/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "writer.h" #include #include #include #include #include #include "reader.h" #include "utility.h" namespace android { namespace fs_mgr { std::string SerializeGeometry(const LpMetadataGeometry& input) { LpMetadataGeometry geometry = input; memset(geometry.checksum, 0, sizeof(geometry.checksum)); SHA256(&geometry, sizeof(geometry), geometry.checksum); std::string blob(reinterpret_cast(&geometry), sizeof(geometry)); blob.resize(LP_METADATA_GEOMETRY_SIZE); return blob; } static bool CompareGeometry(const LpMetadataGeometry& g1, const LpMetadataGeometry& g2) { return g1.metadata_max_size == g2.metadata_max_size && g1.metadata_slot_count == g2.metadata_slot_count && g1.logical_block_size == g2.logical_block_size; } std::string SerializeMetadata(const LpMetadata& input) { LpMetadata metadata = input; LpMetadataHeader& header = metadata.header; // Serialize individual tables. std::string partitions(reinterpret_cast(metadata.partitions.data()), metadata.partitions.size() * sizeof(LpMetadataPartition)); std::string extents(reinterpret_cast(metadata.extents.data()), metadata.extents.size() * sizeof(LpMetadataExtent)); std::string groups(reinterpret_cast(metadata.groups.data()), metadata.groups.size() * sizeof(LpMetadataPartitionGroup)); std::string block_devices(reinterpret_cast(metadata.block_devices.data()), metadata.block_devices.size() * sizeof(LpMetadataBlockDevice)); // Compute positions of tables. header.partitions.offset = 0; header.extents.offset = header.partitions.offset + partitions.size(); header.groups.offset = header.extents.offset + extents.size(); header.block_devices.offset = header.groups.offset + groups.size(); header.tables_size = header.block_devices.offset + block_devices.size(); // Compute payload checksum. std::string tables = partitions + extents + groups + block_devices; SHA256(tables.data(), tables.size(), header.tables_checksum); // Compute header checksum. memset(header.header_checksum, 0, sizeof(header.header_checksum)); SHA256(&header, sizeof(header), header.header_checksum); std::string header_blob = std::string(reinterpret_cast(&metadata.header), sizeof(metadata.header)); return header_blob + tables; } // Perform sanity checks so we don't accidentally overwrite valid metadata // with potentially invalid metadata, or random partition data with metadata. static bool ValidateAndSerializeMetadata(const IPartitionOpener& opener, const LpMetadata& metadata, const std::string& slot_suffix, std::string* blob) { const LpMetadataGeometry& geometry = metadata.geometry; *blob = SerializeMetadata(metadata); // Make sure we're writing within the space reserved. if (blob->size() > geometry.metadata_max_size) { LERROR << "Logical partition metadata is too large. " << blob->size() << " > " << geometry.metadata_max_size; return false; } // Make sure the device has enough space to store two backup copies of the // metadata. uint64_t reserved_size = LP_METADATA_GEOMETRY_SIZE + uint64_t(geometry.metadata_max_size) * geometry.metadata_slot_count; uint64_t total_reserved = LP_PARTITION_RESERVED_BYTES + reserved_size * 2; const LpMetadataBlockDevice* super_device = GetMetadataSuperBlockDevice(metadata); if (!super_device) { LERROR << "Logical partition metadata does not have a super block device."; return false; } if (total_reserved > super_device->first_logical_sector * LP_SECTOR_SIZE) { LERROR << "Not enough space to store all logical partition metadata slots."; return false; } for (const auto& block_device : metadata.block_devices) { std::string partition_name = GetBlockDevicePartitionName(block_device); if (block_device.flags & LP_BLOCK_DEVICE_SLOT_SUFFIXED) { if (slot_suffix.empty()) { LERROR << "Block device " << partition_name << " requires a slot suffix," << " which could not be derived from the super partition name."; return false; } partition_name += slot_suffix; } if ((block_device.first_logical_sector + 1) * LP_SECTOR_SIZE > block_device.size) { LERROR << "Block device " << partition_name << " has invalid first sector " << block_device.first_logical_sector << " for size " << block_device.size; return false; } BlockDeviceInfo info; if (!opener.GetInfo(partition_name, &info)) { PERROR << partition_name << ": ioctl"; return false; } if (info.size != block_device.size) { LERROR << "Block device " << partition_name << " size mismatch (expected" << block_device.size << ", got " << info.size << ")"; return false; } } // Make sure all partition entries reference valid extents. for (const auto& partition : metadata.partitions) { if (partition.first_extent_index + partition.num_extents > metadata.extents.size()) { LERROR << "Partition references invalid extent."; return false; } } // Make sure all linear extents have a valid range. uint64_t last_sector = super_device->size / LP_SECTOR_SIZE; for (const auto& extent : metadata.extents) { if (extent.target_type == LP_TARGET_TYPE_LINEAR) { uint64_t physical_sector = extent.target_data; if (physical_sector < super_device->first_logical_sector || physical_sector + extent.num_sectors > last_sector) { LERROR << "Extent table entry is out of bounds."; return false; } } } return true; } // Check that the given region is within metadata bounds. static bool ValidateMetadataRegion(const LpMetadata& metadata, uint64_t start, size_t size) { const LpMetadataBlockDevice* super_device = GetMetadataSuperBlockDevice(metadata); if (!super_device) { LERROR << __PRETTY_FUNCTION__ << " could not locate super block device in metadata"; return false; } if (start + size >= super_device->first_logical_sector * LP_SECTOR_SIZE) { LERROR << __PRETTY_FUNCTION__ << " write of " << size << " bytes at " << start << " overlaps with logical partition contents"; return false; } return true; } static bool WritePrimaryMetadata(int fd, const LpMetadata& metadata, uint32_t slot_number, const std::string& blob, const std::function& writer) { int64_t primary_offset = GetPrimaryMetadataOffset(metadata.geometry, slot_number); if (!ValidateMetadataRegion(metadata, primary_offset, blob.size())) { return false; } if (SeekFile64(fd, primary_offset, SEEK_SET) < 0) { PERROR << __PRETTY_FUNCTION__ << " lseek failed: offset " << primary_offset; return false; } if (!writer(fd, blob)) { PERROR << __PRETTY_FUNCTION__ << " write " << blob.size() << " bytes failed"; return false; } return true; } static bool WriteBackupMetadata(int fd, const LpMetadata& metadata, uint32_t slot_number, const std::string& blob, const std::function& writer) { int64_t backup_offset = GetBackupMetadataOffset(metadata.geometry, slot_number); if (!ValidateMetadataRegion(metadata, backup_offset, blob.size())) { return false; } if (SeekFile64(fd, backup_offset, SEEK_SET) < 0) { PERROR << __PRETTY_FUNCTION__ << " lseek failed: offset " << backup_offset; return false; } if (!writer(fd, blob)) { PERROR << __PRETTY_FUNCTION__ << " backup write " << blob.size() << " bytes failed"; return false; } return true; } static bool WriteMetadata(int fd, const LpMetadata& metadata, uint32_t slot_number, const std::string& blob, const std::function& writer) { // Make sure we're writing to a valid metadata slot. if (slot_number >= metadata.geometry.metadata_slot_count) { LERROR << "Invalid logical partition metadata slot number."; return false; } if (!WritePrimaryMetadata(fd, metadata, slot_number, blob, writer)) { return false; } if (!WriteBackupMetadata(fd, metadata, slot_number, blob, writer)) { return false; } return true; } static bool DefaultWriter(int fd, const std::string& blob) { return android::base::WriteFully(fd, blob.data(), blob.size()); } #if defined(_WIN32) static const int O_SYNC = 0; #endif bool FlashPartitionTable(const IPartitionOpener& opener, const std::string& super_partition, const LpMetadata& metadata) { android::base::unique_fd fd = opener.Open(super_partition, O_RDWR | O_SYNC); if (fd < 0) { PERROR << __PRETTY_FUNCTION__ << " open failed: " << super_partition; return false; } // This is only used in update_engine and fastbootd, where the super // partition should be specified as a name (or by-name link), and // therefore, we should be able to extract a slot suffix. std::string slot_suffix = GetPartitionSlotSuffix(super_partition); // Before writing geometry and/or logical partition tables, perform some // basic checks that the geometry and tables are coherent, and will fit // on the given block device. std::string metadata_blob; if (!ValidateAndSerializeMetadata(opener, metadata, slot_suffix, &metadata_blob)) { return false; } // Write zeroes to the first block. std::string zeroes(LP_PARTITION_RESERVED_BYTES, 0); if (SeekFile64(fd, 0, SEEK_SET) < 0) { PERROR << __PRETTY_FUNCTION__ << " lseek failed: offset 0"; return false; } if (!android::base::WriteFully(fd, zeroes.data(), zeroes.size())) { PERROR << __PRETTY_FUNCTION__ << " write " << zeroes.size() << " bytes failed"; return false; } LWARN << "Flashing new logical partition geometry to " << super_partition; // Write geometry to the primary and backup locations. std::string blob = SerializeGeometry(metadata.geometry); if (SeekFile64(fd, GetPrimaryGeometryOffset(), SEEK_SET) < 0) { PERROR << __PRETTY_FUNCTION__ << " lseek failed: primary geometry"; return false; } if (!android::base::WriteFully(fd, blob.data(), blob.size())) { PERROR << __PRETTY_FUNCTION__ << " write " << blob.size() << " bytes failed"; return false; } if (SeekFile64(fd, GetBackupGeometryOffset(), SEEK_SET) < 0) { PERROR << __PRETTY_FUNCTION__ << " lseek failed: backup geometry"; return false; } if (!android::base::WriteFully(fd, blob.data(), blob.size())) { PERROR << __PRETTY_FUNCTION__ << " backup write " << blob.size() << " bytes failed"; return false; } bool ok = true; for (size_t i = 0; i < metadata.geometry.metadata_slot_count; i++) { ok &= WriteMetadata(fd, metadata, i, metadata_blob, DefaultWriter); } return ok; } bool FlashPartitionTable(const std::string& super_partition, const LpMetadata& metadata) { return FlashPartitionTable(PartitionOpener(), super_partition, metadata); } static bool CompareMetadata(const LpMetadata& a, const LpMetadata& b) { return !memcmp(a.header.header_checksum, b.header.header_checksum, sizeof(a.header.header_checksum)); } bool UpdatePartitionTable(const IPartitionOpener& opener, const std::string& super_partition, const LpMetadata& metadata, uint32_t slot_number, const std::function& writer) { android::base::unique_fd fd = opener.Open(super_partition, O_RDWR | O_SYNC); if (fd < 0) { PERROR << __PRETTY_FUNCTION__ << " open failed: " << super_partition; return false; } std::string slot_suffix = SlotSuffixForSlotNumber(slot_number); // Before writing geometry and/or logical partition tables, perform some // basic checks that the geometry and tables are coherent, and will fit // on the given block device. std::string blob; if (!ValidateAndSerializeMetadata(opener, metadata, slot_suffix, &blob)) { return false; } // Verify that the old geometry is identical. If it's not, then we might be // writing a table that was built for a different device, so we must reject // it. const LpMetadataGeometry& geometry = metadata.geometry; LpMetadataGeometry old_geometry; if (!ReadLogicalPartitionGeometry(fd, &old_geometry)) { return false; } if (!CompareGeometry(geometry, old_geometry)) { LERROR << "Incompatible geometry in new logical partition metadata"; return false; } // Validate the slot number now, before we call Read*Metadata. if (slot_number >= geometry.metadata_slot_count) { LERROR << "Invalid logical partition metadata slot number."; return false; } // Try to read both existing copies of the metadata, if any. std::unique_ptr primary = ReadPrimaryMetadata(fd, geometry, slot_number); std::unique_ptr backup = ReadBackupMetadata(fd, geometry, slot_number); if (primary && (!backup || !CompareMetadata(*primary.get(), *backup.get()))) { // If the backup copy does not match the primary copy, we first // synchronize the backup copy. This guarantees that a partial write // still leaves one copy intact. std::string old_blob; if (!ValidateAndSerializeMetadata(opener, *primary.get(), slot_suffix, &old_blob)) { LERROR << "Error serializing primary metadata to repair corrupted backup"; return false; } if (!WriteBackupMetadata(fd, metadata, slot_number, old_blob, writer)) { LERROR << "Error writing primary metadata to repair corrupted backup"; return false; } } else if (backup && !primary) { // The backup copy is coherent, and the primary is not. Sync it for // safety. std::string old_blob; if (!ValidateAndSerializeMetadata(opener, *backup.get(), slot_suffix, &old_blob)) { LERROR << "Error serializing primary metadata to repair corrupted backup"; return false; } if (!WritePrimaryMetadata(fd, metadata, slot_number, old_blob, writer)) { LERROR << "Error writing primary metadata to repair corrupted backup"; return false; } } // Both copies should now be in sync, so we can continue the update. if (!WriteMetadata(fd, metadata, slot_number, blob, writer)) { return false; } LINFO << "Updated logical partition table at slot " << slot_number << " on device " << super_partition; return true; } bool UpdatePartitionTable(const IPartitionOpener& opener, const std::string& super_partition, const LpMetadata& metadata, uint32_t slot_number) { return UpdatePartitionTable(opener, super_partition, metadata, slot_number, DefaultWriter); } bool UpdatePartitionTable(const std::string& super_partition, const LpMetadata& metadata, uint32_t slot_number) { PartitionOpener opener; return UpdatePartitionTable(opener, super_partition, metadata, slot_number, DefaultWriter); } } // namespace fs_mgr } // namespace android