/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Unicode_test" #include #include #include #include #include namespace android { class UnicodeTest : public testing::Test { protected: virtual void SetUp() { } virtual void TearDown() { } char16_t const * const kSearchString = u"I am a leaf on the wind."; constexpr static size_t BUFSIZE = 64; // large enough for all tests void TestUTF8toUTF16(std::initializer_list input, std::initializer_list expect, const char* err_msg_length = "", ssize_t expected_length = 0) { uint8_t empty_str[] = {}; char16_t output[BUFSIZE]; const size_t inlen = input.size(), outlen = expect.size(); ASSERT_LT(outlen, BUFSIZE); const uint8_t *input_data = inlen ? std::data(input) : empty_str; ssize_t measured = utf8_to_utf16_length(input_data, inlen); EXPECT_EQ(expected_length ? : (ssize_t)outlen, measured) << err_msg_length; utf8_to_utf16(input_data, inlen, output, outlen + 1); for (size_t i = 0; i < outlen; i++) { EXPECT_EQ(std::data(expect)[i], output[i]); } EXPECT_EQ(0, output[outlen]) << "should be null terminated"; } void TestUTF16toUTF8(std::initializer_list input, std::initializer_list expect, const char* err_msg_length = "", ssize_t expected_length = 0) { char16_t empty_str[] = {}; char output[BUFSIZE]; const size_t inlen = input.size(), outlen = expect.size(); ASSERT_LT(outlen, BUFSIZE); const char16_t *input_data = inlen ? std::data(input) : empty_str; ssize_t measured = utf16_to_utf8_length(input_data, inlen); EXPECT_EQ(expected_length ? : (ssize_t)outlen, measured) << err_msg_length; utf16_to_utf8(input_data, inlen, output, outlen + 1); for (size_t i = 0; i < outlen; i++) { EXPECT_EQ(std::data(expect)[i], output[i]); } EXPECT_EQ(0, output[outlen]) << "should be null terminated"; } }; TEST_F(UnicodeTest, UTF8toUTF16ZeroLength) { TestUTF8toUTF16({}, {}, "Zero length input should return zero length output."); } TEST_F(UnicodeTest, UTF8toUTF16ASCII) { TestUTF8toUTF16( { 0x30 }, // U+0030 or ASCII '0' { 0x0030 }, "ASCII codepoints should have a length of 1 char16_t"); } TEST_F(UnicodeTest, UTF8toUTF16Plane1) { TestUTF8toUTF16( { 0xE2, 0x8C, 0xA3 }, // U+2323 SMILE { 0x2323 }, "Plane 1 codepoints should have a length of 1 char16_t"); } TEST_F(UnicodeTest, UTF8toUTF16Surrogate) { TestUTF8toUTF16( { 0xF0, 0x90, 0x80, 0x80 }, // U+10000 { 0xD800, 0xDC00 }, "Surrogate pairs should have a length of 2 char16_t"); } TEST_F(UnicodeTest, UTF8toUTF16TruncatedUTF8) { TestUTF8toUTF16( { 0xE2, 0x8C }, // Truncated U+2323 SMILE { }, // Conversion should still work but produce nothing "Truncated UTF-8 should return -1 to indicate invalid", -1); } TEST_F(UnicodeTest, UTF8toUTF16Normal) { TestUTF8toUTF16({ 0x30, // U+0030, 1 UTF-16 character 0xC4, 0x80, // U+0100, 1 UTF-16 character 0xE2, 0x8C, 0xA3, // U+2323, 1 UTF-16 character 0xF0, 0x90, 0x80, 0x80, // U+10000, 2 UTF-16 character }, { 0x0030, 0x0100, 0x2323, 0xD800, 0xDC00 }); } TEST_F(UnicodeTest, UTF8toUTF16Invalid) { // TODO: The current behavior of utf8_to_utf16 is to treat invalid // leading byte (>= 0xf8) as a 4-byte UTF8 sequence, and to treat // invalid trailing byte(s) (i.e. bytes not having MSB set) as if // they are valid and do the normal conversion. However, a better // handling would be to treat invalid sequences as errors, such // cases need to be reported and invalid characters (e.g. U+FFFD) // could be produced at the place of error. Until a fix is ready // and compatibility is not an issue, we will keep testing the // current behavior TestUTF8toUTF16({ 0xf8, // invalid leading byte 0xc4, 0x00, // U+0100 with invalid trailing byte 0xe2, 0x0c, 0xa3, // U+2323 with invalid trailing bytes 0xf0, 0x10, 0x00, 0x00, // U+10000 with invalid trailing bytes }, { 0x4022, // invalid leading byte (>=0xfc) is treated // as valid for 4-byte UTF8 sequence 0x000C, 0x00A3, // invalid leadnig byte (b'10xxxxxx) is // treated as valid single UTF-8 byte 0xD800, // invalid trailing bytes are treated 0xDC00, // as valid bytes and follow normal }); } TEST_F(UnicodeTest, UTF16toUTF8ZeroLength) { // TODO: The current behavior of utf16_to_utf8_length() is that // it returns -1 if the input is a zero length UTF16 string. // This is inconsistent with utf8_to_utf16_length() where a zero // length string returns 0. However, to fix the current behavior, // we could have compatibility issue. Until then, we will keep // testing the current behavior TestUTF16toUTF8({}, {}, "Zero length UTF16 input should return length of -1.", -1); } TEST_F(UnicodeTest, UTF16toUTF8ASCII) { TestUTF16toUTF8( { 0x0030 }, // U+0030 or ASCII '0' { '\x30' }, "ASCII codepoints in UTF16 should give a length of 1 in UTF8"); } TEST_F(UnicodeTest, UTF16toUTF8Plane1) { TestUTF16toUTF8( { 0x2323 }, // U+2323 SMILE { '\xE2', '\x8C', '\xA3' }, "Plane 1 codepoints should have a length of 3 char in UTF-8"); } TEST_F(UnicodeTest, UTF16toUTF8Surrogate) { TestUTF16toUTF8( { 0xD800, 0xDC00 }, // U+10000 { '\xF0', '\x90', '\x80', '\x80' }, "Surrogate pairs should have a length of 4 chars"); } TEST_F(UnicodeTest, UTF16toUTF8UnpairedSurrogate) { TestUTF16toUTF8( { 0xD800 }, // U+10000 with high surrogate pair only { }, // Unpaired surrogate should be ignored "A single unpaired high surrogate should have a length of 0 chars"); TestUTF16toUTF8( { 0xDC00 }, // U+10000 with low surrogate pair only { }, // Unpaired surrogate should be ignored "A single unpaired low surrogate should have a length of 0 chars"); TestUTF16toUTF8( // U+0030, U+0100, U+10000 with high surrogate pair only, U+2323 { 0x0030, 0x0100, 0xDC00, 0x2323 }, { '\x30', '\xC4', '\x80', '\xE2', '\x8C', '\xA3' }, "Unpaired high surrogate should be skipped in the middle"); TestUTF16toUTF8( // U+0030, U+0100, U+10000 with high surrogate pair only, U+2323 { 0x0030, 0x0100, 0xDC00, 0x2323 }, { '\x30', '\xC4', '\x80', '\xE2', '\x8C', '\xA3' }, "Unpaired low surrogate should be skipped in the middle"); } TEST_F(UnicodeTest, UTF16toUTF8CorrectInvalidSurrogate) { // http://b/29250543 // d841d8 is an invalid start for a surrogate pair. Make sure this is handled by ignoring the // first character in the pair and handling the rest correctly. TestUTF16toUTF8( { 0xD841, 0xD841, 0xDC41 }, // U+20441 { '\xF0', '\xA0', '\x91', '\x81' }, "Invalid start for a surrogate pair should be ignored"); } TEST_F(UnicodeTest, UTF16toUTF8Normal) { TestUTF16toUTF8({ 0x0024, // U+0024 ($) --> 0x24, 1 UTF-8 byte 0x00A3, // U+00A3 (£) --> 0xC2 0xA3, 2 UTF-8 bytes 0x0939, // U+0939 (ह) --> 0xE0 0xA4 0xB9, 3 UTF-8 bytes 0x20AC, // U+20AC (€) --> 0xE2 0x82 0xAC, 3 UTF-8 bytes 0xD55C, // U+D55C (한)--> 0xED 0x95 0x9C, 3 UTF-8 bytes 0xD801, 0xDC37, // U+10437 (𐐷) --> 0xF0 0x90 0x90 0xB7, 4 UTF-8 bytes }, { '\x24', '\xC2', '\xA3', '\xE0', '\xA4', '\xB9', '\xE2', '\x82', '\xAC', '\xED', '\x95', '\x9C', '\xF0', '\x90', '\x90', '\xB7', }); } TEST_F(UnicodeTest, strstr16EmptyTarget) { EXPECT_EQ(strstr16(kSearchString, u""), kSearchString) << "should return the original pointer"; } TEST_F(UnicodeTest, strstr16EmptyTarget_bug) { // In the original code when target is an empty string strlen16() would // start reading the memory until a "terminating null" (that is, zero) // character is found. This happens because "*target++" in the original // code would increment the pointer beyond the actual string. void* memptr; const size_t alignment = sysconf(_SC_PAGESIZE); const size_t size = 2 * alignment; ASSERT_EQ(posix_memalign(&memptr, alignment, size), 0); // Fill allocated memory. memset(memptr, 'A', size); // Create a pointer to an "empty" string on the first page. char16_t* const emptyString = (char16_t* const)((char*)memptr + alignment - 4); *emptyString = (char16_t)0; // Protect the second page to show that strstr16() violates that. ASSERT_EQ(mprotect((char*)memptr + alignment, alignment, PROT_NONE), 0); // Test strstr16(): when bug is present a segmentation fault is raised. ASSERT_EQ(strstr16((char16_t*)memptr, emptyString), (char16_t*)memptr) << "should not read beyond the first char16_t."; // Reset protection of the second page ASSERT_EQ(mprotect((char*)memptr + alignment, alignment, PROT_READ | PROT_WRITE), 0); // Free allocated memory. free(memptr); } TEST_F(UnicodeTest, strstr16SameString) { const char16_t* result = strstr16(kSearchString, kSearchString); EXPECT_EQ(kSearchString, result) << "should return the original pointer"; } TEST_F(UnicodeTest, strstr16TargetStartOfString) { const char16_t* result = strstr16(kSearchString, u"I am"); EXPECT_EQ(kSearchString, result) << "should return the original pointer"; } TEST_F(UnicodeTest, strstr16TargetEndOfString) { const char16_t* result = strstr16(kSearchString, u"wind."); EXPECT_EQ(kSearchString+19, result); } TEST_F(UnicodeTest, strstr16TargetWithinString) { const char16_t* result = strstr16(kSearchString, u"leaf"); EXPECT_EQ(kSearchString+7, result); } TEST_F(UnicodeTest, strstr16TargetNotPresent) { const char16_t* result = strstr16(kSearchString, u"soar"); EXPECT_EQ(nullptr, result); } // http://b/29267949 // Test that overreading in utf8_to_utf16_length is detected TEST_F(UnicodeTest, InvalidUtf8OverreadDetected) { // An utf8 char starting with \xc4 is two bytes long. // Add extra zeros so no extra memory is read in case the code doesn't // work as expected. static char utf8[] = "\xc4\x00\x00\x00"; ASSERT_DEATH(utf8_to_utf16_length((uint8_t *) utf8, strlen(utf8), true /* overreadIsFatal */), "" /* regex for ASSERT_DEATH */); } }