { return TaskProfiles::GetInstance().SetProcessProfiles(uid, pid, profiles); } bool SetTaskProfiles(int tid, const std::vector& profiles, bool use_fd_cache) { return TaskProfiles::GetInstance().SetTaskProfiles(tid, profiles, use_fd_cache); } static std::string ConvertUidToPath(const char* cgroup, uid_t uid) { return StringPrintf("%s/uid_%d", cgroup, uid); } static std::string ConvertUidPidToPath(const char* cgroup, uid_t uid, int pid) { return StringPrintf("%s/uid_%d/pid_%d", cgroup, uid, pid); } static int RemoveProcessGroup(const char* cgroup, uid_t uid, int pid, unsigned int retries) { int ret = 0; auto uid_pid_path = ConvertUidPidToPath(cgroup, uid, pid); auto uid_path = ConvertUidToPath(cgroup, uid); if (retries == 0) { retries = 1; } while (retries--) { ret = rmdir(uid_pid_path.c_str()); if (!ret || errno != EBUSY) break; std::this_thread::sleep_for(5ms); } // With the exception of boot or shutdown, system uid_ folders are always populated. Spinning // here would needlessly delay most pid removals. Additionally, once empty a uid_ cgroup won't // have processes hanging on it (we've already spun for all its pid_), so there's no need to // spin anyway. rmdir(uid_path.c_str()); return ret; } static bool RemoveUidProcessGroups(const std::string& uid_path) { std::unique_ptr uid(opendir(uid_path.c_str()), closedir); bool empty = true; if (uid != NULL) { dirent* dir; while ((dir = readdir(uid.get())) != nullptr) { if (dir->d_type != DT_DIR) { continue; } if (!StartsWith(dir->d_name, "pid_")) { continue; } auto path = StringPrintf("%s/%s", uid_path.c_str(), dir->d_name); LOG(VERBOSE) << "Removing " << path; if (rmdir(path.c_str()) == -1) { if (errno != EBUSY) { PLOG(WARNING) << "Failed to remove " << path; } empty = false; } } } return empty; } void removeAllProcessGroups() { LOG(VERBOSE) << "removeAllProcessGroups()"; std::vector cgroups; std::string path; if (CgroupGetControllerPath(CGROUPV2_CONTROLLER_NAME, &path)) { cgroups.push_back(path); } if (CgroupGetControllerPath("memory", &path)) { cgroups.push_back(path + "/apps"); } for (std::string cgroup_root_path : cgroups) { std::unique_ptr root(opendir(cgroup_root_path.c_str()), closedir); if (root == NULL) { PLOG(ERROR) << "Failed to open " << cgroup_root_path; } else { dirent* dir; while ((dir = readdir(root.get())) != nullptr) { if (dir->d_type != DT_DIR) { continue; } if (!StartsWith(dir->d_name, "uid_")) { continue; } auto path = StringPrintf("%s/%s", cgroup_root_path.c_str(), dir->d_name); if (!RemoveUidProcessGroups(path)) { LOG(VERBOSE) << "Skip removing " << path; continue; } LOG(VERBOSE) << "Removing " << path; if (rmdir(path.c_str()) == -1 && errno != EBUSY) { PLOG(WARNING) << "Failed to remove " << path; } } } } } /** * Process groups are primarily created by the Zygote, meaning that uid/pid groups are created by * the user root. Ownership for the newly created cgroup and all of its files must thus be * transferred for the user/group passed as uid/gid before system_server can properly access them. */ static bool MkdirAndChown(const std::string& path, mode_t mode, uid_t uid, gid_t gid) { if (mkdir(path.c_str(), mode) == -1 && errno != EEXIST) { return false; } auto dir = std::unique_ptr(opendir(path.c_str()), closedir); if (dir == NULL) { PLOG(ERROR) << "opendir failed for " << path; goto err; } struct dirent* dir_entry; while ((dir_entry = readdir(dir.get()))) { if (!strcmp("..", dir_entry->d_name)) { continue; } std::string file_path = path + "/" + dir_entry->d_name; if (lchown(file_path.c_str(), uid, gid) < 0) { PLOG(ERROR) << "lchown failed for " << file_path; goto err; } if (fchmodat(AT_FDCWD, file_path.c_str(), mode, AT_SYMLINK_NOFOLLOW) != 0) { PLOG(ERROR) << "fchmodat failed for " << file_path; goto err; } } return true; err: int saved_errno = errno; rmdir(path.c_str()); errno = saved_errno; return false; } // Returns number of processes killed on success // Returns 0 if there are no processes in the process cgroup left to kill // Returns -1 on error static int DoKillProcessGroupOnce(const char* cgroup, uid_t uid, int initialPid, int signal) { auto path = ConvertUidPidToPath(cgroup, uid, initialPid) + PROCESSGROUP_CGROUP_PROCS_FILE; std::unique_ptr fd(fopen(path.c_str(), "re"), fclose); if (!fd) { if (errno == ENOENT) { // This happens when process is already dead return 0; } PLOG(WARNING) << "Failed to open process cgroup uid " << uid << " pid " << initialPid; return -1; } // We separate all of the pids in the cgroup into those pids that are also the leaders of // process groups (stored in the pgids set) and those that are not (stored in the pids set). std::set pgids; pgids.emplace(initialPid); std::set pids; pid_t pid; int processes = 0; while (fscanf(fd.get(), "%d\n", &pid) == 1 && pid >= 0) { processes++; if (pid == 0) { // Should never happen... but if it does, trying to kill this // will boomerang right back and kill us! Let's not let that happen. LOG(WARNING) << "Yikes, we've been told to kill pid 0! How about we don't do that?"; continue; } pid_t pgid = getpgid(pid); if (pgid == -1) PLOG(ERROR) << "getpgid(" << pid << ") failed"; if (pgid == pid) { pgids.emplace(pid); } else { pids.emplace(pid); } } // Erase all pids that will be killed when we kill the process groups. for (auto it = pids.begin(); it != pids.end();) { pid_t pgid = getpgid(*it); if (pgids.count(pgid) == 1) { it = pids.erase(it); } else { ++it; } } // Kill all process groups. for (const auto pgid : pgids) { LOG(VERBOSE) << "Killing process group " << -pgid << " in uid " << uid << " as part of process cgroup " << initialPid; if (kill(-pgid, signal) == -1 && errno != ESRCH) { PLOG(WARNING) << "kill(" << -pgid << ", " << signal << ") failed"; } } // Kill remaining pids. for (const auto pid : pids) { LOG(VERBOSE) << "Killing pid " << pid << " in uid " << uid << " as part of process cgroup " << initialPid; if (kill(pid, signal) == -1 && errno != ESRCH) { PLOG(WARNING) << "kill(" << pid << ", " << signal << ") failed"; } } return feof(fd.get()) ? processes : -1; } static int KillProcessGroup(uid_t uid, int initialPid, int signal, int retries, int* max_processes) { std::string hierarchy_root_path; CgroupGetControllerPath(CGROUPV2_CONTROLLER_NAME, &hierarchy_root_path); const char* cgroup = hierarchy_root_path.c_str(); std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now(); if (max_processes != nullptr) { *max_processes = 0; } int retry = retries; int processes; while ((processes = DoKillProcessGroupOnce(cgroup, uid, initialPid, signal)) > 0) { if (max_processes != nullptr && processes > *max_processes) { *max_processes = processes; } LOG(VERBOSE) << "Killed " << processes << " processes for processgroup " << initialPid; if (retry > 0) { std::this_thread::sleep_for(5ms); --retry; } else { break; } } if (processes < 0) { PLOG(ERROR) << "Error encountered killing process cgroup uid " << uid << " pid " << initialPid; return -1; } std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now(); auto ms = std::chrono::duration_cast(end - start).count(); // We only calculate the number of 'processes' when killing the processes. // In the retries == 0 case, we only kill the processes once and therefore // will not have waited then recalculated how many processes are remaining // after the first signals have been sent. // Logging anything regarding the number of 'processes' here does not make sense. if (processes == 0) { if (retries > 0) { LOG(INFO) << "Successfully killed process cgroup uid " << uid << " pid " << initialPid << " in " << static_cast(ms) << "ms"; } int err = RemoveProcessGroup(cgroup, uid, initialPid, retries); if (isMemoryCgroupSupported() && UsePerAppMemcg()) { std::string memory_path; CgroupGetControllerPath("memory", &memory_path); memory_path += "/apps"; if (RemoveProcessGroup(memory_path.c_str(), uid, initialPid, retries)) return -1; } return err; } else { if (retries > 0) { LOG(ERROR) << "Failed to kill process cgroup uid " << uid << " pid " << initialPid << " in " << static_cast(ms) << "ms, " << processes << " processes remain"; } return -1; } } int killProcessGroup(uid_t uid, int initialPid, int signal, int* max_processes) { return KillProcessGroup(uid, initialPid, signal, 40 /*retries*/, max_processes); } int killProcessGroupOnce(uid_t uid, int initialPid, int signal, int* max_processes) { return KillProcessGroup(uid, initialPid, signal, 0 /*retries*/, max_processes); } static int createProcessGroupInternal(uid_t uid, int initialPid, std::string cgroup) { auto uid_path = ConvertUidToPath(cgroup.c_str(), uid); struct stat cgroup_stat; mode_t cgroup_mode = 0750; gid_t cgroup_uid = AID_SYSTEM; uid_t cgroup_gid = AID_SYSTEM; if (stat(cgroup.c_str(), &cgroup_stat) == 1) { PLOG(ERROR) << "Failed to get stats for " << cgroup; } else { cgroup_mode = cgroup_stat.st_mode; cgroup_uid = cgroup_stat.st_uid; cgroup_gid = cgroup_stat.st_gid; } if (!MkdirAndChown(uid_path, cgroup_mode, cgroup_uid, cgroup_gid)) { PLOG(ERROR) << "Failed to make and chown " << uid_path; return -errno; } auto uid_pid_path = ConvertUidPidToPath(cgroup.c_str(), uid, initialPid); if (!MkdirAndChown(uid_pid_path, cgroup_mode, cgroup_uid, cgroup_gid)) { PLOG(ERROR) << "Failed to make and chown " << uid_pid_path; return -errno; } auto uid_pid_procs_file = uid_pid_path + PROCESSGROUP_CGROUP_PROCS_FILE; int ret = 0; if (!WriteStringToFile(std::to_string(initialPid), uid_pid_procs_file)) { ret = -errno; PLOG(ERROR) << "Failed to write '" << initialPid << "' to " << uid_pid_procs_file; } return ret; } int createProcessGroup(uid_t uid, int initialPid, bool memControl) { std::string cgroup; if (memControl && !UsePerAppMemcg()) { PLOG(ERROR) << "service memory controls are used without per-process memory cgroup support"; return -EINVAL; } if (isMemoryCgroupSupported() && UsePerAppMemcg()) { CgroupGetControllerPath("memory", &cgroup); cgroup += "/apps"; int ret = createProcessGroupInternal(uid, initialPid, cgroup); if (ret != 0) { return ret; } } CgroupGetControllerPath(CGROUPV2_CONTROLLER_NAME, &cgroup); return createProcessGroupInternal(uid, initialPid, cgroup); } static bool SetProcessGroupValue(int tid, const std::string& attr_name, int64_t value) { if (!isMemoryCgroupSupported()) { PLOG(ERROR) << "Memcg is not mounted."; return false; } std::string path; if (!CgroupGetAttributePathForTask(attr_name, tid, &path)) { PLOG(ERROR) << "Failed to find attribute '" << attr_name << "'"; return false; } if (!WriteStringToFile(std::to_string(value), path)) { PLOG(ERROR) << "Failed to write '" << value << "' to " << path; return false; } return true; } bool setProcessGroupSwappiness(uid_t, int pid, int swappiness) { return SetProcessGroupValue(pid, "MemSwappiness", swappiness); } bool setProcessGroupSoftLimit(uid_t, int pid, int64_t soft_limit_in_bytes) { return SetProcessGroupValue(pid, "MemSoftLimit", soft_limit_in_bytes); } bool setProcessGroupLimit(uid_t, int pid, int64_t limit_in_bytes) { return SetProcessGroupValue(pid, "MemLimit", limit_in_bytes); } bool getAttributePathForTask(const std::string& attr_name, int tid, std::string* path) { return CgroupGetAttributePathForTask(attr_name, tid, path); }