/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "service.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "interprocess_fifo.h" #include "lmkd_service.h" #include "service_list.h" #include "util.h" #if defined(__BIONIC__) #include #endif #ifdef INIT_FULL_SOURCES #include #include #include "mount_namespace.h" #include "reboot_utils.h" #include "selinux.h" #else #include "host_init_stubs.h" #endif using android::base::boot_clock; using android::base::GetBoolProperty; using android::base::GetIntProperty; using android::base::GetProperty; using android::base::Join; using android::base::make_scope_guard; using android::base::SetProperty; using android::base::StartsWith; using android::base::StringPrintf; using android::base::WriteStringToFile; namespace android { namespace init { static Result ComputeContextFromExecutable(const std::string& service_path) { std::string computed_context; char* raw_con = nullptr; char* raw_filecon = nullptr; if (getcon(&raw_con) == -1) { return Error() << "Could not get security context"; } std::unique_ptr mycon(raw_con, freecon); if (getfilecon(service_path.c_str(), &raw_filecon) == -1) { return Error() << "Could not get file context"; } std::unique_ptr filecon(raw_filecon, freecon); char* new_con = nullptr; int rc = security_compute_create(mycon.get(), filecon.get(), string_to_security_class("process"), &new_con); if (rc == 0) { computed_context = new_con; free(new_con); } if (rc == 0 && computed_context == mycon.get()) { return Error() << "File " << service_path << "(labeled \"" << filecon.get() << "\") has incorrect label or no domain transition from " << mycon.get() << " to another SELinux domain defined. Have you configured your " "service correctly? https://source.android.com/security/selinux/" "device-policy#label_new_services_and_address_denials. Note: this " "error shows up even in permissive mode in order to make auditing " "denials possible."; } if (rc < 0) { return Error() << "Could not get process context"; } return computed_context; } static bool ExpandArgsAndExecv(const std::vector& args, bool sigstop) { std::vector expanded_args; std::vector c_strings; expanded_args.resize(args.size()); c_strings.push_back(const_cast(args[0].data())); for (std::size_t i = 1; i < args.size(); ++i) { auto expanded_arg = ExpandProps(args[i]); if (!expanded_arg.ok()) { LOG(FATAL) << args[0] << ": cannot expand arguments': " << expanded_arg.error(); } expanded_args[i] = *expanded_arg; c_strings.push_back(expanded_args[i].data()); } c_strings.push_back(nullptr); if (sigstop) { kill(getpid(), SIGSTOP); } return execv(c_strings[0], c_strings.data()) == 0; } unsigned long Service::next_start_order_ = 1; bool Service::is_exec_service_running_ = false; Service::Service(const std::string& name, Subcontext* subcontext_for_restart_commands, const std::string& filename, const std::vector& args) : Service(name, 0, std::nullopt, 0, {}, 0, "", subcontext_for_restart_commands, filename, args) {} Service::Service(const std::string& name, unsigned flags, std::optional uid, gid_t gid, const std::vector& supp_gids, int namespace_flags, const std::string& seclabel, Subcontext* subcontext_for_restart_commands, const std::string& filename, const std::vector& args) : name_(name), classnames_({"default"}), flags_(flags), pid_(0), crash_count_(0), proc_attr_{.ioprio_class = IoSchedClass_NONE, .ioprio_pri = 0, .parsed_uid = uid, .gid = gid, .supp_gids = supp_gids, .priority = 0}, namespaces_{.flags = namespace_flags}, seclabel_(seclabel), subcontext_(subcontext_for_restart_commands), onrestart_(false, subcontext_for_restart_commands, "", 0, "onrestart", {}), oom_score_adjust_(DEFAULT_OOM_SCORE_ADJUST), start_order_(0), args_(args), filename_(filename) {} void Service::NotifyStateChange(const std::string& new_state) const { if ((flags_ & SVC_TEMPORARY) != 0) { // Services created by 'exec' are temporary and don't have properties tracking their state. return; } std::string prop_name = "init.svc." + name_; SetProperty(prop_name, new_state); if (new_state == "running") { uint64_t start_ns = time_started_.time_since_epoch().count(); std::string boottime_property = "ro.boottime." + name_; if (GetProperty(boottime_property, "").empty()) { SetProperty(boottime_property, std::to_string(start_ns)); } } // init.svc_debug_pid.* properties are only for tests, and should not be used // on device for security checks. std::string pid_property = "init.svc_debug_pid." + name_; if (new_state == "running") { SetProperty(pid_property, std::to_string(pid_)); } else if (new_state == "stopped") { SetProperty(pid_property, ""); } } void Service::KillProcessGroup(int signal, bool report_oneshot) { // If we've already seen a successful result from killProcessGroup*(), then we have removed // the cgroup already and calling these functions a second time will simply result in an error. // This is true regardless of which signal was sent. // These functions handle their own logging, so no additional logging is needed. if (!process_cgroup_empty_) { LOG(INFO) << "Sending signal " << signal << " to service '" << name_ << "' (pid " << pid_ << ") process group..."; int max_processes = 0; int r; if (signal == SIGTERM) { r = killProcessGroupOnce(uid(), pid_, signal, &max_processes); } else { r = killProcessGroup(uid(), pid_, signal, &max_processes); } if (report_oneshot && max_processes > 0) { LOG(WARNING) << "Killed " << max_processes << " additional processes from a oneshot process group for service '" << name_ << "'. This is new behavior, previously child processes would not be killed in " "this case."; } if (r == 0) process_cgroup_empty_ = true; } if (oom_score_adjust_ != DEFAULT_OOM_SCORE_ADJUST) { LmkdUnregister(name_, pid_); } } void Service::SetProcessAttributesAndCaps(InterprocessFifo setsid_finished) { // Keep capabilites on uid change. if (capabilities_ && uid()) { // If Android is running in a container, some securebits might already // be locked, so don't change those. unsigned long securebits = prctl(PR_GET_SECUREBITS); if (securebits == -1UL) { PLOG(FATAL) << "prctl(PR_GET_SECUREBITS) failed for " << name_; } securebits |= SECBIT_KEEP_CAPS | SECBIT_KEEP_CAPS_LOCKED; if (prctl(PR_SET_SECUREBITS, securebits) != 0) { PLOG(FATAL) << "prctl(PR_SET_SECUREBITS) failed for " << name_; } } if (auto result = SetProcessAttributes(proc_attr_, std::move(setsid_finished)); !result.ok()) { LOG(FATAL) << "cannot set attribute for " << name_ << ": " << result.error(); } if (!seclabel_.empty()) { if (setexeccon(seclabel_.c_str()) < 0) { PLOG(FATAL) << "cannot setexeccon('" << seclabel_ << "') for " << name_; } } if (capabilities_) { if (!SetCapsForExec(*capabilities_)) { LOG(FATAL) << "cannot set capabilities for " << name_; } } else if (uid()) { // Inheritable caps can be non-zero when running in a container. if (!DropInheritableCaps()) { LOG(FATAL) << "cannot drop inheritable caps for " << name_; } } } void Service::Reap(const siginfo_t& siginfo) { if (!(flags_ & SVC_ONESHOT) || (flags_ & SVC_RESTART)) { KillProcessGroup(SIGKILL, false); } else { // Legacy behavior from ~2007 until Android R: this else branch did not exist and we did not // kill the process group in this case. if (SelinuxGetVendorAndroidVersion() >= __ANDROID_API_R__) { // The new behavior in Android R is to kill these process groups in all cases. The // 'true' parameter instructions KillProcessGroup() to report a warning message where it // detects a difference in behavior has occurred. KillProcessGroup(SIGKILL, true); } } // Remove any socket resources we may have created. for (const auto& socket : sockets_) { if (socket.persist) { continue; } auto path = ANDROID_SOCKET_DIR "/" + socket.name; unlink(path.c_str()); } for (const auto& f : reap_callbacks_) { f(siginfo); } if ((siginfo.si_code != CLD_EXITED || siginfo.si_status != 0) && on_failure_reboot_target_) { LOG(ERROR) << "Service " << name_ << " has 'reboot_on_failure' option and failed, shutting down system."; trigger_shutdown(*on_failure_reboot_target_); } if (flags_ & SVC_EXEC) UnSetExec(); if (name_ == "zygote" || name_ == "zygote64") { removeAllEmptyProcessGroups(); } if (flags_ & SVC_TEMPORARY) return; pid_ = 0; flags_ &= (~SVC_RUNNING); start_order_ = 0; // Oneshot processes go into the disabled state on exit, // except when manually restarted. if ((flags_ & SVC_ONESHOT) && !(flags_ & SVC_RESTART) && !(flags_ & SVC_RESET)) { flags_ |= SVC_DISABLED; } // Disabled and reset processes do not get restarted automatically. if (flags_ & (SVC_DISABLED | SVC_RESET)) { NotifyStateChange("stopped"); return; } #if INIT_FULL_SOURCES static bool is_apex_updatable = android::sysprop::ApexProperties::updatable().value_or(false); #else static bool is_apex_updatable = false; #endif const bool use_default_mount_ns = mount_namespace_.has_value() && *mount_namespace_ == NS_DEFAULT; const bool is_process_updatable = use_default_mount_ns && is_apex_updatable; #if defined(__BIONIC__) && defined(SEGV_MTEAERR) // As a precaution, we only upgrade a service once per reboot, to limit // the potential impact. // // BIONIC_SIGNAL_ART_PROFILER is a magic value used by deuggerd to signal // that the process crashed with SIGSEGV and SEGV_MTEAERR. This signal will // never be seen otherwise in a crash, because it always gets handled by the // profiling signal handlers in bionic. See also // debuggerd/handler/debuggerd_handler.cpp. bool should_upgrade_mte = siginfo.si_code != CLD_EXITED && siginfo.si_status == BIONIC_SIGNAL_ART_PROFILER && !upgraded_mte_; if (should_upgrade_mte) { constexpr int kDefaultUpgradeSecs = 60; int secs = GetIntProperty("persist.device_config.memory_safety_native.upgrade_secs.default", kDefaultUpgradeSecs); secs = GetIntProperty( "persist.device_config.memory_safety_native.upgrade_secs.service." + name_, secs); if (secs > 0) { LOG(INFO) << "Upgrading service " << name_ << " to sync MTE for " << secs << " seconds"; once_environment_vars_.emplace_back("BIONIC_MEMTAG_UPGRADE_SECS", std::to_string(secs)); upgraded_mte_ = true; } else { LOG(INFO) << "Not upgrading service " << name_ << " to sync MTE due to device config"; } } #endif // If we crash > 4 times in 'fatal_crash_window_' minutes or before boot_completed, // reboot into bootloader or set crashing property boot_clock::time_point now = boot_clock::now(); if (((flags_ & SVC_CRITICAL) || is_process_updatable) && !(flags_ & SVC_RESTART)) { bool boot_completed = GetBoolProperty("sys.boot_completed", false); if (now < time_crashed_ + fatal_crash_window_ || !boot_completed) { if (++crash_count_ > 4) { auto exit_reason = boot_completed ? "in " + std::to_string(fatal_crash_window_.count()) + " minutes" : "before boot completed"; if (flags_ & SVC_CRITICAL) { if (!GetBoolProperty("init.svc_debug.no_fatal." + name_, false)) { // Aborts into `fatal_reboot_target_'. SetFatalRebootTarget(fatal_reboot_target_); LOG(FATAL) << "critical process '" << name_ << "' exited 4 times " << exit_reason; } } else { LOG(ERROR) << "process with updatable components '" << name_ << "' exited 4 times " << exit_reason; // Notifies update_verifier and apexd SetProperty("sys.init.updatable_crashing_process_name", name_); SetProperty("sys.init.updatable_crashing", "1"); } } } else { time_crashed_ = now; crash_count_ = 1; } } flags_ &= (~SVC_RESTART); flags_ |= SVC_RESTARTING; // Execute all onrestart commands for this service. onrestart_.ExecuteAllCommands(); NotifyStateChange("restarting"); return; } void Service::DumpState() const { LOG(INFO) << "service " << name_; LOG(INFO) << " class '" << Join(classnames_, " ") << "'"; LOG(INFO) << " exec " << Join(args_, " "); for (const auto& socket : sockets_) { LOG(INFO) << " socket " << socket.name; } for (const auto& file : files_) { LOG(INFO) << " file " << file.name; } } Result Service::ExecStart() { auto reboot_on_failure = make_scope_guard([this] { if (on_failure_reboot_target_) { trigger_shutdown(*on_failure_reboot_target_); } }); if (is_updatable() && !ServiceList::GetInstance().IsServicesUpdated()) { // Don't delay the service for ExecStart() as the semantic is that // the caller might depend on the side effect of the execution. return Error() << "Cannot start an updatable service '" << name_ << "' before configs from APEXes are all loaded"; } flags_ |= SVC_ONESHOT; if (auto result = Start(); !result.ok()) { return result; } flags_ |= SVC_EXEC; is_exec_service_running_ = true; LOG(INFO) << "SVC_EXEC service '" << name_ << "' pid " << pid_ << " (uid " << uid() << " gid " << proc_attr_.gid << "+" << proc_attr_.supp_gids.size() << " context " << (!seclabel_.empty() ? seclabel_ : "default") << ") started; waiting..."; reboot_on_failure.Disable(); return {}; } Result Service::CheckConsole() { if (!(flags_ & SVC_CONSOLE)) { return {}; } // On newer kernels, /dev/console will always exist because // "console=ttynull" is hard-coded in CONFIG_CMDLINE. This new boot // property should be set via "androidboot.serialconsole=0" to explicitly // disable services requiring the console. For older kernels and boot // images, not setting this at all will fall back to the old behavior if (GetProperty("ro.boot.serialconsole", "") == "0") { flags_ |= SVC_DISABLED; return {}; } if (proc_attr_.console.empty()) { proc_attr_.console = "/dev/" + GetProperty("ro.boot.console", "console"); } // Make sure that open call succeeds to ensure a console driver is // properly registered for the device node int console_fd = open(proc_attr_.console.c_str(), O_RDWR | O_CLOEXEC); if (console_fd < 0) { flags_ |= SVC_DISABLED; return ErrnoError() << "Couldn't open console '" << proc_attr_.console << "'"; } close(console_fd); return {}; } // Configures the memory cgroup properties for the service. void Service::ConfigureMemcg() { if (swappiness_ != -1) { if (!setProcessGroupSwappiness(uid(), pid_, swappiness_)) { PLOG(ERROR) << "setProcessGroupSwappiness failed"; } } if (soft_limit_in_bytes_ != -1) { if (!setProcessGroupSoftLimit(uid(), pid_, soft_limit_in_bytes_)) { PLOG(ERROR) << "setProcessGroupSoftLimit failed"; } } size_t computed_limit_in_bytes = limit_in_bytes_; if (limit_percent_ != -1) { long page_size = sysconf(_SC_PAGESIZE); long num_pages = sysconf(_SC_PHYS_PAGES); if (page_size > 0 && num_pages > 0) { size_t max_mem = SIZE_MAX; if (size_t(num_pages) < SIZE_MAX / size_t(page_size)) { max_mem = size_t(num_pages) * size_t(page_size); } computed_limit_in_bytes = std::min(computed_limit_in_bytes, max_mem / 100 * limit_percent_); } } if (!limit_property_.empty()) { // This ends up overwriting computed_limit_in_bytes but only if the // property is defined. computed_limit_in_bytes = android::base::GetUintProperty(limit_property_, computed_limit_in_bytes, SIZE_MAX); } if (computed_limit_in_bytes != size_t(-1)) { if (!setProcessGroupLimit(uid(), pid_, computed_limit_in_bytes)) { PLOG(ERROR) << "setProcessGroupLimit failed"; } } } // Enters namespaces, sets environment variables, writes PID files and runs the service executable. void Service::RunService(const std::vector& descriptors, InterprocessFifo cgroups_activated, InterprocessFifo setsid_finished) { if (auto result = EnterNamespaces(namespaces_, name_, mount_namespace_); !result.ok()) { LOG(FATAL) << "Service '" << name_ << "' failed to set up namespaces: " << result.error(); } for (const auto& [key, value] : once_environment_vars_) { setenv(key.c_str(), value.c_str(), 1); } for (const auto& [key, value] : environment_vars_) { setenv(key.c_str(), value.c_str(), 1); } for (const auto& descriptor : descriptors) { descriptor.Publish(); } if (auto result = WritePidToFiles(&writepid_files_); !result.ok()) { LOG(ERROR) << "failed to write pid to files: " << result.error(); } // Wait until the cgroups have been created and until the cgroup controllers have been // activated. Result byte = cgroups_activated.Read(); if (!byte.ok()) { LOG(ERROR) << name_ << ": failed to read from notification channel: " << byte.error(); } cgroups_activated.Close(); if (*byte != kCgroupsActivated) { LOG(FATAL) << "Service '" << name_ << "' failed to start due to a fatal error"; _exit(EXIT_FAILURE); } if (task_profiles_.size() > 0) { bool succeeded = SelinuxGetVendorAndroidVersion() < __ANDROID_API_U__ ? // Compatibility mode: apply the task profiles to the current // thread. SetTaskProfiles(getpid(), task_profiles_) : // Apply the task profiles to the current process. SetProcessProfiles(getuid(), getpid(), task_profiles_); if (!succeeded) { LOG(ERROR) << "failed to set task profiles"; } } // As requested, set our gid, supplemental gids, uid, context, and // priority. Aborts on failure. SetProcessAttributesAndCaps(std::move(setsid_finished)); if (!ExpandArgsAndExecv(args_, sigstop_)) { PLOG(ERROR) << "cannot execv('" << args_[0] << "'). See the 'Debugging init' section of init's README.md for tips"; } } Result Service::Start() { auto reboot_on_failure = make_scope_guard([this] { if (on_failure_reboot_target_) { trigger_shutdown(*on_failure_reboot_target_); } }); if (is_updatable() && !ServiceList::GetInstance().IsServicesUpdated()) { ServiceList::GetInstance().DelayService(*this); return Error() << "Cannot start an updatable service '" << name_ << "' before configs from APEXes are all loaded. " << "Queued for execution."; } bool disabled = (flags_ & (SVC_DISABLED | SVC_RESET)); ResetFlagsForStart(); // Running processes require no additional work --- if they're in the // process of exiting, we've ensured that they will immediately restart // on exit, unless they are ONESHOT. For ONESHOT service, if it's in // stopping status, we just set SVC_RESTART flag so it will get restarted // in Reap(). if (flags_ & SVC_RUNNING) { if ((flags_ & SVC_ONESHOT) && disabled) { flags_ |= SVC_RESTART; } LOG(INFO) << "service '" << name_ << "' requested start, but it is already running (flags: " << flags_ << ")"; // It is not an error to try to start a service that is already running. reboot_on_failure.Disable(); return {}; } // cgroups_activated is used for communication from the parent to the child // while setsid_finished is used for communication from the child process to // the parent process. These two communication channels are separate because // combining these into a single communication channel would introduce a // race between the Write() calls by the parent and by the child. InterprocessFifo cgroups_activated, setsid_finished; OR_RETURN(cgroups_activated.Initialize()); OR_RETURN(setsid_finished.Initialize()); if (Result result = CheckConsole(); !result.ok()) { return result; } struct stat sb; if (stat(args_[0].c_str(), &sb) == -1) { flags_ |= SVC_DISABLED; return ErrnoError() << "Cannot find '" << args_[0] << "'"; } std::string scon; if (!seclabel_.empty()) { scon = seclabel_; } else { auto result = ComputeContextFromExecutable(args_[0]); if (!result.ok()) { return result.error(); } scon = *result; } if (!mount_namespace_.has_value()) { // remember from which mount namespace the service should start SetMountNamespace(); } post_data_ = ServiceList::GetInstance().IsPostData(); LOG(INFO) << "starting service '" << name_ << "'..."; std::vector descriptors; for (const auto& socket : sockets_) { if (auto result = socket.Create(scon); result.ok()) { descriptors.emplace_back(std::move(*result)); } else { LOG(INFO) << "Could not create socket '" << socket.name << "': " << result.error(); } } for (const auto& file : files_) { if (auto result = file.Create(); result.ok()) { descriptors.emplace_back(std::move(*result)); } else { LOG(INFO) << "Could not open file '" << file.name << "': " << result.error(); } } pid_t pid = -1; if (namespaces_.flags) { pid = clone(nullptr, nullptr, namespaces_.flags | SIGCHLD, nullptr); } else { pid = fork(); } if (pid == 0) { umask(077); cgroups_activated.CloseWriteFd(); setsid_finished.CloseReadFd(); RunService(descriptors, std::move(cgroups_activated), std::move(setsid_finished)); _exit(127); } else { cgroups_activated.CloseReadFd(); setsid_finished.CloseWriteFd(); } if (pid < 0) { pid_ = 0; return ErrnoError() << "Failed to fork"; } once_environment_vars_.clear(); if (oom_score_adjust_ != DEFAULT_OOM_SCORE_ADJUST) { std::string oom_str = std::to_string(oom_score_adjust_); std::string oom_file = StringPrintf("/proc/%d/oom_score_adj", pid); if (!WriteStringToFile(oom_str, oom_file)) { PLOG(ERROR) << "couldn't write oom_score_adj"; } } time_started_ = boot_clock::now(); pid_ = pid; flags_ |= SVC_RUNNING; start_order_ = next_start_order_++; process_cgroup_empty_ = false; if (CgroupsAvailable()) { bool use_memcg = swappiness_ != -1 || soft_limit_in_bytes_ != -1 || limit_in_bytes_ != -1 || limit_percent_ != -1 || !limit_property_.empty(); errno = -createProcessGroup(uid(), pid_, use_memcg); if (errno != 0) { Result result = cgroups_activated.Write(kActivatingCgroupsFailed); if (!result.ok()) { return Error() << "Sending notification failed: " << result.error(); } return Error() << "createProcessGroup(" << uid() << ", " << pid_ << ", " << use_memcg << ") failed for service '" << name_ << "': " << strerror(errno); } // When the blkio controller is mounted in the v1 hierarchy, NormalIoPriority is // the default (/dev/blkio). When the blkio controller is mounted in the v2 hierarchy, the // NormalIoPriority profile has to be applied explicitly. SetProcessProfiles(uid(), pid_, {"NormalIoPriority"}); if (use_memcg) { ConfigureMemcg(); } } if (oom_score_adjust_ != DEFAULT_OOM_SCORE_ADJUST) { LmkdRegister(name_, uid(), pid_, oom_score_adjust_); } if (Result result = cgroups_activated.Write(kCgroupsActivated); !result.ok()) { return Error() << "Sending cgroups activated notification failed: " << result.error(); } cgroups_activated.Close(); // Call setpgid() from the parent process to make sure that this call has // finished before the parent process calls kill(-pgid, ...). if (!RequiresConsole(proc_attr_)) { if (setpgid(pid, pid) < 0) { switch (errno) { case EACCES: // Child has already performed setpgid() followed by execve(). case ESRCH: // Child process no longer exists. break; default: PLOG(ERROR) << "setpgid() from parent failed"; } } } else { // The Read() call below will return an error if the child is killed. if (Result result = setsid_finished.Read(); !result.ok() || *result != kSetSidFinished) { if (!result.ok()) { return Error() << "Waiting for setsid() failed: " << result.error(); } else { return Error() << "Waiting for setsid() failed: " << static_cast(*result) << " <> " << static_cast(kSetSidFinished); } } } setsid_finished.Close(); NotifyStateChange("running"); reboot_on_failure.Disable(); LOG(INFO) << "... started service '" << name_ << "' has pid " << pid_; return {}; } // Set mount namespace for the service. // The reason why remember the mount namespace: // If this service is started before APEXes and corresponding linker configuration // get available, mark it as pre-apexd one. Note that this marking is // permanent. So for example, if the service is re-launched (e.g., due // to crash), it is still recognized as pre-apexd... for consistency. void Service::SetMountNamespace() { // APEXd is always started in the "current" namespace because it is the process to set up // the current namespace. So, leave mount_namespace_ as empty. if (args_[0] == "/system/bin/apexd") { return; } // Services in the following list start in the "default" mount namespace. // Note that they should use bootstrap bionic if they start before APEXes are ready. static const std::set kUseDefaultMountNamespace = { "ueventd", // load firmwares from APEXes "hwservicemanager", // load VINTF fragments from APEXes "servicemanager", // load VINTF fragments from APEXes }; if (kUseDefaultMountNamespace.find(name_) != kUseDefaultMountNamespace.end()) { mount_namespace_ = NS_DEFAULT; return; } // Use the "default" mount namespace only if it's ready mount_namespace_ = IsDefaultMountNamespaceReady() ? NS_DEFAULT : NS_BOOTSTRAP; } void Service::SetStartedInFirstStage(pid_t pid) { LOG(INFO) << "adding first-stage service '" << name_ << "'..."; time_started_ = boot_clock::now(); // not accurate, but doesn't matter here pid_ = pid; flags_ |= SVC_RUNNING; start_order_ = next_start_order_++; NotifyStateChange("running"); } void Service::ResetFlagsForStart() { // Starting a service removes it from the disabled or reset state and // immediately takes it out of the restarting state if it was in there. flags_ &= ~(SVC_DISABLED | SVC_RESTARTING | SVC_RESET | SVC_RESTART | SVC_DISABLED_START); } Result Service::StartIfNotDisabled() { if (!(flags_ & SVC_DISABLED)) { return Start(); } else { flags_ |= SVC_DISABLED_START; } return {}; } Result Service::Enable() { flags_ &= ~(SVC_DISABLED | SVC_RC_DISABLED); if (flags_ & SVC_DISABLED_START) { return Start(); } return {}; } void Service::Reset() { StopOrReset(SVC_RESET); } void Service::Stop() { StopOrReset(SVC_DISABLED); } void Service::Terminate() { flags_ &= ~(SVC_RESTARTING | SVC_DISABLED_START); flags_ |= SVC_DISABLED; if (pid_) { KillProcessGroup(SIGTERM); NotifyStateChange("stopping"); } } void Service::Timeout() { // All process state flags will be taken care of in Reap(), we really just want to kill the // process here when it times out. Oneshot processes will transition to be disabled, and // all other processes will transition to be restarting. LOG(INFO) << "Service '" << name_ << "' expired its timeout of " << timeout_period_->count() << " seconds and will now be killed"; if (pid_) { KillProcessGroup(SIGKILL); NotifyStateChange("stopping"); } } void Service::Restart() { if (flags_ & SVC_RUNNING) { /* Stop, wait, then start the service. */ StopOrReset(SVC_RESTART); } else if (!(flags_ & SVC_RESTARTING)) { /* Just start the service since it's not running. */ if (auto result = Start(); !result.ok()) { LOG(ERROR) << "Could not restart '" << name_ << "': " << result.error(); } } /* else: Service is restarting anyways. */ } // The how field should be either SVC_DISABLED, SVC_RESET, or SVC_RESTART. void Service::StopOrReset(int how) { // The service is still SVC_RUNNING until its process exits, but if it has // already exited it shoudn't attempt a restart yet. flags_ &= ~(SVC_RESTARTING | SVC_DISABLED_START); if ((how != SVC_DISABLED) && (how != SVC_RESET) && (how != SVC_RESTART)) { // An illegal flag: default to SVC_DISABLED. LOG(ERROR) << "service '" << name_ << "' requested unknown flag " << how << ", defaulting to disabling it."; how = SVC_DISABLED; } // If the service has not yet started, prevent it from auto-starting with its class. if (how == SVC_RESET) { flags_ |= (flags_ & SVC_RC_DISABLED) ? SVC_DISABLED : SVC_RESET; } else { flags_ |= how; } // Make sure it's in right status when a restart immediately follow a // stop/reset or vice versa. if (how == SVC_RESTART) { flags_ &= (~(SVC_DISABLED | SVC_RESET)); } else { flags_ &= (~SVC_RESTART); } if (pid_) { if (flags_ & SVC_GENTLE_KILL) { KillProcessGroup(SIGTERM); if (!process_cgroup_empty()) std::this_thread::sleep_for(200ms); } KillProcessGroup(SIGKILL); NotifyStateChange("stopping"); } else { NotifyStateChange("stopped"); } } Result> Service::MakeTemporaryOneshotService( const std::vector& args) { // Parse the arguments: exec [SECLABEL [UID [GID]*] --] COMMAND ARGS... // SECLABEL can be a - to denote default std::size_t command_arg = 1; for (std::size_t i = 1; i < args.size(); ++i) { if (args[i] == "--") { command_arg = i + 1; break; } } if (command_arg > 4 + NR_SVC_SUPP_GIDS) { return Error() << "exec called with too many supplementary group ids"; } if (command_arg >= args.size()) { return Error() << "exec called without command"; } std::vector str_args(args.begin() + command_arg, args.end()); static size_t exec_count = 0; exec_count++; std::string name = "exec " + std::to_string(exec_count) + " (" + Join(str_args, " ") + ")"; unsigned flags = SVC_ONESHOT | SVC_TEMPORARY; unsigned namespace_flags = 0; std::string seclabel = ""; if (command_arg > 2 && args[1] != "-") { seclabel = args[1]; } Result uid = 0; if (command_arg > 3) { uid = DecodeUid(args[2]); if (!uid.ok()) { return Error() << "Unable to decode UID for '" << args[2] << "': " << uid.error(); } } Result gid = 0; std::vector supp_gids; if (command_arg > 4) { gid = DecodeUid(args[3]); if (!gid.ok()) { return Error() << "Unable to decode GID for '" << args[3] << "': " << gid.error(); } std::size_t nr_supp_gids = command_arg - 1 /* -- */ - 4 /* exec SECLABEL UID GID */; for (size_t i = 0; i < nr_supp_gids; ++i) { auto supp_gid = DecodeUid(args[4 + i]); if (!supp_gid.ok()) { return Error() << "Unable to decode GID for '" << args[4 + i] << "': " << supp_gid.error(); } supp_gids.push_back(*supp_gid); } } return std::make_unique(name, flags, *uid, *gid, supp_gids, namespace_flags, seclabel, nullptr, /*filename=*/"", str_args); } // This is used for snapuserd_proxy, which hands off a socket to snapuserd. It's // a special case to support the daemon launched in first-stage init. The persist // feature is not part of the init language and is only used here. bool Service::MarkSocketPersistent(const std::string& socket_name) { for (auto& socket : sockets_) { if (socket.name == socket_name) { socket.persist = true; return true; } } return false; } } // namespace init } // namespace android