/* * Copyright (C) 2005 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "unicode" #include #include #include #include extern "C" { static const char32_t kByteMask = 0x000000BF; static const char32_t kByteMark = 0x00000080; // Surrogates aren't valid for UTF-32 characters, so define some // constants that will let us screen them out. static const char32_t kUnicodeSurrogateHighStart = 0x0000D800; // Unused, here for completeness: // static const char32_t kUnicodeSurrogateHighEnd = 0x0000DBFF; // static const char32_t kUnicodeSurrogateLowStart = 0x0000DC00; static const char32_t kUnicodeSurrogateLowEnd = 0x0000DFFF; static const char32_t kUnicodeSurrogateStart = kUnicodeSurrogateHighStart; static const char32_t kUnicodeSurrogateEnd = kUnicodeSurrogateLowEnd; static const char32_t kUnicodeMaxCodepoint = 0x0010FFFF; // Mask used to set appropriate bits in first byte of UTF-8 sequence, // indexed by number of bytes in the sequence. // 0xxxxxxx // -> (00-7f) 7bit. Bit mask for the first byte is 0x00000000 // 110yyyyx 10xxxxxx // -> (c0-df)(80-bf) 11bit. Bit mask is 0x000000C0 // 1110yyyy 10yxxxxx 10xxxxxx // -> (e0-ef)(80-bf)(80-bf) 16bit. Bit mask is 0x000000E0 // 11110yyy 10yyxxxx 10xxxxxx 10xxxxxx // -> (f0-f7)(80-bf)(80-bf)(80-bf) 21bit. Bit mask is 0x000000F0 static const char32_t kFirstByteMark[] = { 0x00000000, 0x00000000, 0x000000C0, 0x000000E0, 0x000000F0 }; // -------------------------------------------------------------------------- // UTF-32 // -------------------------------------------------------------------------- /** * Return number of UTF-8 bytes required for the character. If the character * is invalid, return size of 0. */ static inline size_t utf32_codepoint_utf8_length(char32_t srcChar) { // Figure out how many bytes the result will require. if (srcChar < 0x00000080) { return 1; } else if (srcChar < 0x00000800) { return 2; } else if (srcChar < 0x00010000) { if ((srcChar < kUnicodeSurrogateStart) || (srcChar > kUnicodeSurrogateEnd)) { return 3; } else { // Surrogates are invalid UTF-32 characters. return 0; } } // Max code point for Unicode is 0x0010FFFF. else if (srcChar <= kUnicodeMaxCodepoint) { return 4; } else { // Invalid UTF-32 character. return 0; } } // Write out the source character to . static inline void utf32_codepoint_to_utf8(uint8_t* dstP, char32_t srcChar, size_t bytes) { dstP += bytes; switch (bytes) { /* note: everything falls through. */ case 4: *--dstP = (uint8_t)((srcChar | kByteMark) & kByteMask); srcChar >>= 6; FALLTHROUGH_INTENDED; case 3: *--dstP = (uint8_t)((srcChar | kByteMark) & kByteMask); srcChar >>= 6; FALLTHROUGH_INTENDED; case 2: *--dstP = (uint8_t)((srcChar | kByteMark) & kByteMask); srcChar >>= 6; FALLTHROUGH_INTENDED; case 1: *--dstP = (uint8_t)(srcChar | kFirstByteMark[bytes]); } } static inline int32_t utf32_at_internal(const char* cur, size_t *num_read) { const char first_char = *cur; if ((first_char & 0x80) == 0) { // ASCII *num_read = 1; return *cur; } cur++; char32_t mask, to_ignore_mask; size_t num_to_read = 0; char32_t utf32 = first_char; for (num_to_read = 1, mask = 0x40, to_ignore_mask = 0xFFFFFF80; (first_char & mask); num_to_read++, to_ignore_mask |= mask, mask >>= 1) { // 0x3F == 00111111 utf32 = (utf32 << 6) + (*cur++ & 0x3F); } to_ignore_mask |= mask; utf32 &= ~(to_ignore_mask << (6 * (num_to_read - 1))); *num_read = num_to_read; return static_cast(utf32); } int32_t utf32_from_utf8_at(const char *src, size_t src_len, size_t index, size_t *next_index) { if (index >= src_len) { return -1; } size_t unused_index; if (next_index == nullptr) { next_index = &unused_index; } size_t num_read; int32_t ret = utf32_at_internal(src + index, &num_read); if (ret >= 0) { *next_index = index + num_read; } return ret; } ssize_t utf32_to_utf8_length(const char32_t *src, size_t src_len) { if (src == nullptr || src_len == 0) { return -1; } size_t ret = 0; const char32_t *end = src + src_len; while (src < end) { size_t char_len = utf32_codepoint_utf8_length(*src++); if (SSIZE_MAX - char_len < ret) { // If this happens, we would overflow the ssize_t type when // returning from this function, so we cannot express how // long this string is in an ssize_t. android_errorWriteLog(0x534e4554, "37723026"); return -1; } ret += char_len; } return ret; } void utf32_to_utf8(const char32_t* src, size_t src_len, char* dst, size_t dst_len) { if (src == nullptr || src_len == 0 || dst == nullptr) { return; } const char32_t *cur_utf32 = src; const char32_t *end_utf32 = src + src_len; char *cur = dst; while (cur_utf32 < end_utf32) { size_t len = utf32_codepoint_utf8_length(*cur_utf32); LOG_ALWAYS_FATAL_IF(dst_len < len, "%zu < %zu", dst_len, len); utf32_codepoint_to_utf8((uint8_t *)cur, *cur_utf32++, len); cur += len; dst_len -= len; } LOG_ALWAYS_FATAL_IF(dst_len < 1, "dst_len < 1: %zu < 1", dst_len); *cur = '\0'; } // -------------------------------------------------------------------------- // UTF-16 // -------------------------------------------------------------------------- int strcmp16(const char16_t *s1, const char16_t *s2) { char16_t ch; int d = 0; while ( 1 ) { d = (int)(ch = *s1++) - (int)*s2++; if ( d || !ch ) break; } return d; } int strncmp16(const char16_t *s1, const char16_t *s2, size_t n) { char16_t ch; int d = 0; if (n == 0) { return 0; } do { d = (int)(ch = *s1++) - (int)*s2++; if ( d || !ch ) { break; } } while (--n); return d; } size_t strlen16(const char16_t *s) { const char16_t *ss = s; while ( *ss ) ss++; return ss-s; } size_t strnlen16(const char16_t *s, size_t maxlen) { const char16_t *ss = s; /* Important: the maxlen test must precede the reference through ss; since the byte beyond the maximum may segfault */ while ((maxlen > 0) && *ss) { ss++; maxlen--; } return ss-s; } char16_t* strstr16(const char16_t* src, const char16_t* target) { const char16_t needle = *target; if (needle == '\0') return (char16_t*)src; const size_t target_len = strlen16(++target); do { do { if (*src == '\0') { return nullptr; } } while (*src++ != needle); } while (strncmp16(src, target, target_len) != 0); src--; return (char16_t*)src; } int strzcmp16(const char16_t *s1, size_t n1, const char16_t *s2, size_t n2) { const char16_t* e1 = s1+n1; const char16_t* e2 = s2+n2; while (s1 < e1 && s2 < e2) { const int d = (int)*s1++ - (int)*s2++; if (d) { return d; } } return n1 < n2 ? (0 - (int)*s2) : (n1 > n2 ? ((int)*s1 - 0) : 0); } // is_any_surrogate() returns true if w is either a high or low surrogate static constexpr bool is_any_surrogate(char16_t w) { return (w & 0xf800) == 0xd800; } // is_surrogate_pair() returns true if w1 and w2 form a valid surrogate pair static constexpr bool is_surrogate_pair(char16_t w1, char16_t w2) { return ((w1 & 0xfc00) == 0xd800) && ((w2 & 0xfc00) == 0xdc00); } // TODO: currently utf16_to_utf8_length() returns -1 if src_len == 0, // which is inconsistent with utf8_to_utf16_length(), here we keep the // current behavior as intended not to break compatibility ssize_t utf16_to_utf8_length(const char16_t *src, size_t src_len) { if (src == nullptr || src_len == 0) return -1; const char16_t* const end = src + src_len; const char16_t* in = src; size_t utf8_len = 0; while (in < end) { char16_t w = *in++; if (LIKELY(w < 0x0080)) { utf8_len += 1; continue; } if (LIKELY(w < 0x0800)) { utf8_len += 2; continue; } if (LIKELY(!is_any_surrogate(w))) { utf8_len += 3; continue; } if (in < end && is_surrogate_pair(w, *in)) { utf8_len += 4; in++; continue; } /* skip if at the end of the string or invalid surrogate pair */ } return (in == end && utf8_len < SSIZE_MAX) ? utf8_len : -1; } void utf16_to_utf8(const char16_t* src, size_t src_len, char* dst, size_t dst_len) { if (src == nullptr || src_len == 0 || dst == nullptr) { return; } const char16_t* in = src; const char16_t* const in_end = src + src_len; char* out = dst; const char* const out_end = dst + dst_len; char16_t w2; auto err_out = [&out, &out_end, &dst_len]() { LOG_ALWAYS_FATAL_IF(out >= out_end, "target utf8 string size %zu too short", dst_len); }; while (in < in_end) { char16_t w = *in++; if (LIKELY(w < 0x0080)) { if (out + 1 > out_end) return err_out(); *out++ = (char)(w & 0xff); continue; } if (LIKELY(w < 0x0800)) { if (out + 2 > out_end) return err_out(); *out++ = (char)(0xc0 | ((w >> 6) & 0x1f)); *out++ = (char)(0x80 | ((w >> 0) & 0x3f)); continue; } if (LIKELY(!is_any_surrogate(w))) { if (out + 3 > out_end) return err_out(); *out++ = (char)(0xe0 | ((w >> 12) & 0xf)); *out++ = (char)(0x80 | ((w >> 6) & 0x3f)); *out++ = (char)(0x80 | ((w >> 0) & 0x3f)); continue; } /* surrogate pair */ if (in < in_end && (w2 = *in, is_surrogate_pair(w, w2))) { if (out + 4 > out_end) return err_out(); char32_t dw = (char32_t)(0x10000 + ((w - 0xd800) << 10) + (w2 - 0xdc00)); *out++ = (char)(0xf0 | ((dw >> 18) & 0x07)); *out++ = (char)(0x80 | ((dw >> 12) & 0x3f)); *out++ = (char)(0x80 | ((dw >> 6) & 0x3f)); *out++ = (char)(0x80 | ((dw >> 0) & 0x3f)); in++; } /* We reach here in two cases: * 1) (in == in_end), which means end of the input string * 2) (w2 & 0xfc00) != 0xdc00, which means invalid surrogate pair * In either case, we intentionally do nothing and skip */ } *out = '\0'; return; } // -------------------------------------------------------------------------- // UTF-8 // -------------------------------------------------------------------------- static char32_t utf8_4b_to_utf32(uint8_t c1, uint8_t c2, uint8_t c3, uint8_t c4) { return ((c1 & 0x07) << 18) | ((c2 & 0x3f) << 12) | ((c3 & 0x3f) << 6) | (c4 & 0x3f); } // TODO: current behavior of converting UTF8 to UTF-16 has a few issues below // // 1. invalid trailing bytes (i.e. not b'10xxxxxx) are treated as valid trailing // bytes and follows normal conversion rules // 2. invalid leading byte (b'10xxxxxx) is treated as a valid single UTF-8 byte // 3. invalid leading byte (b'11111xxx) is treated as a valid leading byte // (same as b'11110xxx) for a 4-byte UTF-8 sequence // 4. an invalid 4-byte UTF-8 sequence that translates to a codepoint < U+10000 // will be converted as a valid UTF-16 character // // We keep the current behavior as is but with warnings logged, so as not to // break compatibility. However, this needs to be addressed later. ssize_t utf8_to_utf16_length(const uint8_t* u8str, size_t u8len, bool overreadIsFatal) { if (u8str == nullptr) return -1; const uint8_t* const in_end = u8str + u8len; const uint8_t* in = u8str; size_t utf16_len = 0; while (in < in_end) { uint8_t c = *in; utf16_len++; if (LIKELY((c & 0x80) == 0)) { in++; continue; } if (UNLIKELY(c < 0xc0)) { ALOGW("Invalid UTF-8 leading byte: 0x%02x", c); in++; continue; } if (LIKELY(c < 0xe0)) { in += 2; continue; } if (LIKELY(c < 0xf0)) { in += 3; continue; } else { uint8_t c2, c3, c4; if (UNLIKELY(c >= 0xf8)) { ALOGW("Invalid UTF-8 leading byte: 0x%02x", c); } c2 = in[1]; c3 = in[2]; c4 = in[3]; if (utf8_4b_to_utf32(c, c2, c3, c4) >= 0x10000) { utf16_len++; } in += 4; continue; } } if (in == in_end) { return utf16_len < SSIZE_MAX ? utf16_len : -1; } if (overreadIsFatal) LOG_ALWAYS_FATAL("Attempt to overread computing length of utf8 string"); return -1; } char16_t* utf8_to_utf16(const uint8_t* u8str, size_t u8len, char16_t* u16str, size_t u16len) { // A value > SSIZE_MAX is probably a negative value returned as an error and casted. LOG_ALWAYS_FATAL_IF(u16len == 0 || u16len > SSIZE_MAX, "u16len is %zu", u16len); char16_t* end = utf8_to_utf16_no_null_terminator(u8str, u8len, u16str, u16len - 1); *end = 0; return end; } char16_t* utf8_to_utf16_no_null_terminator( const uint8_t* src, size_t srcLen, char16_t* dst, size_t dstLen) { if (src == nullptr || srcLen == 0 || dstLen == 0) { return dst; } // A value > SSIZE_MAX is probably a negative value returned as an error and casted. LOG_ALWAYS_FATAL_IF(dstLen > SSIZE_MAX, "dstLen is %zu", dstLen); const uint8_t* const in_end = src + srcLen; const uint8_t* in = src; const char16_t* const out_end = dst + dstLen; char16_t* out = dst; uint8_t c, c2, c3, c4; char32_t w; auto err_in = [&c, &out]() { ALOGW("Unended UTF-8 byte: 0x%02x", c); return out; }; while (in < in_end && out < out_end) { c = *in++; if (LIKELY((c & 0x80) == 0)) { *out++ = (char16_t)(c); continue; } if (UNLIKELY(c < 0xc0)) { ALOGW("Invalid UTF-8 leading byte: 0x%02x", c); *out++ = (char16_t)(c); continue; } if (LIKELY(c < 0xe0)) { if (UNLIKELY(in + 1 > in_end)) { return err_in(); } c2 = *in++; *out++ = (char16_t)(((c & 0x1f) << 6) | (c2 & 0x3f)); continue; } if (LIKELY(c < 0xf0)) { if (UNLIKELY(in + 2 > in_end)) { return err_in(); } c2 = *in++; c3 = *in++; *out++ = (char16_t)(((c & 0x0f) << 12) | ((c2 & 0x3f) << 6) | (c3 & 0x3f)); continue; } else { if (UNLIKELY(in + 3 > in_end)) { return err_in(); } if (UNLIKELY(c >= 0xf8)) { ALOGW("Invalid UTF-8 leading byte: 0x%02x", c); } // Multiple UTF16 characters with surrogates c2 = *in++; c3 = *in++; c4 = *in++; w = utf8_4b_to_utf32(c, c2, c3, c4); if (UNLIKELY(w < 0x10000)) { *out++ = (char16_t)(w); } else { if (UNLIKELY(out + 2 > out_end)) { // Ooops.... not enough room for this surrogate pair. return out; } *out++ = (char16_t)(((w - 0x10000) >> 10) + 0xd800); *out++ = (char16_t)(((w - 0x10000) & 0x3ff) + 0xdc00); } continue; } } return out; } }