/* * Copyright (C) 2005 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "unicode" #include #include #include #include #if defined(_WIN32) # undef nhtol # undef htonl # undef nhtos # undef htons # define ntohl(x) ( ((x) << 24) | (((x) >> 24) & 255) | (((x) << 8) & 0xff0000) | (((x) >> 8) & 0xff00) ) # define htonl(x) ntohl(x) # define ntohs(x) ( (((x) << 8) & 0xff00) | (((x) >> 8) & 255) ) # define htons(x) ntohs(x) #else # include #endif extern "C" { static const char32_t kByteMask = 0x000000BF; static const char32_t kByteMark = 0x00000080; // Surrogates aren't valid for UTF-32 characters, so define some // constants that will let us screen them out. static const char32_t kUnicodeSurrogateHighStart = 0x0000D800; // Unused, here for completeness: // static const char32_t kUnicodeSurrogateHighEnd = 0x0000DBFF; // static const char32_t kUnicodeSurrogateLowStart = 0x0000DC00; static const char32_t kUnicodeSurrogateLowEnd = 0x0000DFFF; static const char32_t kUnicodeSurrogateStart = kUnicodeSurrogateHighStart; static const char32_t kUnicodeSurrogateEnd = kUnicodeSurrogateLowEnd; static const char32_t kUnicodeMaxCodepoint = 0x0010FFFF; // Mask used to set appropriate bits in first byte of UTF-8 sequence, // indexed by number of bytes in the sequence. // 0xxxxxxx // -> (00-7f) 7bit. Bit mask for the first byte is 0x00000000 // 110yyyyx 10xxxxxx // -> (c0-df)(80-bf) 11bit. Bit mask is 0x000000C0 // 1110yyyy 10yxxxxx 10xxxxxx // -> (e0-ef)(80-bf)(80-bf) 16bit. Bit mask is 0x000000E0 // 11110yyy 10yyxxxx 10xxxxxx 10xxxxxx // -> (f0-f7)(80-bf)(80-bf)(80-bf) 21bit. Bit mask is 0x000000F0 static const char32_t kFirstByteMark[] = { 0x00000000, 0x00000000, 0x000000C0, 0x000000E0, 0x000000F0 }; // -------------------------------------------------------------------------- // UTF-32 // -------------------------------------------------------------------------- /** * Return number of UTF-8 bytes required for the character. If the character * is invalid, return size of 0. */ static inline size_t utf32_codepoint_utf8_length(char32_t srcChar) { // Figure out how many bytes the result will require. if (srcChar < 0x00000080) { return 1; } else if (srcChar < 0x00000800) { return 2; } else if (srcChar < 0x00010000) { if ((srcChar < kUnicodeSurrogateStart) || (srcChar > kUnicodeSurrogateEnd)) { return 3; } else { // Surrogates are invalid UTF-32 characters. return 0; } } // Max code point for Unicode is 0x0010FFFF. else if (srcChar <= kUnicodeMaxCodepoint) { return 4; } else { // Invalid UTF-32 character. return 0; } } // Write out the source character to . static inline void utf32_codepoint_to_utf8(uint8_t* dstP, char32_t srcChar, size_t bytes) { dstP += bytes; switch (bytes) { /* note: everything falls through. */ case 4: *--dstP = (uint8_t)((srcChar | kByteMark) & kByteMask); srcChar >>= 6; FALLTHROUGH_INTENDED; case 3: *--dstP = (uint8_t)((srcChar | kByteMark) & kByteMask); srcChar >>= 6; FALLTHROUGH_INTENDED; case 2: *--dstP = (uint8_t)((srcChar | kByteMark) & kByteMask); srcChar >>= 6; FALLTHROUGH_INTENDED; case 1: *--dstP = (uint8_t)(srcChar | kFirstByteMark[bytes]); } } size_t strlen32(const char32_t *s) { const char32_t *ss = s; while ( *ss ) ss++; return ss-s; } size_t strnlen32(const char32_t *s, size_t maxlen) { const char32_t *ss = s; while ((maxlen > 0) && *ss) { ss++; maxlen--; } return ss-s; } static inline int32_t utf32_at_internal(const char* cur, size_t *num_read) { const char first_char = *cur; if ((first_char & 0x80) == 0) { // ASCII *num_read = 1; return *cur; } cur++; char32_t mask, to_ignore_mask; size_t num_to_read = 0; char32_t utf32 = first_char; for (num_to_read = 1, mask = 0x40, to_ignore_mask = 0xFFFFFF80; (first_char & mask); num_to_read++, to_ignore_mask |= mask, mask >>= 1) { // 0x3F == 00111111 utf32 = (utf32 << 6) + (*cur++ & 0x3F); } to_ignore_mask |= mask; utf32 &= ~(to_ignore_mask << (6 * (num_to_read - 1))); *num_read = num_to_read; return static_cast(utf32); } int32_t utf32_from_utf8_at(const char *src, size_t src_len, size_t index, size_t *next_index) { if (index >= src_len) { return -1; } size_t unused_index; if (next_index == nullptr) { next_index = &unused_index; } size_t num_read; int32_t ret = utf32_at_internal(src + index, &num_read); if (ret >= 0) { *next_index = index + num_read; } return ret; } ssize_t utf32_to_utf8_length(const char32_t *src, size_t src_len) { if (src == nullptr || src_len == 0) { return -1; } size_t ret = 0; const char32_t *end = src + src_len; while (src < end) { size_t char_len = utf32_codepoint_utf8_length(*src++); if (SSIZE_MAX - char_len < ret) { // If this happens, we would overflow the ssize_t type when // returning from this function, so we cannot express how // long this string is in an ssize_t. android_errorWriteLog(0x534e4554, "37723026"); return -1; } ret += char_len; } return ret; } void utf32_to_utf8(const char32_t* src, size_t src_len, char* dst, size_t dst_len) { if (src == nullptr || src_len == 0 || dst == nullptr) { return; } const char32_t *cur_utf32 = src; const char32_t *end_utf32 = src + src_len; char *cur = dst; while (cur_utf32 < end_utf32) { size_t len = utf32_codepoint_utf8_length(*cur_utf32); LOG_ALWAYS_FATAL_IF(dst_len < len, "%zu < %zu", dst_len, len); utf32_codepoint_to_utf8((uint8_t *)cur, *cur_utf32++, len); cur += len; dst_len -= len; } LOG_ALWAYS_FATAL_IF(dst_len < 1, "dst_len < 1: %zu < 1", dst_len); *cur = '\0'; } // -------------------------------------------------------------------------- // UTF-16 // -------------------------------------------------------------------------- int strcmp16(const char16_t *s1, const char16_t *s2) { char16_t ch; int d = 0; while ( 1 ) { d = (int)(ch = *s1++) - (int)*s2++; if ( d || !ch ) break; } return d; } int strncmp16(const char16_t *s1, const char16_t *s2, size_t n) { char16_t ch; int d = 0; if (n == 0) { return 0; } do { d = (int)(ch = *s1++) - (int)*s2++; if ( d || !ch ) { break; } } while (--n); return d; } char16_t *strcpy16(char16_t *dst, const char16_t *src) { char16_t *q = dst; const char16_t *p = src; char16_t ch; do { *q++ = ch = *p++; } while ( ch ); return dst; } size_t strlen16(const char16_t *s) { const char16_t *ss = s; while ( *ss ) ss++; return ss-s; } size_t strnlen16(const char16_t *s, size_t maxlen) { const char16_t *ss = s; /* Important: the maxlen test must precede the reference through ss; since the byte beyond the maximum may segfault */ while ((maxlen > 0) && *ss) { ss++; maxlen--; } return ss-s; } char16_t* strstr16(const char16_t* src, const char16_t* target) { const char16_t needle = *target; if (needle == '\0') return (char16_t*)src; const size_t target_len = strlen16(++target); do { do { if (*src == '\0') { return nullptr; } } while (*src++ != needle); } while (strncmp16(src, target, target_len) != 0); src--; return (char16_t*)src; } int strzcmp16(const char16_t *s1, size_t n1, const char16_t *s2, size_t n2) { const char16_t* e1 = s1+n1; const char16_t* e2 = s2+n2; while (s1 < e1 && s2 < e2) { const int d = (int)*s1++ - (int)*s2++; if (d) { return d; } } return n1 < n2 ? (0 - (int)*s2) : (n1 > n2 ? ((int)*s1 - 0) : 0); } void utf16_to_utf8(const char16_t* src, size_t src_len, char* dst, size_t dst_len) { if (src == nullptr || src_len == 0 || dst == nullptr) { return; } const char16_t* cur_utf16 = src; const char16_t* const end_utf16 = src + src_len; char *cur = dst; while (cur_utf16 < end_utf16) { char32_t utf32; // surrogate pairs if((*cur_utf16 & 0xFC00) == 0xD800 && (cur_utf16 + 1) < end_utf16 && (*(cur_utf16 + 1) & 0xFC00) == 0xDC00) { utf32 = (*cur_utf16++ - 0xD800) << 10; utf32 |= *cur_utf16++ - 0xDC00; utf32 += 0x10000; } else { utf32 = (char32_t) *cur_utf16++; } const size_t len = utf32_codepoint_utf8_length(utf32); LOG_ALWAYS_FATAL_IF(dst_len < len, "%zu < %zu", dst_len, len); utf32_codepoint_to_utf8((uint8_t*)cur, utf32, len); cur += len; dst_len -= len; } LOG_ALWAYS_FATAL_IF(dst_len < 1, "%zu < 1", dst_len); *cur = '\0'; } // -------------------------------------------------------------------------- // UTF-8 // -------------------------------------------------------------------------- ssize_t utf16_to_utf8_length(const char16_t *src, size_t src_len) { if (src == nullptr || src_len == 0) { return -1; } size_t ret = 0; const char16_t* const end = src + src_len; while (src < end) { size_t char_len; if ((*src & 0xFC00) == 0xD800 && (src + 1) < end && (*(src + 1) & 0xFC00) == 0xDC00) { // surrogate pairs are always 4 bytes. char_len = 4; src += 2; } else { char_len = utf32_codepoint_utf8_length((char32_t)*src++); } if (SSIZE_MAX - char_len < ret) { // If this happens, we would overflow the ssize_t type when // returning from this function, so we cannot express how // long this string is in an ssize_t. android_errorWriteLog(0x534e4554, "37723026"); return -1; } ret += char_len; } return ret; } /** * Returns 1-4 based on the number of leading bits. * * 1111 -> 4 * 1110 -> 3 * 110x -> 2 * 10xx -> 1 * 0xxx -> 1 */ static inline size_t utf8_codepoint_len(uint8_t ch) { return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1; } static inline void utf8_shift_and_mask(uint32_t* codePoint, const uint8_t byte) { *codePoint <<= 6; *codePoint |= 0x3F & byte; } static inline uint32_t utf8_to_utf32_codepoint(const uint8_t *src, size_t length) { uint32_t unicode; switch (length) { case 1: return src[0]; case 2: unicode = src[0] & 0x1f; utf8_shift_and_mask(&unicode, src[1]); return unicode; case 3: unicode = src[0] & 0x0f; utf8_shift_and_mask(&unicode, src[1]); utf8_shift_and_mask(&unicode, src[2]); return unicode; case 4: unicode = src[0] & 0x07; utf8_shift_and_mask(&unicode, src[1]); utf8_shift_and_mask(&unicode, src[2]); utf8_shift_and_mask(&unicode, src[3]); return unicode; default: return 0xffff; } //printf("Char at %p: len=%d, utf-16=%p\n", src, length, (void*)result); } ssize_t utf8_to_utf16_length(const uint8_t* u8str, size_t u8len, bool overreadIsFatal) { const uint8_t* const u8end = u8str + u8len; const uint8_t* u8cur = u8str; /* Validate that the UTF-8 is the correct len */ size_t u16measuredLen = 0; while (u8cur < u8end) { u16measuredLen++; int u8charLen = utf8_codepoint_len(*u8cur); // Malformed utf8, some characters are beyond the end. // Cases: // If u8charLen == 1, this becomes u8cur >= u8end, which cannot happen as u8cur < u8end, // then this condition fail and we continue, as expected. // If u8charLen == 2, this becomes u8cur + 1 >= u8end, which fails only if // u8cur == u8end - 1, that is, there was only one remaining character to read but we need // 2 of them. This condition holds and we return -1, as expected. if (u8cur + u8charLen - 1 >= u8end) { if (overreadIsFatal) { LOG_ALWAYS_FATAL("Attempt to overread computing length of utf8 string"); } else { return -1; } } uint32_t codepoint = utf8_to_utf32_codepoint(u8cur, u8charLen); if (codepoint > 0xFFFF) u16measuredLen++; // this will be a surrogate pair in utf16 u8cur += u8charLen; } /** * Make sure that we ended where we thought we would and the output UTF-16 * will be exactly how long we were told it would be. */ if (u8cur != u8end) { return -1; } return u16measuredLen; } char16_t* utf8_to_utf16(const uint8_t* u8str, size_t u8len, char16_t* u16str, size_t u16len) { // A value > SSIZE_MAX is probably a negative value returned as an error and casted. LOG_ALWAYS_FATAL_IF(u16len == 0 || u16len > SSIZE_MAX, "u16len is %zu", u16len); char16_t* end = utf8_to_utf16_no_null_terminator(u8str, u8len, u16str, u16len - 1); *end = 0; return end; } char16_t* utf8_to_utf16_no_null_terminator( const uint8_t* src, size_t srcLen, char16_t* dst, size_t dstLen) { if (dstLen == 0) { return dst; } // A value > SSIZE_MAX is probably a negative value returned as an error and casted. LOG_ALWAYS_FATAL_IF(dstLen > SSIZE_MAX, "dstLen is %zu", dstLen); const uint8_t* const u8end = src + srcLen; const uint8_t* u8cur = src; const char16_t* const u16end = dst + dstLen; char16_t* u16cur = dst; while (u8cur < u8end && u16cur < u16end) { size_t u8len = utf8_codepoint_len(*u8cur); uint32_t codepoint = utf8_to_utf32_codepoint(u8cur, u8len); // Convert the UTF32 codepoint to one or more UTF16 codepoints if (codepoint <= 0xFFFF) { // Single UTF16 character *u16cur++ = (char16_t) codepoint; } else { // Multiple UTF16 characters with surrogates codepoint = codepoint - 0x10000; *u16cur++ = (char16_t) ((codepoint >> 10) + 0xD800); if (u16cur >= u16end) { // Ooops... not enough room for this surrogate pair. return u16cur-1; } *u16cur++ = (char16_t) ((codepoint & 0x3FF) + 0xDC00); } u8cur += u8len; } return u16cur; } }