/* * Copyright (C) 2012-2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include "LogBuffer.h" #include "LogKlog.h" #include "LogReader.h" // Default #define LOG_BUFFER_SIZE (256 * 1024) // Tuned with ro.logd.size per-platform #define log_buffer_size(id) mMaxSize[id] #define LOG_BUFFER_MIN_SIZE (64 * 1024UL) #define LOG_BUFFER_MAX_SIZE (256 * 1024 * 1024UL) static bool valid_size(unsigned long value) { if ((value < LOG_BUFFER_MIN_SIZE) || (LOG_BUFFER_MAX_SIZE < value)) { return false; } long pages = sysconf(_SC_PHYS_PAGES); if (pages < 1) { return true; } long pagesize = sysconf(_SC_PAGESIZE); if (pagesize <= 1) { pagesize = PAGE_SIZE; } // maximum memory impact a somewhat arbitrary ~3% pages = (pages + 31) / 32; unsigned long maximum = pages * pagesize; if ((maximum < LOG_BUFFER_MIN_SIZE) || (LOG_BUFFER_MAX_SIZE < maximum)) { return true; } return value <= maximum; } static unsigned long property_get_size(const char *key) { char property[PROPERTY_VALUE_MAX]; property_get(key, property, ""); char *cp; unsigned long value = strtoul(property, &cp, 10); switch(*cp) { case 'm': case 'M': value *= 1024; /* FALLTHRU */ case 'k': case 'K': value *= 1024; /* FALLTHRU */ case '\0': break; default: value = 0; } if (!valid_size(value)) { value = 0; } return value; } void LogBuffer::init() { static const char global_tuneable[] = "persist.logd.size"; // Settings App static const char global_default[] = "ro.logd.size"; // BoardConfig.mk unsigned long default_size = property_get_size(global_tuneable); if (!default_size) { default_size = property_get_size(global_default); if (!default_size) { default_size = property_get_bool("ro.config.low_ram", BOOL_DEFAULT_FALSE) ? LOG_BUFFER_MIN_SIZE // 64K : LOG_BUFFER_SIZE; // 256K } } log_id_for_each(i) { mLastSet[i] = false; mLast[i] = mLogElements.begin(); char key[PROP_NAME_MAX]; snprintf(key, sizeof(key), "%s.%s", global_tuneable, android_log_id_to_name(i)); unsigned long property_size = property_get_size(key); if (!property_size) { snprintf(key, sizeof(key), "%s.%s", global_default, android_log_id_to_name(i)); property_size = property_get_size(key); } if (!property_size) { property_size = default_size; } if (!property_size) { property_size = LOG_BUFFER_SIZE; } if (setSize(i, property_size)) { setSize(i, LOG_BUFFER_MIN_SIZE); } } bool lastMonotonic = monotonic; monotonic = android_log_clockid() == CLOCK_MONOTONIC; if (lastMonotonic != monotonic) { // // Fixup all timestamps, may not be 100% accurate, but better than // throwing what we have away when we get 'surprised' by a change. // In-place element fixup so no need to check reader-lock. Entries // should already be in timestamp order, but we could end up with a // few out-of-order entries if new monotonics come in before we // are notified of the reinit change in status. A Typical example would // be: // --------- beginning of system // 10.494082 184 201 D Cryptfs : Just triggered post_fs_data // --------- beginning of kernel // 0.000000 0 0 I : Initializing cgroup subsys // as the act of mounting /data would trigger persist.logd.timestamp to // be corrected. 1/30 corner case YMMV. // pthread_mutex_lock(&mLogElementsLock); LogBufferElementCollection::iterator it = mLogElements.begin(); while((it != mLogElements.end())) { LogBufferElement *e = *it; if (monotonic) { if (!android::isMonotonic(e->mRealTime)) { LogKlog::convertRealToMonotonic(e->mRealTime); } } else { if (android::isMonotonic(e->mRealTime)) { LogKlog::convertMonotonicToReal(e->mRealTime); } } ++it; } pthread_mutex_unlock(&mLogElementsLock); } // We may have been triggered by a SIGHUP. Release any sleeping reader // threads to dump their current content. // // NB: this is _not_ performed in the context of a SIGHUP, it is // performed during startup, and in context of reinit administrative thread LogTimeEntry::lock(); LastLogTimes::iterator times = mTimes.begin(); while(times != mTimes.end()) { LogTimeEntry *entry = (*times); if (entry->owned_Locked()) { entry->triggerReader_Locked(); } times++; } LogTimeEntry::unlock(); } LogBuffer::LogBuffer(LastLogTimes *times): monotonic(android_log_clockid() == CLOCK_MONOTONIC), mTimes(*times) { pthread_mutex_init(&mLogElementsLock, NULL); init(); } int LogBuffer::log(log_id_t log_id, log_time realtime, uid_t uid, pid_t pid, pid_t tid, const char *msg, unsigned short len) { if ((log_id >= LOG_ID_MAX) || (log_id < 0)) { return -EINVAL; } LogBufferElement *elem = new LogBufferElement(log_id, realtime, uid, pid, tid, msg, len); if (log_id != LOG_ID_SECURITY) { int prio = ANDROID_LOG_INFO; const char *tag = NULL; if (log_id == LOG_ID_EVENTS) { tag = android::tagToName(elem->getTag()); } else { prio = *msg; tag = msg + 1; } if (!__android_log_is_loggable(prio, tag, ANDROID_LOG_VERBOSE)) { // Log traffic received to total pthread_mutex_lock(&mLogElementsLock); stats.add(elem); stats.subtract(elem); pthread_mutex_unlock(&mLogElementsLock); delete elem; return -EACCES; } } pthread_mutex_lock(&mLogElementsLock); // Insert elements in time sorted order if possible // NB: if end is region locked, place element at end of list LogBufferElementCollection::iterator it = mLogElements.end(); LogBufferElementCollection::iterator last = it; while (last != mLogElements.begin()) { --it; if ((*it)->getRealTime() <= realtime) { break; } last = it; } if (last == mLogElements.end()) { mLogElements.push_back(elem); } else { uint64_t end = 1; bool end_set = false; bool end_always = false; LogTimeEntry::lock(); LastLogTimes::iterator times = mTimes.begin(); while(times != mTimes.end()) { LogTimeEntry *entry = (*times); if (entry->owned_Locked()) { if (!entry->mNonBlock) { end_always = true; break; } if (!end_set || (end <= entry->mEnd)) { end = entry->mEnd; end_set = true; } } times++; } if (end_always || (end_set && (end >= (*last)->getSequence()))) { mLogElements.push_back(elem); } else { mLogElements.insert(last,elem); } LogTimeEntry::unlock(); } stats.add(elem); maybePrune(log_id); pthread_mutex_unlock(&mLogElementsLock); return len; } // Prune at most 10% of the log entries or maxPrune, whichever is less. // // mLogElementsLock must be held when this function is called. void LogBuffer::maybePrune(log_id_t id) { size_t sizes = stats.sizes(id); unsigned long maxSize = log_buffer_size(id); if (sizes > maxSize) { size_t sizeOver = sizes - ((maxSize * 9) / 10); size_t elements = stats.realElements(id); size_t minElements = elements / 100; if (minElements < minPrune) { minElements = minPrune; } unsigned long pruneRows = elements * sizeOver / sizes; if (pruneRows < minElements) { pruneRows = minElements; } if (pruneRows > maxPrune) { pruneRows = maxPrune; } prune(id, pruneRows); } } LogBufferElementCollection::iterator LogBuffer::erase( LogBufferElementCollection::iterator it, bool coalesce) { LogBufferElement *element = *it; log_id_t id = element->getLogId(); { // start of scope for found iterator int key = ((id == LOG_ID_EVENTS) || (id == LOG_ID_SECURITY)) ? element->getTag() : element->getUid(); LogBufferIteratorMap::iterator found = mLastWorst[id].find(key); if ((found != mLastWorst[id].end()) && (it == found->second)) { mLastWorst[id].erase(found); } } if ((id != LOG_ID_EVENTS) && (id != LOG_ID_SECURITY) && (element->getUid() == AID_SYSTEM)) { // start of scope for pid found iterator LogBufferPidIteratorMap::iterator found = mLastWorstPidOfSystem[id].find(element->getPid()); if ((found != mLastWorstPidOfSystem[id].end()) && (it == found->second)) { mLastWorstPidOfSystem[id].erase(found); } } bool setLast[LOG_ID_MAX]; bool doSetLast = false; log_id_for_each(i) { doSetLast |= setLast[i] = mLastSet[i] && (it == mLast[i]); } it = mLogElements.erase(it); if (doSetLast) { log_id_for_each(i) { if (setLast[i]) { if (it == mLogElements.end()) { // unlikely mLastSet[i] = false; } else { mLast[i] = it; } } } } if (coalesce) { stats.erase(element); } else { stats.subtract(element); } delete element; return it; } // Define a temporary mechanism to report the last LogBufferElement pointer // for the specified uid, pid and tid. Used below to help merge-sort when // pruning for worst UID. class LogBufferElementKey { const union { struct { uint16_t uid; uint16_t pid; uint16_t tid; uint16_t padding; } __packed; uint64_t value; } __packed; public: LogBufferElementKey(uid_t uid, pid_t pid, pid_t tid): uid(uid), pid(pid), tid(tid), padding(0) { } explicit LogBufferElementKey(uint64_t key):value(key) { } uint64_t getKey() { return value; } }; class LogBufferElementLast { typedef std::unordered_map LogBufferElementMap; LogBufferElementMap map; public: bool coalesce(LogBufferElement *element, unsigned short dropped) { LogBufferElementKey key(element->getUid(), element->getPid(), element->getTid()); LogBufferElementMap::iterator it = map.find(key.getKey()); if (it != map.end()) { LogBufferElement *found = it->second; unsigned short moreDropped = found->getDropped(); if ((dropped + moreDropped) > USHRT_MAX) { map.erase(it); } else { found->setDropped(dropped + moreDropped); return true; } } return false; } void add(LogBufferElement *element) { LogBufferElementKey key(element->getUid(), element->getPid(), element->getTid()); map[key.getKey()] = element; } inline void clear() { map.clear(); } void clear(LogBufferElement *element) { uint64_t current = element->getRealTime().nsec() - (EXPIRE_RATELIMIT * NS_PER_SEC); for(LogBufferElementMap::iterator it = map.begin(); it != map.end();) { LogBufferElement *mapElement = it->second; if ((mapElement->getDropped() >= EXPIRE_THRESHOLD) && (current > mapElement->getRealTime().nsec())) { it = map.erase(it); } else { ++it; } } } }; // prune "pruneRows" of type "id" from the buffer. // // This garbage collection task is used to expire log entries. It is called to // remove all logs (clear), all UID logs (unprivileged clear), or every // 256 or 10% of the total logs (whichever is less) to prune the logs. // // First there is a prep phase where we discover the reader region lock that // acts as a backstop to any pruning activity to stop there and go no further. // // There are three major pruning loops that follow. All expire from the oldest // entries. Since there are multiple log buffers, the Android logging facility // will appear to drop entries 'in the middle' when looking at multiple log // sources and buffers. This effect is slightly more prominent when we prune // the worst offender by logging source. Thus the logs slowly loose content // and value as you move back in time. This is preferred since chatty sources // invariably move the logs value down faster as less chatty sources would be // expired in the noise. // // The first loop performs blacklisting and worst offender pruning. Falling // through when there are no notable worst offenders and have not hit the // region lock preventing further worst offender pruning. This loop also looks // after managing the chatty log entries and merging to help provide // statistical basis for blame. The chatty entries are not a notification of // how much logs you may have, but instead represent how much logs you would // have had in a virtual log buffer that is extended to cover all the in-memory // logs without loss. They last much longer than the represented pruned logs // since they get multiplied by the gains in the non-chatty log sources. // // The second loop get complicated because an algorithm of watermarks and // history is maintained to reduce the order and keep processing time // down to a minimum at scale. These algorithms can be costly in the face // of larger log buffers, or severly limited processing time granted to a // background task at lowest priority. // // This second loop does straight-up expiration from the end of the logs // (again, remember for the specified log buffer id) but does some whitelist // preservation. Thus whitelist is a Hail Mary low priority, blacklists and // spam filtration all take priority. This second loop also checks if a region // lock is causing us to buffer too much in the logs to help the reader(s), // and will tell the slowest reader thread to skip log entries, and if // persistent and hits a further threshold, kill the reader thread. // // The third thread is optional, and only gets hit if there was a whitelist // and more needs to be pruned against the backstop of the region lock. // // mLogElementsLock must be held when this function is called. // bool LogBuffer::prune(log_id_t id, unsigned long pruneRows, uid_t caller_uid) { LogTimeEntry *oldest = NULL; bool busy = false; bool clearAll = pruneRows == ULONG_MAX; LogTimeEntry::lock(); // Region locked? LastLogTimes::iterator times = mTimes.begin(); while(times != mTimes.end()) { LogTimeEntry *entry = (*times); if (entry->owned_Locked() && entry->isWatching(id) && (!oldest || (oldest->mStart > entry->mStart) || ((oldest->mStart == entry->mStart) && (entry->mTimeout.tv_sec || entry->mTimeout.tv_nsec)))) { oldest = entry; } times++; } LogBufferElementCollection::iterator it; if (caller_uid != AID_ROOT) { // Only here if clearAll condition (pruneRows == ULONG_MAX) it = mLastSet[id] ? mLast[id] : mLogElements.begin(); while (it != mLogElements.end()) { LogBufferElement *element = *it; if ((element->getLogId() != id) || (element->getUid() != caller_uid)) { ++it; continue; } if (!mLastSet[id] || ((*mLast[id])->getLogId() != id)) { mLast[id] = it; mLastSet[id] = true; } if (oldest && (oldest->mStart <= element->getSequence())) { busy = true; if (oldest->mTimeout.tv_sec || oldest->mTimeout.tv_nsec) { oldest->triggerReader_Locked(); } else { oldest->triggerSkip_Locked(id, pruneRows); } break; } it = erase(it); pruneRows--; } LogTimeEntry::unlock(); return busy; } // prune by worst offenders; by blacklist, UID, and by PID of system UID bool hasBlacklist = (id != LOG_ID_SECURITY) && mPrune.naughty(); while (!clearAll && (pruneRows > 0)) { // recalculate the worst offender on every batched pass int worst = -1; // not valid for getUid() or getKey() size_t worst_sizes = 0; size_t second_worst_sizes = 0; pid_t worstPid = 0; // POSIX guarantees PID != 0 if (worstUidEnabledForLogid(id) && mPrune.worstUidEnabled()) { // Calculate threshold as 12.5% of available storage size_t threshold = log_buffer_size(id) / 8; if ((id == LOG_ID_EVENTS) || (id == LOG_ID_SECURITY)) { stats.sortTags(AID_ROOT, (pid_t)0, 2, id).findWorst( worst, worst_sizes, second_worst_sizes, threshold); } else { stats.sort(AID_ROOT, (pid_t)0, 2, id).findWorst( worst, worst_sizes, second_worst_sizes, threshold); if ((worst == AID_SYSTEM) && mPrune.worstPidOfSystemEnabled()) { stats.sortPids(worst, (pid_t)0, 2, id).findWorst( worstPid, worst_sizes, second_worst_sizes); } } } // skip if we have neither worst nor naughty filters if ((worst == -1) && !hasBlacklist) { break; } bool kick = false; bool leading = true; it = mLastSet[id] ? mLast[id] : mLogElements.begin(); // Perform at least one mandatory garbage collection cycle in following // - clear leading chatty tags // - coalesce chatty tags // - check age-out of preserved logs bool gc = pruneRows <= 1; if (!gc && (worst != -1)) { { // begin scope for worst found iterator LogBufferIteratorMap::iterator found = mLastWorst[id].find(worst); if ((found != mLastWorst[id].end()) && (found->second != mLogElements.end())) { leading = false; it = found->second; } } if (worstPid) { // begin scope for pid worst found iterator LogBufferPidIteratorMap::iterator found = mLastWorstPidOfSystem[id].find(worstPid); if ((found != mLastWorstPidOfSystem[id].end()) && (found->second != mLogElements.end())) { leading = false; it = found->second; } } } static const timespec too_old = { EXPIRE_HOUR_THRESHOLD * 60 * 60, 0 }; LogBufferElementCollection::iterator lastt; lastt = mLogElements.end(); --lastt; LogBufferElementLast last; while (it != mLogElements.end()) { LogBufferElement *element = *it; if (oldest && (oldest->mStart <= element->getSequence())) { busy = true; if (oldest->mTimeout.tv_sec || oldest->mTimeout.tv_nsec) { oldest->triggerReader_Locked(); } break; } if (element->getLogId() != id) { ++it; continue; } if (leading && (!mLastSet[id] || ((*mLast[id])->getLogId() != id))) { mLast[id] = it; mLastSet[id] = true; } unsigned short dropped = element->getDropped(); // remove any leading drops if (leading && dropped) { it = erase(it); continue; } if (dropped && last.coalesce(element, dropped)) { it = erase(it, true); continue; } int key = ((id == LOG_ID_EVENTS) || (id == LOG_ID_SECURITY)) ? element->getTag() : element->getUid(); if (hasBlacklist && mPrune.naughty(element)) { last.clear(element); it = erase(it); if (dropped) { continue; } pruneRows--; if (pruneRows == 0) { break; } if (key == worst) { kick = true; if (worst_sizes < second_worst_sizes) { break; } worst_sizes -= element->getMsgLen(); } continue; } if ((element->getRealTime() < ((*lastt)->getRealTime() - too_old)) || (element->getRealTime() > (*lastt)->getRealTime())) { break; } if (dropped) { last.add(element); if (worstPid && ((!gc && (element->getPid() == worstPid)) || (mLastWorstPidOfSystem[id].find(element->getPid()) == mLastWorstPidOfSystem[id].end()))) { mLastWorstPidOfSystem[id][key] = it; } if ((!gc && !worstPid && (key == worst)) || (mLastWorst[id].find(key) == mLastWorst[id].end())) { mLastWorst[id][key] = it; } ++it; continue; } if ((key != worst) || (worstPid && (element->getPid() != worstPid))) { leading = false; last.clear(element); ++it; continue; } pruneRows--; if (pruneRows == 0) { break; } kick = true; unsigned short len = element->getMsgLen(); // do not create any leading drops if (leading) { it = erase(it); } else { stats.drop(element); element->setDropped(1); if (last.coalesce(element, 1)) { it = erase(it, true); } else { last.add(element); if (worstPid && (!gc || (mLastWorstPidOfSystem[id].find(worstPid) == mLastWorstPidOfSystem[id].end()))) { mLastWorstPidOfSystem[id][worstPid] = it; } if ((!gc && !worstPid) || (mLastWorst[id].find(worst) == mLastWorst[id].end())) { mLastWorst[id][worst] = it; } ++it; } } if (worst_sizes < second_worst_sizes) { break; } worst_sizes -= len; } last.clear(); if (!kick || !mPrune.worstUidEnabled()) { break; // the following loop will ask bad clients to skip/drop } } bool whitelist = false; bool hasWhitelist = (id != LOG_ID_SECURITY) && mPrune.nice() && !clearAll; it = mLastSet[id] ? mLast[id] : mLogElements.begin(); while((pruneRows > 0) && (it != mLogElements.end())) { LogBufferElement *element = *it; if (element->getLogId() != id) { it++; continue; } if (!mLastSet[id] || ((*mLast[id])->getLogId() != id)) { mLast[id] = it; mLastSet[id] = true; } if (oldest && (oldest->mStart <= element->getSequence())) { busy = true; if (whitelist) { break; } if (stats.sizes(id) > (2 * log_buffer_size(id))) { // kick a misbehaving log reader client off the island oldest->release_Locked(); } else if (oldest->mTimeout.tv_sec || oldest->mTimeout.tv_nsec) { oldest->triggerReader_Locked(); } else { oldest->triggerSkip_Locked(id, pruneRows); } break; } if (hasWhitelist && !element->getDropped() && mPrune.nice(element)) { // WhiteListed whitelist = true; it++; continue; } it = erase(it); pruneRows--; } // Do not save the whitelist if we are reader range limited if (whitelist && (pruneRows > 0)) { it = mLastSet[id] ? mLast[id] : mLogElements.begin(); while((it != mLogElements.end()) && (pruneRows > 0)) { LogBufferElement *element = *it; if (element->getLogId() != id) { ++it; continue; } if (!mLastSet[id] || ((*mLast[id])->getLogId() != id)) { mLast[id] = it; mLastSet[id] = true; } if (oldest && (oldest->mStart <= element->getSequence())) { busy = true; if (stats.sizes(id) > (2 * log_buffer_size(id))) { // kick a misbehaving log reader client off the island oldest->release_Locked(); } else if (oldest->mTimeout.tv_sec || oldest->mTimeout.tv_nsec) { oldest->triggerReader_Locked(); } else { oldest->triggerSkip_Locked(id, pruneRows); } break; } it = erase(it); pruneRows--; } } LogTimeEntry::unlock(); return (pruneRows > 0) && busy; } // clear all rows of type "id" from the buffer. bool LogBuffer::clear(log_id_t id, uid_t uid) { bool busy = true; // If it takes more than 4 tries (seconds) to clear, then kill reader(s) for (int retry = 4;;) { if (retry == 1) { // last pass // Check if it is still busy after the sleep, we say prune // one entry, not another clear run, so we are looking for // the quick side effect of the return value to tell us if // we have a _blocked_ reader. pthread_mutex_lock(&mLogElementsLock); busy = prune(id, 1, uid); pthread_mutex_unlock(&mLogElementsLock); // It is still busy, blocked reader(s), lets kill them all! // otherwise, lets be a good citizen and preserve the slow // readers and let the clear run (below) deal with determining // if we are still blocked and return an error code to caller. if (busy) { LogTimeEntry::lock(); LastLogTimes::iterator times = mTimes.begin(); while (times != mTimes.end()) { LogTimeEntry *entry = (*times); // Killer punch if (entry->owned_Locked() && entry->isWatching(id)) { entry->release_Locked(); } times++; } LogTimeEntry::unlock(); } } pthread_mutex_lock(&mLogElementsLock); busy = prune(id, ULONG_MAX, uid); pthread_mutex_unlock(&mLogElementsLock); if (!busy || !--retry) { break; } sleep (1); // Let reader(s) catch up after notification } return busy; } // get the used space associated with "id". unsigned long LogBuffer::getSizeUsed(log_id_t id) { pthread_mutex_lock(&mLogElementsLock); size_t retval = stats.sizes(id); pthread_mutex_unlock(&mLogElementsLock); return retval; } // set the total space allocated to "id" int LogBuffer::setSize(log_id_t id, unsigned long size) { // Reasonable limits ... if (!valid_size(size)) { return -1; } pthread_mutex_lock(&mLogElementsLock); log_buffer_size(id) = size; pthread_mutex_unlock(&mLogElementsLock); return 0; } // get the total space allocated to "id" unsigned long LogBuffer::getSize(log_id_t id) { pthread_mutex_lock(&mLogElementsLock); size_t retval = log_buffer_size(id); pthread_mutex_unlock(&mLogElementsLock); return retval; } uint64_t LogBuffer::flushTo( SocketClient *reader, const uint64_t start, bool privileged, bool security, int (*filter)(const LogBufferElement *element, void *arg), void *arg) { LogBufferElementCollection::iterator it; uint64_t max = start; uid_t uid = reader->getUid(); pthread_mutex_lock(&mLogElementsLock); if (start <= 1) { // client wants to start from the beginning it = mLogElements.begin(); } else { // Client wants to start from some specified time. Chances are // we are better off starting from the end of the time sorted list. for (it = mLogElements.end(); it != mLogElements.begin(); /* do nothing */) { --it; LogBufferElement *element = *it; if (element->getSequence() <= start) { it++; break; } } } for (; it != mLogElements.end(); ++it) { LogBufferElement *element = *it; if (!privileged && (element->getUid() != uid)) { continue; } if (!security && (element->getLogId() == LOG_ID_SECURITY)) { continue; } if (element->getSequence() <= start) { continue; } // NB: calling out to another object with mLogElementsLock held (safe) if (filter) { int ret = (*filter)(element, arg); if (ret == false) { continue; } if (ret != true) { break; } } pthread_mutex_unlock(&mLogElementsLock); // range locking in LastLogTimes looks after us max = element->flushTo(reader, this, privileged); if (max == element->FLUSH_ERROR) { return max; } pthread_mutex_lock(&mLogElementsLock); } pthread_mutex_unlock(&mLogElementsLock); return max; } std::string LogBuffer::formatStatistics(uid_t uid, pid_t pid, unsigned int logMask) { pthread_mutex_lock(&mLogElementsLock); std::string ret = stats.format(uid, pid, logMask); pthread_mutex_unlock(&mLogElementsLock); return ret; }