/* * Copyright 2016, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ATRACE_TAG ATRACE_TAG_BIONIC #include #include #include "libdebuggerd/backtrace.h" #include "libdebuggerd/tombstone.h" #include "libdebuggerd/utility.h" #include "debuggerd/handler.h" #include "tombstoned/tombstoned.h" #include "protocol.h" #include "util.h" using android::base::unique_fd; using android::base::StringPrintf; using unwindstack::Regs; static bool pid_contains_tid(int pid_proc_fd, pid_t tid) { struct stat st; std::string task_path = StringPrintf("task/%d", tid); return fstatat(pid_proc_fd, task_path.c_str(), &st, 0) == 0; } static pid_t get_tracer(pid_t tracee) { // Check to see if the thread is being ptraced by another process. android::procinfo::ProcessInfo process_info; if (android::procinfo::GetProcessInfo(tracee, &process_info)) { return process_info.tracer; } return -1; } // Attach to a thread, and verify that it's still a member of the given process static bool ptrace_seize_thread(int pid_proc_fd, pid_t tid, std::string* error, int flags = 0) { if (ptrace(PTRACE_SEIZE, tid, 0, flags) != 0) { if (errno == EPERM) { pid_t tracer = get_tracer(tid); if (tracer != -1) { *error = StringPrintf("failed to attach to thread %d, already traced by %d (%s)", tid, tracer, get_process_name(tracer).c_str()); return false; } } *error = StringPrintf("failed to attach to thread %d: %s", tid, strerror(errno)); return false; } // Make sure that the task we attached to is actually part of the pid we're dumping. if (!pid_contains_tid(pid_proc_fd, tid)) { if (ptrace(PTRACE_DETACH, tid, 0, 0) != 0) { PLOG(WARNING) << "failed to detach from thread " << tid; } *error = StringPrintf("thread %d is not in process", tid); return false; } return true; } static bool wait_for_stop(pid_t tid, int* received_signal) { while (true) { int status; pid_t result = waitpid(tid, &status, __WALL); if (result != tid) { PLOG(ERROR) << "waitpid failed on " << tid << " while detaching"; return false; } if (WIFSTOPPED(status)) { if (status >> 16 == PTRACE_EVENT_STOP) { *received_signal = 0; } else { *received_signal = WSTOPSIG(status); } return true; } } } // Interrupt a process and wait for it to be interrupted. static bool ptrace_interrupt(pid_t tid, int* received_signal) { if (ptrace(PTRACE_INTERRUPT, tid, 0, 0) == 0) { return wait_for_stop(tid, received_signal); } PLOG(ERROR) << "failed to interrupt " << tid << " to detach"; return false; } static bool activity_manager_notify(pid_t pid, int signal, const std::string& amfd_data) { ATRACE_CALL(); android::base::unique_fd amfd(socket_local_client( "/data/system/ndebugsocket", ANDROID_SOCKET_NAMESPACE_FILESYSTEM, SOCK_STREAM)); if (amfd.get() == -1) { PLOG(ERROR) << "unable to connect to activity manager"; return false; } struct timeval tv = { .tv_sec = 1, .tv_usec = 0, }; if (setsockopt(amfd.get(), SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv)) == -1) { PLOG(ERROR) << "failed to set send timeout on activity manager socket"; return false; } tv.tv_sec = 3; // 3 seconds on handshake read if (setsockopt(amfd.get(), SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) == -1) { PLOG(ERROR) << "failed to set receive timeout on activity manager socket"; return false; } // Activity Manager protocol: binary 32-bit network-byte-order ints for the // pid and signal number, followed by the raw text of the dump, culminating // in a zero byte that marks end-of-data. uint32_t datum = htonl(pid); if (!android::base::WriteFully(amfd, &datum, 4)) { PLOG(ERROR) << "AM pid write failed"; return false; } datum = htonl(signal); if (!android::base::WriteFully(amfd, &datum, 4)) { PLOG(ERROR) << "AM signal write failed"; return false; } if (!android::base::WriteFully(amfd, amfd_data.c_str(), amfd_data.size() + 1)) { PLOG(ERROR) << "AM data write failed"; return false; } // 3 sec timeout reading the ack; we're fine if the read fails. char ack; android::base::ReadFully(amfd, &ack, 1); return true; } // Globals used by the abort handler. static pid_t g_target_thread = -1; static bool g_tombstoned_connected = false; static unique_fd g_tombstoned_socket; static unique_fd g_output_fd; static void Initialize(char** argv) { android::base::InitLogging(argv); android::base::SetAborter([](const char* abort_msg) { // If we abort before we get an output fd, contact tombstoned to let any // potential listeners know that we failed. if (!g_tombstoned_connected) { if (!tombstoned_connect(g_target_thread, &g_tombstoned_socket, &g_output_fd, kDebuggerdAnyIntercept)) { // We failed to connect, not much we can do. LOG(ERROR) << "failed to connected to tombstoned to report failure"; _exit(1); } } dprintf(g_output_fd.get(), "crash_dump failed to dump process"); if (g_target_thread != 1) { dprintf(g_output_fd.get(), " %d: %s\n", g_target_thread, abort_msg); } else { dprintf(g_output_fd.get(), ": %s\n", abort_msg); } _exit(1); }); // Don't try to dump ourselves. struct sigaction action = {}; action.sa_handler = SIG_DFL; debuggerd_register_handlers(&action); sigset_t mask; sigemptyset(&mask); if (sigprocmask(SIG_SETMASK, &mask, nullptr) != 0) { PLOG(FATAL) << "failed to set signal mask"; } } static void ParseArgs(int argc, char** argv, pid_t* pseudothread_tid, DebuggerdDumpType* dump_type) { if (argc != 4) { LOG(FATAL) << "wrong number of args: " << argc << " (expected 4)"; } if (!android::base::ParseInt(argv[1], &g_target_thread, 1, std::numeric_limits::max())) { LOG(FATAL) << "invalid target tid: " << argv[1]; } if (!android::base::ParseInt(argv[2], pseudothread_tid, 1, std::numeric_limits::max())) { LOG(FATAL) << "invalid pseudothread tid: " << argv[2]; } int dump_type_int; if (!android::base::ParseInt(argv[3], &dump_type_int, 0, 1)) { LOG(FATAL) << "invalid requested dump type: " << argv[3]; } *dump_type = static_cast(dump_type_int); } static void ReadCrashInfo(unique_fd& fd, siginfo_t* siginfo, std::unique_ptr* regs, uintptr_t* abort_address) { std::aligned_storage::type buf; ssize_t rc = TEMP_FAILURE_RETRY(read(fd.get(), &buf, sizeof(buf))); if (rc == -1) { PLOG(FATAL) << "failed to read target ucontext"; } else if (rc != sizeof(CrashInfo)) { LOG(FATAL) << "read " << rc << " bytes when reading target crash information, expected " << sizeof(CrashInfo); } CrashInfo* crash_info = reinterpret_cast(&buf); if (crash_info->version != 1) { LOG(FATAL) << "version mismatch, expected 1, received " << crash_info->version; } *siginfo = crash_info->siginfo; regs->reset(Regs::CreateFromUcontext(Regs::CurrentArch(), &crash_info->ucontext)); *abort_address = crash_info->abort_msg_address; } // Wait for a process to clone and return the child's pid. // Note: this leaves the parent in PTRACE_EVENT_STOP. static pid_t wait_for_clone(pid_t pid, bool resume_child) { int status; pid_t result = TEMP_FAILURE_RETRY(waitpid(pid, &status, __WALL)); if (result == -1) { PLOG(FATAL) << "failed to waitpid"; } if (WIFEXITED(status)) { LOG(FATAL) << "traced process exited with status " << WEXITSTATUS(status); } else if (WIFSIGNALED(status)) { LOG(FATAL) << "traced process exited with signal " << WTERMSIG(status); } else if (!WIFSTOPPED(status)) { LOG(FATAL) << "process didn't stop? (status = " << status << ")"; } if (status >> 8 != (SIGTRAP | (PTRACE_EVENT_CLONE << 8))) { LOG(FATAL) << "process didn't stop due to PTRACE_O_TRACECLONE (status = " << status << ")"; } pid_t child; if (ptrace(PTRACE_GETEVENTMSG, pid, 0, &child) != 0) { PLOG(FATAL) << "failed to get child pid via PTRACE_GETEVENTMSG"; } int stop_signal; if (!wait_for_stop(child, &stop_signal)) { PLOG(FATAL) << "failed to waitpid on child"; } CHECK_EQ(0, stop_signal); if (resume_child) { if (ptrace(PTRACE_CONT, child, 0, 0) != 0) { PLOG(FATAL) << "failed to resume child (pid = " << child << ")"; } } return child; } static pid_t wait_for_vm_process(pid_t pseudothread_tid) { // The pseudothread will double-fork, we want its grandchild. pid_t intermediate = wait_for_clone(pseudothread_tid, true); pid_t vm_pid = wait_for_clone(intermediate, false); if (ptrace(PTRACE_DETACH, intermediate, 0, 0) != 0) { PLOG(FATAL) << "failed to detach from intermediate vm process"; } return vm_pid; } int main(int argc, char** argv) { atrace_begin(ATRACE_TAG, "before reparent"); pid_t target_process = getppid(); // Open /proc/`getppid()` before we daemonize. std::string target_proc_path = "/proc/" + std::to_string(target_process); int target_proc_fd = open(target_proc_path.c_str(), O_DIRECTORY | O_RDONLY); if (target_proc_fd == -1) { PLOG(FATAL) << "failed to open " << target_proc_path; } // Make sure getppid() hasn't changed. if (getppid() != target_process) { LOG(FATAL) << "parent died"; } atrace_end(ATRACE_TAG); // Reparent ourselves to init, so that the signal handler can waitpid on the // original process to avoid leaving a zombie for non-fatal dumps. // Move the input/output pipes off of stdout/stderr, out of paranoia. unique_fd output_pipe(dup(STDOUT_FILENO)); unique_fd input_pipe(dup(STDIN_FILENO)); unique_fd fork_exit_read, fork_exit_write; if (!Pipe(&fork_exit_read, &fork_exit_write)) { PLOG(FATAL) << "failed to create pipe"; } pid_t forkpid = fork(); if (forkpid == -1) { PLOG(FATAL) << "fork failed"; } else if (forkpid == 0) { fork_exit_read.reset(); } else { // We need the pseudothread to live until we get around to verifying the vm pid against it. // The last thing it does is block on a waitpid on us, so wait until our child tells us to die. fork_exit_write.reset(); char buf; TEMP_FAILURE_RETRY(read(fork_exit_read.get(), &buf, sizeof(buf))); _exit(0); } ATRACE_NAME("after reparent"); pid_t pseudothread_tid; DebuggerdDumpType dump_type; uintptr_t abort_address = 0; Initialize(argv); ParseArgs(argc, argv, &pseudothread_tid, &dump_type); // Die if we take too long. // // Note: processes with many threads and minidebug-info can take a bit to // unwind, do not make this too small. b/62828735 alarm(30); // Get the process name (aka cmdline). std::string process_name = get_process_name(g_target_thread); // Collect the list of open files. OpenFilesList open_files; { ATRACE_NAME("open files"); populate_open_files_list(g_target_thread, &open_files); } // In order to reduce the duration that we pause the process for, we ptrace // the threads, fetch their registers and associated information, and then // fork a separate process as a snapshot of the process's address space. std::set threads; if (!android::procinfo::GetProcessTids(g_target_thread, &threads)) { PLOG(FATAL) << "failed to get process threads"; } std::map thread_info; siginfo_t siginfo; std::string error; { ATRACE_NAME("ptrace"); for (pid_t thread : threads) { // Trace the pseudothread separately, so we can use different options. if (thread == pseudothread_tid) { continue; } if (!ptrace_seize_thread(target_proc_fd, thread, &error)) { bool fatal = thread == g_target_thread; LOG(fatal ? FATAL : WARNING) << error; } ThreadInfo info; info.pid = target_process; info.tid = thread; info.process_name = process_name; info.thread_name = get_thread_name(thread); if (!ptrace_interrupt(thread, &info.signo)) { PLOG(WARNING) << "failed to ptrace interrupt thread " << thread; ptrace(PTRACE_DETACH, thread, 0, 0); continue; } if (thread == g_target_thread) { // Read the thread's registers along with the rest of the crash info out of the pipe. ReadCrashInfo(input_pipe, &siginfo, &info.registers, &abort_address); info.siginfo = &siginfo; info.signo = info.siginfo->si_signo; } else { info.registers.reset(Regs::RemoteGet(thread)); if (!info.registers) { PLOG(WARNING) << "failed to fetch registers for thread " << thread; ptrace(PTRACE_DETACH, thread, 0, 0); continue; } } thread_info[thread] = std::move(info); } } // Trace the pseudothread with PTRACE_O_TRACECLONE and tell it to fork. if (!ptrace_seize_thread(target_proc_fd, pseudothread_tid, &error, PTRACE_O_TRACECLONE)) { LOG(FATAL) << "failed to seize pseudothread: " << error; } if (TEMP_FAILURE_RETRY(write(output_pipe.get(), "\1", 1)) != 1) { PLOG(FATAL) << "failed to write to pseudothread"; } pid_t vm_pid = wait_for_vm_process(pseudothread_tid); if (ptrace(PTRACE_DETACH, pseudothread_tid, 0, 0) != 0) { PLOG(FATAL) << "failed to detach from pseudothread"; } // The pseudothread can die now. fork_exit_write.reset(); // Defer the message until later, for readability. bool wait_for_gdb = android::base::GetBoolProperty("debug.debuggerd.wait_for_gdb", false); if (siginfo.si_signo == DEBUGGER_SIGNAL) { wait_for_gdb = false; } // Detach from all of our attached threads before resuming. for (const auto& [tid, thread] : thread_info) { int resume_signal = thread.signo == DEBUGGER_SIGNAL ? 0 : thread.signo; if (wait_for_gdb) { resume_signal = 0; if (tgkill(target_process, tid, SIGSTOP) != 0) { PLOG(WARNING) << "failed to send SIGSTOP to " << tid; } } LOG(DEBUG) << "detaching from thread " << tid; if (ptrace(PTRACE_DETACH, tid, 0, resume_signal) != 0) { PLOG(ERROR) << "failed to detach from thread " << tid; } } // Drop our capabilities now that we've fetched all of the information we need. drop_capabilities(); { ATRACE_NAME("tombstoned_connect"); LOG(INFO) << "obtaining output fd from tombstoned, type: " << dump_type; g_tombstoned_connected = tombstoned_connect(g_target_thread, &g_tombstoned_socket, &g_output_fd, dump_type); } if (g_tombstoned_connected) { if (TEMP_FAILURE_RETRY(dup2(g_output_fd.get(), STDOUT_FILENO)) == -1) { PLOG(ERROR) << "failed to dup2 output fd (" << g_output_fd.get() << ") to STDOUT_FILENO"; } } else { unique_fd devnull(TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR))); TEMP_FAILURE_RETRY(dup2(devnull.get(), STDOUT_FILENO)); g_output_fd = std::move(devnull); } LOG(INFO) << "performing dump of process " << target_process << " (target tid = " << g_target_thread << ")"; int signo = siginfo.si_signo; bool fatal_signal = signo != DEBUGGER_SIGNAL; bool backtrace = false; // si_value is special when used with DEBUGGER_SIGNAL. // 0: dump tombstone // 1: dump backtrace if (!fatal_signal) { int si_val = siginfo.si_value.sival_int; if (si_val == 0) { backtrace = false; } else if (si_val == 1) { backtrace = true; } else { LOG(WARNING) << "unknown si_value value " << si_val; } } // TODO: Use seccomp to lock ourselves down. std::unique_ptr map(BacktraceMap::Create(vm_pid, false)); if (!map) { LOG(FATAL) << "failed to create backtrace map"; } std::shared_ptr process_memory = map->GetProcessMemory(); if (!process_memory) { LOG(FATAL) << "failed to get unwindstack::Memory handle"; } std::string amfd_data; if (backtrace) { ATRACE_NAME("dump_backtrace"); dump_backtrace(std::move(g_output_fd), map.get(), thread_info, g_target_thread); } else { ATRACE_NAME("engrave_tombstone"); engrave_tombstone(std::move(g_output_fd), map.get(), process_memory.get(), thread_info, g_target_thread, abort_address, &open_files, &amfd_data); } if (fatal_signal) { // Don't try to notify ActivityManager if it just crashed, or we might hang until timeout. if (thread_info[target_process].thread_name != "system_server") { activity_manager_notify(target_process, signo, amfd_data); } } if (wait_for_gdb) { // Use ALOGI to line up with output from engrave_tombstone. ALOGI( "***********************************************************\n" "* Process %d has been suspended while crashing.\n" "* To attach gdbserver and start gdb, run this on the host:\n" "*\n" "* gdbclient.py -p %d\n" "*\n" "***********************************************************", target_process, target_process); } // Close stdout before we notify tombstoned of completion. close(STDOUT_FILENO); if (g_tombstoned_connected && !tombstoned_notify_completion(g_tombstoned_socket.get())) { LOG(ERROR) << "failed to notify tombstoned of completion"; } return 0; }