/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG TRANSPORT #include "sysdeps.h" #include "transport.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adb.h" #include "adb_auth.h" #include "adb_io.h" #include "adb_trace.h" #include "adb_utils.h" #include "fdevent/fdevent.h" #include "sysdeps/chrono.h" using android::base::ScopedLockAssertion; static void remove_transport(atransport* transport); static void transport_unref(atransport* transport); // TODO: unordered_map static auto& transport_list = *new std::list(); static auto& pending_list = *new std::list(); static auto& transport_lock = *new std::recursive_mutex(); const char* const kFeatureShell2 = "shell_v2"; const char* const kFeatureCmd = "cmd"; const char* const kFeatureStat2 = "stat_v2"; const char* const kFeatureLibusb = "libusb"; const char* const kFeaturePushSync = "push_sync"; const char* const kFeatureApex = "apex"; const char* const kFeatureFixedPushMkdir = "fixed_push_mkdir"; const char* const kFeatureAbb = "abb"; const char* const kFeatureFixedPushSymlinkTimestamp = "fixed_push_symlink_timestamp"; const char* const kFeatureAbbExec = "abb_exec"; const char* const kFeatureRemountShell = "remount_shell"; namespace { #if ADB_HOST // Tracks and handles atransport*s that are attempting reconnection. class ReconnectHandler { public: ReconnectHandler() = default; ~ReconnectHandler() = default; // Starts the ReconnectHandler thread. void Start(); // Requests the ReconnectHandler thread to stop. void Stop(); // Adds the atransport* to the queue of reconnect attempts. void TrackTransport(atransport* transport); // Wake up the ReconnectHandler thread to have it check for kicked transports. void CheckForKicked(); private: // The main thread loop. void Run(); // Tracks a reconnection attempt. struct ReconnectAttempt { atransport* transport; std::chrono::steady_clock::time_point reconnect_time; size_t attempts_left; bool operator<(const ReconnectAttempt& rhs) const { if (reconnect_time == rhs.reconnect_time) { return reinterpret_cast(transport) < reinterpret_cast(rhs.transport); } return reconnect_time < rhs.reconnect_time; } }; // Only retry for up to one minute. static constexpr const std::chrono::seconds kDefaultTimeout = 10s; static constexpr const size_t kMaxAttempts = 6; // Protects all members. std::mutex reconnect_mutex_; bool running_ GUARDED_BY(reconnect_mutex_) = true; std::thread handler_thread_; std::condition_variable reconnect_cv_; std::set reconnect_queue_ GUARDED_BY(reconnect_mutex_); DISALLOW_COPY_AND_ASSIGN(ReconnectHandler); }; void ReconnectHandler::Start() { check_main_thread(); handler_thread_ = std::thread(&ReconnectHandler::Run, this); } void ReconnectHandler::Stop() { check_main_thread(); { std::lock_guard lock(reconnect_mutex_); running_ = false; } reconnect_cv_.notify_one(); handler_thread_.join(); // Drain the queue to free all resources. std::lock_guard lock(reconnect_mutex_); while (!reconnect_queue_.empty()) { ReconnectAttempt attempt = *reconnect_queue_.begin(); reconnect_queue_.erase(reconnect_queue_.begin()); remove_transport(attempt.transport); } } void ReconnectHandler::TrackTransport(atransport* transport) { check_main_thread(); { std::lock_guard lock(reconnect_mutex_); if (!running_) return; // Arbitrary sleep to give adbd time to get ready, if we disconnected because it exited. auto reconnect_time = std::chrono::steady_clock::now() + 250ms; reconnect_queue_.emplace( ReconnectAttempt{transport, reconnect_time, ReconnectHandler::kMaxAttempts}); } reconnect_cv_.notify_one(); } void ReconnectHandler::CheckForKicked() { reconnect_cv_.notify_one(); } void ReconnectHandler::Run() { while (true) { ReconnectAttempt attempt; { std::unique_lock lock(reconnect_mutex_); ScopedLockAssertion assume_lock(reconnect_mutex_); if (!reconnect_queue_.empty()) { // FIXME: libstdc++ (used on Windows) implements condition_variable with // system_clock as its clock, so we're probably hosed if the clock changes, // even if we use steady_clock throughout. This problem goes away once we // switch to libc++. reconnect_cv_.wait_until(lock, reconnect_queue_.begin()->reconnect_time); } else { reconnect_cv_.wait(lock); } if (!running_) return; // Scan the whole list for kicked transports, so that we immediately handle an explicit // disconnect request. bool kicked = false; for (auto it = reconnect_queue_.begin(); it != reconnect_queue_.end();) { if (it->transport->kicked()) { D("transport %s was kicked. giving up on it.", it->transport->serial.c_str()); remove_transport(it->transport); it = reconnect_queue_.erase(it); } else { ++it; } kicked = true; } if (reconnect_queue_.empty()) continue; // Go back to sleep if we either woke up spuriously, or we were woken up to remove // a kicked transport, and the first transport isn't ready for reconnection yet. auto now = std::chrono::steady_clock::now(); if (reconnect_queue_.begin()->reconnect_time > now) { continue; } attempt = *reconnect_queue_.begin(); reconnect_queue_.erase(reconnect_queue_.begin()); } D("attempting to reconnect %s", attempt.transport->serial.c_str()); switch (attempt.transport->Reconnect()) { case ReconnectResult::Retry: { D("attempting to reconnect %s failed.", attempt.transport->serial.c_str()); if (attempt.attempts_left == 0) { D("transport %s exceeded the number of retry attempts. giving up on it.", attempt.transport->serial.c_str()); remove_transport(attempt.transport); continue; } std::lock_guard lock(reconnect_mutex_); reconnect_queue_.emplace(ReconnectAttempt{ attempt.transport, std::chrono::steady_clock::now() + ReconnectHandler::kDefaultTimeout, attempt.attempts_left - 1}); continue; } case ReconnectResult::Success: D("reconnection to %s succeeded.", attempt.transport->serial.c_str()); register_transport(attempt.transport); continue; case ReconnectResult::Abort: D("cancelling reconnection attempt to %s.", attempt.transport->serial.c_str()); remove_transport(attempt.transport); continue; } } } static auto& reconnect_handler = *new ReconnectHandler(); #endif } // namespace TransportId NextTransportId() { static std::atomic next(1); return next++; } void Connection::Reset() { LOG(INFO) << "Connection::Reset(): stopping"; Stop(); } BlockingConnectionAdapter::BlockingConnectionAdapter(std::unique_ptr connection) : underlying_(std::move(connection)) {} BlockingConnectionAdapter::~BlockingConnectionAdapter() { LOG(INFO) << "BlockingConnectionAdapter(" << this->transport_name_ << "): destructing"; Stop(); } void BlockingConnectionAdapter::Start() { std::lock_guard lock(mutex_); if (started_) { LOG(FATAL) << "BlockingConnectionAdapter(" << this->transport_name_ << "): started multiple times"; } read_thread_ = std::thread([this]() { LOG(INFO) << this->transport_name_ << ": read thread spawning"; while (true) { auto packet = std::make_unique(); if (!underlying_->Read(packet.get())) { PLOG(INFO) << this->transport_name_ << ": read failed"; break; } read_callback_(this, std::move(packet)); } std::call_once(this->error_flag_, [this]() { this->error_callback_(this, "read failed"); }); }); write_thread_ = std::thread([this]() { LOG(INFO) << this->transport_name_ << ": write thread spawning"; while (true) { std::unique_lock lock(mutex_); ScopedLockAssertion assume_locked(mutex_); cv_.wait(lock, [this]() REQUIRES(mutex_) { return this->stopped_ || !this->write_queue_.empty(); }); if (this->stopped_) { return; } std::unique_ptr packet = std::move(this->write_queue_.front()); this->write_queue_.pop_front(); lock.unlock(); if (!this->underlying_->Write(packet.get())) { break; } } std::call_once(this->error_flag_, [this]() { this->error_callback_(this, "write failed"); }); }); started_ = true; } void BlockingConnectionAdapter::Reset() { { std::lock_guard lock(mutex_); if (!started_) { LOG(INFO) << "BlockingConnectionAdapter(" << this->transport_name_ << "): not started"; return; } if (stopped_) { LOG(INFO) << "BlockingConnectionAdapter(" << this->transport_name_ << "): already stopped"; return; } } LOG(INFO) << "BlockingConnectionAdapter(" << this->transport_name_ << "): resetting"; this->underlying_->Reset(); Stop(); } void BlockingConnectionAdapter::Stop() { { std::lock_guard lock(mutex_); if (!started_) { LOG(INFO) << "BlockingConnectionAdapter(" << this->transport_name_ << "): not started"; return; } if (stopped_) { LOG(INFO) << "BlockingConnectionAdapter(" << this->transport_name_ << "): already stopped"; return; } stopped_ = true; } LOG(INFO) << "BlockingConnectionAdapter(" << this->transport_name_ << "): stopping"; this->underlying_->Close(); this->cv_.notify_one(); // Move the threads out into locals with the lock taken, and then unlock to let them exit. std::thread read_thread; std::thread write_thread; { std::lock_guard lock(mutex_); read_thread = std::move(read_thread_); write_thread = std::move(write_thread_); } read_thread.join(); write_thread.join(); LOG(INFO) << "BlockingConnectionAdapter(" << this->transport_name_ << "): stopped"; std::call_once(this->error_flag_, [this]() { this->error_callback_(this, "requested stop"); }); } bool BlockingConnectionAdapter::Write(std::unique_ptr packet) { { std::lock_guard lock(this->mutex_); write_queue_.emplace_back(std::move(packet)); } cv_.notify_one(); return true; } bool FdConnection::Read(apacket* packet) { if (!ReadFdExactly(fd_.get(), &packet->msg, sizeof(amessage))) { D("remote local: read terminated (message)"); return false; } if (packet->msg.data_length > MAX_PAYLOAD) { D("remote local: read overflow (data length = %" PRIu32 ")", packet->msg.data_length); return false; } packet->payload.resize(packet->msg.data_length); if (!ReadFdExactly(fd_.get(), &packet->payload[0], packet->payload.size())) { D("remote local: terminated (data)"); return false; } return true; } bool FdConnection::Write(apacket* packet) { if (!WriteFdExactly(fd_.get(), &packet->msg, sizeof(packet->msg))) { D("remote local: write terminated"); return false; } if (packet->msg.data_length) { if (!WriteFdExactly(fd_.get(), &packet->payload[0], packet->msg.data_length)) { D("remote local: write terminated"); return false; } } return true; } void FdConnection::Close() { adb_shutdown(fd_.get()); fd_.reset(); } void send_packet(apacket* p, atransport* t) { p->msg.magic = p->msg.command ^ 0xffffffff; // compute a checksum for connection/auth packets for compatibility reasons if (t->get_protocol_version() >= A_VERSION_SKIP_CHECKSUM) { p->msg.data_check = 0; } else { p->msg.data_check = calculate_apacket_checksum(p); } VLOG(TRANSPORT) << dump_packet(t->serial.c_str(), "to remote", p); if (t == nullptr) { LOG(FATAL) << "Transport is null"; } if (t->Write(p) != 0) { D("%s: failed to enqueue packet, closing transport", t->serial.c_str()); t->Kick(); } } void kick_transport(atransport* t, bool reset) { std::lock_guard lock(transport_lock); // As kick_transport() can be called from threads without guarantee that t is valid, // check if the transport is in transport_list first. // // TODO(jmgao): WTF? Is this actually true? if (std::find(transport_list.begin(), transport_list.end(), t) != transport_list.end()) { if (reset) { t->Reset(); } else { t->Kick(); } } #if ADB_HOST reconnect_handler.CheckForKicked(); #endif } static int transport_registration_send = -1; static int transport_registration_recv = -1; static fdevent* transport_registration_fde; #if ADB_HOST /* this adds support required by the 'track-devices' service. * this is used to send the content of "list_transport" to any * number of client connections that want it through a single * live TCP connection */ struct device_tracker { asocket socket; bool update_needed = false; bool long_output = false; device_tracker* next = nullptr; }; /* linked list of all device trackers */ static device_tracker* device_tracker_list; static void device_tracker_remove(device_tracker* tracker) { device_tracker** pnode = &device_tracker_list; device_tracker* node = *pnode; std::lock_guard lock(transport_lock); while (node) { if (node == tracker) { *pnode = node->next; break; } pnode = &node->next; node = *pnode; } } static void device_tracker_close(asocket* socket) { device_tracker* tracker = (device_tracker*)socket; asocket* peer = socket->peer; D("device tracker %p removed", tracker); if (peer) { peer->peer = nullptr; peer->close(peer); } device_tracker_remove(tracker); delete tracker; } static int device_tracker_enqueue(asocket* socket, apacket::payload_type) { /* you can't read from a device tracker, close immediately */ device_tracker_close(socket); return -1; } static int device_tracker_send(device_tracker* tracker, const std::string& string) { asocket* peer = tracker->socket.peer; apacket::payload_type data; data.resize(4 + string.size()); char buf[5]; snprintf(buf, sizeof(buf), "%04x", static_cast(string.size())); memcpy(&data[0], buf, 4); memcpy(&data[4], string.data(), string.size()); return peer->enqueue(peer, std::move(data)); } static void device_tracker_ready(asocket* socket) { device_tracker* tracker = reinterpret_cast(socket); // We want to send the device list when the tracker connects // for the first time, even if no update occurred. if (tracker->update_needed) { tracker->update_needed = false; device_tracker_send(tracker, list_transports(tracker->long_output)); } } asocket* create_device_tracker(bool long_output) { device_tracker* tracker = new device_tracker(); if (tracker == nullptr) LOG(FATAL) << "cannot allocate device tracker"; D("device tracker %p created", tracker); tracker->socket.enqueue = device_tracker_enqueue; tracker->socket.ready = device_tracker_ready; tracker->socket.close = device_tracker_close; tracker->update_needed = true; tracker->long_output = long_output; tracker->next = device_tracker_list; device_tracker_list = tracker; return &tracker->socket; } // Check if all of the USB transports are connected. bool iterate_transports(std::function fn) { std::lock_guard lock(transport_lock); for (const auto& t : transport_list) { if (!fn(t)) { return false; } } for (const auto& t : pending_list) { if (!fn(t)) { return false; } } return true; } // Call this function each time the transport list has changed. void update_transports() { update_transport_status(); // Notify `adb track-devices` clients. device_tracker* tracker = device_tracker_list; while (tracker != nullptr) { device_tracker* next = tracker->next; // This may destroy the tracker if the connection is closed. device_tracker_send(tracker, list_transports(tracker->long_output)); tracker = next; } } #else void update_transports() { // Nothing to do on the device side. } #endif // ADB_HOST struct tmsg { atransport* transport; int action; }; static int transport_read_action(int fd, struct tmsg* m) { char* p = (char*)m; int len = sizeof(*m); int r; while (len > 0) { r = adb_read(fd, p, len); if (r > 0) { len -= r; p += r; } else { D("transport_read_action: on fd %d: %s", fd, strerror(errno)); return -1; } } return 0; } static int transport_write_action(int fd, struct tmsg* m) { char* p = (char*)m; int len = sizeof(*m); int r; while (len > 0) { r = adb_write(fd, p, len); if (r > 0) { len -= r; p += r; } else { D("transport_write_action: on fd %d: %s", fd, strerror(errno)); return -1; } } return 0; } static void transport_registration_func(int _fd, unsigned ev, void*) { tmsg m; atransport* t; if (!(ev & FDE_READ)) { return; } if (transport_read_action(_fd, &m)) { PLOG(FATAL) << "cannot read transport registration socket"; } t = m.transport; if (m.action == 0) { D("transport: %s deleting", t->serial.c_str()); { std::lock_guard lock(transport_lock); transport_list.remove(t); } delete t; update_transports(); return; } /* don't create transport threads for inaccessible devices */ if (t->GetConnectionState() != kCsNoPerm) { // The connection gets a reference to the atransport. It will release it // upon a read/write error. t->ref_count++; t->connection()->SetTransportName(t->serial_name()); t->connection()->SetReadCallback([t](Connection*, std::unique_ptr p) { if (!check_header(p.get(), t)) { D("%s: remote read: bad header", t->serial.c_str()); return false; } VLOG(TRANSPORT) << dump_packet(t->serial.c_str(), "from remote", p.get()); apacket* packet = p.release(); // TODO: Does this need to run on the main thread? fdevent_run_on_main_thread([packet, t]() { handle_packet(packet, t); }); return true; }); t->connection()->SetErrorCallback([t](Connection*, const std::string& error) { LOG(INFO) << t->serial_name() << ": connection terminated: " << error; fdevent_run_on_main_thread([t]() { handle_offline(t); transport_unref(t); }); }); t->connection()->Start(); #if ADB_HOST send_connect(t); #endif } { std::lock_guard lock(transport_lock); auto it = std::find(pending_list.begin(), pending_list.end(), t); if (it != pending_list.end()) { pending_list.remove(t); transport_list.push_front(t); } } update_transports(); } #if ADB_HOST void init_reconnect_handler(void) { reconnect_handler.Start(); } #endif void init_transport_registration(void) { int s[2]; if (adb_socketpair(s)) { PLOG(FATAL) << "cannot open transport registration socketpair"; } D("socketpair: (%d,%d)", s[0], s[1]); transport_registration_send = s[0]; transport_registration_recv = s[1]; transport_registration_fde = fdevent_create(transport_registration_recv, transport_registration_func, nullptr); fdevent_set(transport_registration_fde, FDE_READ); } void kick_all_transports() { #if ADB_HOST reconnect_handler.Stop(); #endif // To avoid only writing part of a packet to a transport after exit, kick all transports. std::lock_guard lock(transport_lock); for (auto t : transport_list) { t->Kick(); } } /* the fdevent select pump is single threaded */ void register_transport(atransport* transport) { tmsg m; m.transport = transport; m.action = 1; D("transport: %s registered", transport->serial.c_str()); if (transport_write_action(transport_registration_send, &m)) { PLOG(FATAL) << "cannot write transport registration socket"; } } static void remove_transport(atransport* transport) { tmsg m; m.transport = transport; m.action = 0; D("transport: %s removed", transport->serial.c_str()); if (transport_write_action(transport_registration_send, &m)) { PLOG(FATAL) << "cannot write transport registration socket"; } } static void transport_unref(atransport* t) { check_main_thread(); CHECK(t != nullptr); std::lock_guard lock(transport_lock); CHECK_GT(t->ref_count, 0u); t->ref_count--; if (t->ref_count == 0) { LOG(INFO) << "destroying transport " << t->serial_name(); t->connection()->Stop(); #if ADB_HOST if (t->IsTcpDevice() && !t->kicked()) { D("transport: %s unref (attempting reconnection)", t->serial.c_str()); // We need to clear the transport's keys, so that on the next connection, it tries // again from the beginning. t->ResetKeys(); reconnect_handler.TrackTransport(t); } else { D("transport: %s unref (kicking and closing)", t->serial.c_str()); remove_transport(t); } #else D("transport: %s unref (kicking and closing)", t->serial.c_str()); remove_transport(t); #endif } else { D("transport: %s unref (count=%zu)", t->serial.c_str(), t->ref_count); } } static int qual_match(const std::string& to_test, const char* prefix, const std::string& qual, bool sanitize_qual) { if (to_test.empty()) /* Return true if both the qual and to_test are empty strings. */ return qual.empty(); if (qual.empty()) return 0; const char* ptr = to_test.c_str(); if (prefix) { while (*prefix) { if (*prefix++ != *ptr++) return 0; } } for (char ch : qual) { if (sanitize_qual && !isalnum(ch)) ch = '_'; if (ch != *ptr++) return 0; } /* Everything matched so far. Return true if *ptr is a NUL. */ return !*ptr; } atransport* acquire_one_transport(TransportType type, const char* serial, TransportId transport_id, bool* is_ambiguous, std::string* error_out, bool accept_any_state) { atransport* result = nullptr; if (transport_id != 0) { *error_out = android::base::StringPrintf("no device with transport id '%" PRIu64 "'", transport_id); } else if (serial) { *error_out = android::base::StringPrintf("device '%s' not found", serial); } else if (type == kTransportLocal) { *error_out = "no emulators found"; } else if (type == kTransportAny) { *error_out = "no devices/emulators found"; } else { *error_out = "no devices found"; } std::unique_lock lock(transport_lock); for (const auto& t : transport_list) { if (t->GetConnectionState() == kCsNoPerm) { *error_out = UsbNoPermissionsLongHelpText(); continue; } if (transport_id) { if (t->id == transport_id) { result = t; break; } } else if (serial) { if (t->MatchesTarget(serial)) { if (result) { *error_out = "more than one device"; if (is_ambiguous) *is_ambiguous = true; result = nullptr; break; } result = t; } } else { if (type == kTransportUsb && t->type == kTransportUsb) { if (result) { *error_out = "more than one device"; if (is_ambiguous) *is_ambiguous = true; result = nullptr; break; } result = t; } else if (type == kTransportLocal && t->type == kTransportLocal) { if (result) { *error_out = "more than one emulator"; if (is_ambiguous) *is_ambiguous = true; result = nullptr; break; } result = t; } else if (type == kTransportAny) { if (result) { *error_out = "more than one device/emulator"; if (is_ambiguous) *is_ambiguous = true; result = nullptr; break; } result = t; } } } lock.unlock(); if (result && !accept_any_state) { // The caller requires an active transport. // Make sure that we're actually connected. ConnectionState state = result->GetConnectionState(); switch (state) { case kCsConnecting: *error_out = "device still connecting"; result = nullptr; break; case kCsAuthorizing: *error_out = "device still authorizing"; result = nullptr; break; case kCsUnauthorized: { *error_out = "device unauthorized.\n"; char* ADB_VENDOR_KEYS = getenv("ADB_VENDOR_KEYS"); *error_out += "This adb server's $ADB_VENDOR_KEYS is "; *error_out += ADB_VENDOR_KEYS ? ADB_VENDOR_KEYS : "not set"; *error_out += "\n"; *error_out += "Try 'adb kill-server' if that seems wrong.\n"; *error_out += "Otherwise check for a confirmation dialog on your device."; result = nullptr; break; } case kCsOffline: *error_out = "device offline"; result = nullptr; break; default: break; } } if (result) { *error_out = "success"; } return result; } bool ConnectionWaitable::WaitForConnection(std::chrono::milliseconds timeout) { std::unique_lock lock(mutex_); ScopedLockAssertion assume_locked(mutex_); return cv_.wait_for(lock, timeout, [&]() REQUIRES(mutex_) { return connection_established_ready_; }) && connection_established_; } void ConnectionWaitable::SetConnectionEstablished(bool success) { { std::lock_guard lock(mutex_); if (connection_established_ready_) return; connection_established_ready_ = true; connection_established_ = success; D("connection established with %d", success); } cv_.notify_one(); } atransport::~atransport() { // If the connection callback had not been run before, run it now. SetConnectionEstablished(false); } int atransport::Write(apacket* p) { return this->connection()->Write(std::unique_ptr(p)) ? 0 : -1; } void atransport::Reset() { if (!kicked_.exchange(true)) { LOG(INFO) << "resetting transport " << this << " " << this->serial; this->connection()->Reset(); } } void atransport::Kick() { if (!kicked_.exchange(true)) { LOG(INFO) << "kicking transport " << this << " " << this->serial; this->connection()->Stop(); } } ConnectionState atransport::GetConnectionState() const { return connection_state_; } void atransport::SetConnectionState(ConnectionState state) { check_main_thread(); connection_state_ = state; } void atransport::SetConnection(std::unique_ptr connection) { std::lock_guard lock(mutex_); connection_ = std::shared_ptr(std::move(connection)); } std::string atransport::connection_state_name() const { ConnectionState state = GetConnectionState(); switch (state) { case kCsOffline: return "offline"; case kCsBootloader: return "bootloader"; case kCsDevice: return "device"; case kCsHost: return "host"; case kCsRecovery: return "recovery"; case kCsRescue: return "rescue"; case kCsNoPerm: return UsbNoPermissionsShortHelpText(); case kCsSideload: return "sideload"; case kCsUnauthorized: return "unauthorized"; case kCsAuthorizing: return "authorizing"; case kCsConnecting: return "connecting"; default: return "unknown"; } } void atransport::update_version(int version, size_t payload) { protocol_version = std::min(version, A_VERSION); max_payload = std::min(payload, MAX_PAYLOAD); } int atransport::get_protocol_version() const { return protocol_version; } size_t atransport::get_max_payload() const { return max_payload; } const FeatureSet& supported_features() { // Local static allocation to avoid global non-POD variables. static const FeatureSet* features = new FeatureSet{ kFeatureShell2, kFeatureCmd, kFeatureStat2, kFeatureFixedPushMkdir, kFeatureApex, kFeatureAbb, kFeatureFixedPushSymlinkTimestamp, kFeatureAbbExec, kFeatureRemountShell, // Increment ADB_SERVER_VERSION when adding a feature that adbd needs // to know about. Otherwise, the client can be stuck running an old // version of the server even after upgrading their copy of adb. // (http://b/24370690) }; return *features; } std::string FeatureSetToString(const FeatureSet& features) { return android::base::Join(features, ','); } FeatureSet StringToFeatureSet(const std::string& features_string) { if (features_string.empty()) { return FeatureSet(); } auto names = android::base::Split(features_string, ","); return FeatureSet(names.begin(), names.end()); } bool CanUseFeature(const FeatureSet& feature_set, const std::string& feature) { return feature_set.count(feature) > 0 && supported_features().count(feature) > 0; } bool atransport::has_feature(const std::string& feature) const { return features_.count(feature) > 0; } void atransport::SetFeatures(const std::string& features_string) { features_ = StringToFeatureSet(features_string); } void atransport::AddDisconnect(adisconnect* disconnect) { disconnects_.push_back(disconnect); } void atransport::RemoveDisconnect(adisconnect* disconnect) { disconnects_.remove(disconnect); } void atransport::RunDisconnects() { for (const auto& disconnect : disconnects_) { disconnect->func(disconnect->opaque, this); } disconnects_.clear(); } bool atransport::MatchesTarget(const std::string& target) const { if (!serial.empty()) { if (target == serial) { return true; } else if (type == kTransportLocal) { // Local transports can match [tcp:|udp:][:port]. const char* local_target_ptr = target.c_str(); // For fastboot compatibility, ignore protocol prefixes. if (android::base::StartsWith(target, "tcp:") || android::base::StartsWith(target, "udp:")) { local_target_ptr += 4; } // Parse our |serial| and the given |target| to check if the hostnames and ports match. std::string serial_host, error; int serial_port = -1; if (android::base::ParseNetAddress(serial, &serial_host, &serial_port, nullptr, &error)) { // |target| may omit the port to default to ours. std::string target_host; int target_port = serial_port; if (android::base::ParseNetAddress(local_target_ptr, &target_host, &target_port, nullptr, &error) && serial_host == target_host && serial_port == target_port) { return true; } } } } return (target == devpath) || qual_match(target, "product:", product, false) || qual_match(target, "model:", model, true) || qual_match(target, "device:", device, false); } void atransport::SetConnectionEstablished(bool success) { connection_waitable_->SetConnectionEstablished(success); } ReconnectResult atransport::Reconnect() { return reconnect_(this); } #if ADB_HOST // We use newline as our delimiter, make sure to never output it. static std::string sanitize(std::string str, bool alphanumeric) { auto pred = alphanumeric ? [](const char c) { return !isalnum(c); } : [](const char c) { return c == '\n'; }; std::replace_if(str.begin(), str.end(), pred, '_'); return str; } static void append_transport_info(std::string* result, const char* key, const std::string& value, bool alphanumeric) { if (value.empty()) { return; } *result += ' '; *result += key; *result += sanitize(value, alphanumeric); } static void append_transport(const atransport* t, std::string* result, bool long_listing) { std::string serial = t->serial; if (serial.empty()) { serial = "(no serial number)"; } if (!long_listing) { *result += serial; *result += '\t'; *result += t->connection_state_name(); } else { android::base::StringAppendF(result, "%-22s %s", serial.c_str(), t->connection_state_name().c_str()); append_transport_info(result, "", t->devpath, false); append_transport_info(result, "product:", t->product, false); append_transport_info(result, "model:", t->model, true); append_transport_info(result, "device:", t->device, false); // Put id at the end, so that anyone parsing the output here can always find it by scanning // backwards from newlines, even with hypothetical devices named 'transport_id:1'. *result += " transport_id:"; *result += std::to_string(t->id); } *result += '\n'; } std::string list_transports(bool long_listing) { std::lock_guard lock(transport_lock); auto sorted_transport_list = transport_list; sorted_transport_list.sort([](atransport*& x, atransport*& y) { if (x->type != y->type) { return x->type < y->type; } return x->serial < y->serial; }); std::string result; for (const auto& t : sorted_transport_list) { append_transport(t, &result, long_listing); } return result; } void close_usb_devices(std::function predicate, bool reset) { std::lock_guard lock(transport_lock); for (auto& t : transport_list) { if (predicate(t)) { if (reset) { t->Reset(); } else { t->Kick(); } } } } /* hack for osx */ void close_usb_devices(bool reset) { close_usb_devices([](const atransport*) { return true; }, reset); } #endif // ADB_HOST bool register_socket_transport(unique_fd s, std::string serial, int port, int local, atransport::ReconnectCallback reconnect, int* error) { atransport* t = new atransport(std::move(reconnect), kCsOffline); D("transport: %s init'ing for socket %d, on port %d", serial.c_str(), s.get(), port); if (init_socket_transport(t, std::move(s), port, local) < 0) { delete t; if (error) *error = errno; return false; } std::unique_lock lock(transport_lock); for (const auto& transport : pending_list) { if (serial == transport->serial) { VLOG(TRANSPORT) << "socket transport " << transport->serial << " is already in pending_list and fails to register"; delete t; if (error) *error = EALREADY; return false; } } for (const auto& transport : transport_list) { if (serial == transport->serial) { VLOG(TRANSPORT) << "socket transport " << transport->serial << " is already in transport_list and fails to register"; delete t; if (error) *error = EALREADY; return false; } } t->serial = std::move(serial); pending_list.push_front(t); lock.unlock(); auto waitable = t->connection_waitable(); register_transport(t); if (local == 1) { // Do not wait for emulator transports. return true; } if (!waitable->WaitForConnection(std::chrono::seconds(10))) { if (error) *error = ETIMEDOUT; return false; } if (t->GetConnectionState() == kCsUnauthorized) { if (error) *error = EPERM; return false; } return true; } #if ADB_HOST atransport* find_transport(const char* serial) { atransport* result = nullptr; std::lock_guard lock(transport_lock); for (auto& t : transport_list) { if (strcmp(serial, t->serial.c_str()) == 0) { result = t; break; } } return result; } void kick_all_tcp_devices() { std::lock_guard lock(transport_lock); for (auto& t : transport_list) { if (t->IsTcpDevice()) { // Kicking breaks the read_transport thread of this transport out of any read, then // the read_transport thread will notify the main thread to make this transport // offline. Then the main thread will notify the write_transport thread to exit. // Finally, this transport will be closed and freed in the main thread. t->Kick(); } } #if ADB_HOST reconnect_handler.CheckForKicked(); #endif } #endif void register_usb_transport(usb_handle* usb, const char* serial, const char* devpath, unsigned writeable) { atransport* t = new atransport(writeable ? kCsOffline : kCsNoPerm); D("transport: %p init'ing for usb_handle %p (sn='%s')", t, usb, serial ? serial : ""); init_usb_transport(t, usb); if (serial) { t->serial = serial; } if (devpath) { t->devpath = devpath; } { std::lock_guard lock(transport_lock); pending_list.push_front(t); } register_transport(t); } #if ADB_HOST // This should only be used for transports with connection_state == kCsNoPerm. void unregister_usb_transport(usb_handle* usb) { std::lock_guard lock(transport_lock); transport_list.remove_if([usb](atransport* t) { return t->GetUsbHandle() == usb && t->GetConnectionState() == kCsNoPerm; }); } #endif bool check_header(apacket* p, atransport* t) { if (p->msg.magic != (p->msg.command ^ 0xffffffff)) { VLOG(RWX) << "check_header(): invalid magic command = " << std::hex << p->msg.command << ", magic = " << p->msg.magic; return false; } if (p->msg.data_length > t->get_max_payload()) { VLOG(RWX) << "check_header(): " << p->msg.data_length << " atransport::max_payload = " << t->get_max_payload(); return false; } return true; } #if ADB_HOST std::shared_ptr atransport::NextKey() { if (keys_.empty()) { LOG(INFO) << "fetching keys for transport " << this->serial_name(); keys_ = adb_auth_get_private_keys(); // We should have gotten at least one key: the one that's automatically generated. CHECK(!keys_.empty()); } std::shared_ptr result = keys_[0]; keys_.pop_front(); return result; } void atransport::ResetKeys() { keys_.clear(); } #endif