/* * Copyright 2008, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ANDROID #define LOG_TAG "NetUtils" #include #include #else #define ALOGD printf #define ALOGW printf #endif #include "netutils/ifc.h" #if defined(__ANDROID__) /* SIOCKILLADDR is an Android extension. */ #define SIOCKILLADDR 0x8939 #endif static int ifc_ctl_sock = -1; static int ifc_ctl_sock6 = -1; static pthread_mutex_t ifc_sock_mutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; static pthread_mutex_t ifc_sock6_mutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; void printerr(char *fmt, ...); #define DBG 0 #define INET_ADDRLEN 4 #define INET6_ADDRLEN 16 in_addr_t prefixLengthToIpv4Netmask(int prefix_length) { in_addr_t mask = 0; // C99 (6.5.7): shifts of 32 bits have undefined results if (prefix_length <= 0 || prefix_length > 32) { return 0; } mask = ~mask << (32 - prefix_length); mask = htonl(mask); return mask; } int ipv4NetmaskToPrefixLength(in_addr_t mask) { int prefixLength = 0; uint32_t m = (uint32_t)ntohl(mask); while (m & 0x80000000) { prefixLength++; m = m << 1; } return prefixLength; } static const char *ipaddr_to_string(in_addr_t addr) { struct in_addr in_addr; in_addr.s_addr = addr; return inet_ntoa(in_addr); } int string_to_ip(const char *string, struct sockaddr_storage *ss) { struct addrinfo hints, *ai; int ret; if (ss == NULL) { return -EFAULT; } memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_flags = AI_NUMERICHOST; hints.ai_socktype = SOCK_DGRAM; ret = getaddrinfo(string, NULL, &hints, &ai); if (ret == 0) { memcpy(ss, ai->ai_addr, ai->ai_addrlen); freeaddrinfo(ai); } else { // Getaddrinfo has its own error codes. Convert to negative errno. // There, the only thing that can reasonably happen is that the passed-in string is invalid. ret = (ret == EAI_SYSTEM) ? -errno : -EINVAL; } return ret; } int ifc_init(void) { int ret; pthread_mutex_lock(&ifc_sock_mutex); if (ifc_ctl_sock == -1) { ifc_ctl_sock = socket(AF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0); if (ifc_ctl_sock < 0) { printerr("socket() failed: %s\n", strerror(errno)); } } ret = ifc_ctl_sock < 0 ? -1 : 0; if (DBG) printerr("ifc_init_returning %d", ret); return ret; } int ifc_init6(void) { pthread_mutex_lock(&ifc_sock6_mutex); if (ifc_ctl_sock6 == -1) { ifc_ctl_sock6 = socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0); if (ifc_ctl_sock6 < 0) { printerr("socket() failed: %s\n", strerror(errno)); } } return ifc_ctl_sock6 < 0 ? -1 : 0; } void ifc_close(void) { if (DBG) printerr("ifc_close"); if (ifc_ctl_sock != -1) { (void)close(ifc_ctl_sock); ifc_ctl_sock = -1; } pthread_mutex_unlock(&ifc_sock_mutex); } void ifc_close6(void) { if (ifc_ctl_sock6 != -1) { (void)close(ifc_ctl_sock6); ifc_ctl_sock6 = -1; } pthread_mutex_unlock(&ifc_sock6_mutex); } static void ifc_init_ifr(const char *name, struct ifreq *ifr) { memset(ifr, 0, sizeof(struct ifreq)); strncpy(ifr->ifr_name, name, IFNAMSIZ); ifr->ifr_name[IFNAMSIZ - 1] = 0; } int ifc_get_hwaddr(const char *name, void *ptr) { int r; struct ifreq ifr; ifc_init_ifr(name, &ifr); r = ioctl(ifc_ctl_sock, SIOCGIFHWADDR, &ifr); if(r < 0) return -1; memcpy(ptr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN); return 0; } int ifc_get_ifindex(const char *name, int *if_indexp) { int r; struct ifreq ifr; ifc_init_ifr(name, &ifr); r = ioctl(ifc_ctl_sock, SIOCGIFINDEX, &ifr); if(r < 0) return -1; *if_indexp = ifr.ifr_ifindex; return 0; } static int ifc_set_flags(const char *name, unsigned set, unsigned clr) { struct ifreq ifr; ifc_init_ifr(name, &ifr); if(ioctl(ifc_ctl_sock, SIOCGIFFLAGS, &ifr) < 0) return -1; ifr.ifr_flags = (ifr.ifr_flags & (~clr)) | set; return ioctl(ifc_ctl_sock, SIOCSIFFLAGS, &ifr); } int ifc_up(const char *name) { int ret = ifc_set_flags(name, IFF_UP, 0); if (DBG) printerr("ifc_up(%s) = %d", name, ret); return ret; } int ifc_down(const char *name) { int ret = ifc_set_flags(name, 0, IFF_UP); if (DBG) printerr("ifc_down(%s) = %d", name, ret); return ret; } static void init_sockaddr_in(struct sockaddr *sa, in_addr_t addr) { struct sockaddr_in *sin = (struct sockaddr_in *) sa; sin->sin_family = AF_INET; sin->sin_port = 0; sin->sin_addr.s_addr = addr; } int ifc_set_addr(const char *name, in_addr_t addr) { struct ifreq ifr; int ret; ifc_init_ifr(name, &ifr); init_sockaddr_in(&ifr.ifr_addr, addr); ret = ioctl(ifc_ctl_sock, SIOCSIFADDR, &ifr); if (DBG) printerr("ifc_set_addr(%s, xx) = %d", name, ret); return ret; } /* * Adds or deletes an IP address on an interface. * * Action is one of: * - RTM_NEWADDR (to add a new address) * - RTM_DELADDR (to delete an existing address) * * Returns zero on success and negative errno on failure. */ int ifc_act_on_address(int action, const char *name, const char *address, int prefixlen) { int ifindex, s, len, ret; struct sockaddr_storage ss; int saved_errno; void *addr; size_t addrlen; struct { struct nlmsghdr n; struct ifaddrmsg r; // Allow for IPv4 or IPv6 address, headers, IPv4 broadcast address and padding. char attrbuf[NLMSG_ALIGN(sizeof(struct rtattr)) + NLMSG_ALIGN(INET6_ADDRLEN) + NLMSG_ALIGN(sizeof(struct rtattr)) + NLMSG_ALIGN(INET_ADDRLEN)]; } req; struct rtattr *rta; struct nlmsghdr *nh; struct nlmsgerr *err; // Get interface ID. ifindex = if_nametoindex(name); if (ifindex == 0) { return -errno; } // Convert string representation to sockaddr_storage. ret = string_to_ip(address, &ss); if (ret) { return ret; } // Determine address type and length. if (ss.ss_family == AF_INET) { struct sockaddr_in *sin = (struct sockaddr_in *) &ss; addr = &sin->sin_addr; addrlen = INET_ADDRLEN; } else if (ss.ss_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &ss; addr = &sin6->sin6_addr; addrlen = INET6_ADDRLEN; } else { return -EAFNOSUPPORT; } // Fill in netlink structures. memset(&req, 0, sizeof(req)); // Netlink message header. req.n.nlmsg_len = NLMSG_LENGTH(sizeof(req.r)); req.n.nlmsg_type = action; req.n.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; req.n.nlmsg_pid = getpid(); // Interface address message header. req.r.ifa_family = ss.ss_family; req.r.ifa_prefixlen = prefixlen; req.r.ifa_index = ifindex; // Routing attribute. Contains the actual IP address. rta = (struct rtattr *) (((char *) &req) + NLMSG_ALIGN(req.n.nlmsg_len)); rta->rta_type = IFA_LOCAL; rta->rta_len = RTA_LENGTH(addrlen); req.n.nlmsg_len = NLMSG_ALIGN(req.n.nlmsg_len) + RTA_LENGTH(addrlen); memcpy(RTA_DATA(rta), addr, addrlen); // Add an explicit IFA_BROADCAST for IPv4 RTM_NEWADDRs. if (ss.ss_family == AF_INET && action == RTM_NEWADDR) { rta = (struct rtattr *) (((char *) &req) + NLMSG_ALIGN(req.n.nlmsg_len)); rta->rta_type = IFA_BROADCAST; rta->rta_len = RTA_LENGTH(addrlen); req.n.nlmsg_len = NLMSG_ALIGN(req.n.nlmsg_len) + RTA_LENGTH(addrlen); ((struct in_addr *)addr)->s_addr |= htonl((1<<(32-prefixlen))-1); memcpy(RTA_DATA(rta), addr, addrlen); } s = socket(PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_ROUTE); if (s < 0) { return -errno; } if (send(s, &req, req.n.nlmsg_len, 0) < 0) { saved_errno = errno; close(s); return -saved_errno; } char buf[NLMSG_ALIGN(sizeof(struct nlmsgerr)) + sizeof(req)]; len = recv(s, buf, sizeof(buf), 0); saved_errno = errno; close(s); if (len < 0) { return -saved_errno; } // Parse the acknowledgement to find the return code. nh = (struct nlmsghdr *) buf; if (!NLMSG_OK(nh, (unsigned) len) || nh->nlmsg_type != NLMSG_ERROR) { return -EINVAL; } err = NLMSG_DATA(nh); // Return code is negative errno. return err->error; } // Returns zero on success and negative errno on failure. int ifc_add_address(const char *name, const char *address, int prefixlen) { return ifc_act_on_address(RTM_NEWADDR, name, address, prefixlen); } // Returns zero on success and negative errno on failure. int ifc_del_address(const char *name, const char * address, int prefixlen) { return ifc_act_on_address(RTM_DELADDR, name, address, prefixlen); } /* * Clears IPv6 addresses on the specified interface. */ int ifc_clear_ipv6_addresses(const char *name) { char rawaddrstr[INET6_ADDRSTRLEN], addrstr[INET6_ADDRSTRLEN]; unsigned int prefixlen; int lasterror = 0, i, j, ret; char ifname[64]; // Currently, IFNAMSIZ = 16. FILE *f = fopen("/proc/net/if_inet6", "r"); if (!f) { return -errno; } // Format: // 20010db8000a0001fc446aa4b5b347ed 03 40 00 01 wlan0 while (fscanf(f, "%32s %*02x %02x %*02x %*02x %63s\n", rawaddrstr, &prefixlen, ifname) == 3) { // Is this the interface we're looking for? if (strcmp(name, ifname)) { continue; } // Put the colons back into the address. for (i = 0, j = 0; i < 32; i++, j++) { addrstr[j] = rawaddrstr[i]; if (i % 4 == 3) { addrstr[++j] = ':'; } } addrstr[j - 1] = '\0'; // Don't delete the link-local address as well, or it will disable IPv6 // on the interface. if (strncmp(addrstr, "fe80:", 5) == 0) { continue; } ret = ifc_del_address(ifname, addrstr, prefixlen); if (ret) { ALOGE("Deleting address %s/%d on %s: %s", addrstr, prefixlen, ifname, strerror(-ret)); lasterror = ret; } } fclose(f); return lasterror; } /* * Clears IPv4 addresses on the specified interface. */ void ifc_clear_ipv4_addresses(const char *name) { unsigned count, addr; ifc_init(); for (count=0, addr=1;((addr != 0) && (count < 255)); count++) { if (ifc_get_addr(name, &addr) < 0) break; if (addr) ifc_set_addr(name, 0); } ifc_close(); } /* * Clears all IP addresses on the specified interface. */ int ifc_clear_addresses(const char *name) { ifc_clear_ipv4_addresses(name); return ifc_clear_ipv6_addresses(name); } int ifc_set_hwaddr(const char *name, const void *ptr) { struct ifreq ifr; ifc_init_ifr(name, &ifr); ifr.ifr_hwaddr.sa_family = ARPHRD_ETHER; memcpy(&ifr.ifr_hwaddr.sa_data, ptr, ETH_ALEN); return ioctl(ifc_ctl_sock, SIOCSIFHWADDR, &ifr); } int ifc_set_mask(const char *name, in_addr_t mask) { struct ifreq ifr; int ret; ifc_init_ifr(name, &ifr); init_sockaddr_in(&ifr.ifr_addr, mask); ret = ioctl(ifc_ctl_sock, SIOCSIFNETMASK, &ifr); if (DBG) printerr("ifc_set_mask(%s, xx) = %d", name, ret); return ret; } int ifc_set_prefixLength(const char *name, int prefixLength) { struct ifreq ifr; // TODO - support ipv6 if (prefixLength > 32 || prefixLength < 0) return -1; in_addr_t mask = prefixLengthToIpv4Netmask(prefixLength); ifc_init_ifr(name, &ifr); init_sockaddr_in(&ifr.ifr_addr, mask); return ioctl(ifc_ctl_sock, SIOCSIFNETMASK, &ifr); } int ifc_get_addr(const char *name, in_addr_t *addr) { struct ifreq ifr; int ret = 0; ifc_init_ifr(name, &ifr); if (addr != NULL) { ret = ioctl(ifc_ctl_sock, SIOCGIFADDR, &ifr); if (ret < 0) { *addr = 0; } else { *addr = ((struct sockaddr_in*) &ifr.ifr_addr)->sin_addr.s_addr; } } return ret; } int ifc_get_info(const char *name, in_addr_t *addr, int *prefixLength, unsigned *flags) { struct ifreq ifr; ifc_init_ifr(name, &ifr); if (addr != NULL) { if(ioctl(ifc_ctl_sock, SIOCGIFADDR, &ifr) < 0) { *addr = 0; } else { *addr = ((struct sockaddr_in*) &ifr.ifr_addr)->sin_addr.s_addr; } } if (prefixLength != NULL) { if(ioctl(ifc_ctl_sock, SIOCGIFNETMASK, &ifr) < 0) { *prefixLength = 0; } else { *prefixLength = ipv4NetmaskToPrefixLength( ((struct sockaddr_in*) &ifr.ifr_addr)->sin_addr.s_addr); } } if (flags != NULL) { if(ioctl(ifc_ctl_sock, SIOCGIFFLAGS, &ifr) < 0) { *flags = 0; } else { *flags = ifr.ifr_flags; } } return 0; } int ifc_act_on_ipv4_route(int action, const char *ifname, struct in_addr dst, int prefix_length, struct in_addr gw) { struct rtentry rt; int result; in_addr_t netmask; memset(&rt, 0, sizeof(rt)); rt.rt_dst.sa_family = AF_INET; rt.rt_dev = (void*) ifname; netmask = prefixLengthToIpv4Netmask(prefix_length); init_sockaddr_in(&rt.rt_genmask, netmask); init_sockaddr_in(&rt.rt_dst, dst.s_addr); rt.rt_flags = RTF_UP; if (prefix_length == 32) { rt.rt_flags |= RTF_HOST; } if (gw.s_addr != 0) { rt.rt_flags |= RTF_GATEWAY; init_sockaddr_in(&rt.rt_gateway, gw.s_addr); } ifc_init(); if (ifc_ctl_sock < 0) { ifc_close(); return -errno; } result = ioctl(ifc_ctl_sock, action, &rt); if (result < 0) { if (errno == EEXIST) { result = 0; } else { result = -errno; } } ifc_close(); return result; } /* deprecated - v4 only */ int ifc_create_default_route(const char *name, in_addr_t gw) { struct in_addr in_dst, in_gw; in_dst.s_addr = 0; in_gw.s_addr = gw; int ret = ifc_act_on_ipv4_route(SIOCADDRT, name, in_dst, 0, in_gw); if (DBG) printerr("ifc_create_default_route(%s, %d) = %d", name, gw, ret); return ret; } // Needed by code in hidden partner repositories / branches, so don't delete. int ifc_enable(const char *ifname) { int result; ifc_init(); result = ifc_up(ifname); ifc_close(); return result; } // Needed by code in hidden partner repositories / branches, so don't delete. int ifc_disable(const char *ifname) { unsigned addr, count; int result; ifc_init(); result = ifc_down(ifname); ifc_set_addr(ifname, 0); for (count=0, addr=1;((addr != 0) && (count < 255)); count++) { if (ifc_get_addr(ifname, &addr) < 0) break; if (addr) ifc_set_addr(ifname, 0); } ifc_close(); return result; } int ifc_reset_connections(const char *ifname, const int reset_mask) { #if defined(__ANDROID__) int result, success; in_addr_t myaddr = 0; struct ifreq ifr; struct in6_ifreq ifr6; if (reset_mask & RESET_IPV4_ADDRESSES) { /* IPv4. Clear connections on the IP address. */ ifc_init(); if (!(reset_mask & RESET_IGNORE_INTERFACE_ADDRESS)) { ifc_get_info(ifname, &myaddr, NULL, NULL); } ifc_init_ifr(ifname, &ifr); init_sockaddr_in(&ifr.ifr_addr, myaddr); result = ioctl(ifc_ctl_sock, SIOCKILLADDR, &ifr); ifc_close(); } else { result = 0; } if (reset_mask & RESET_IPV6_ADDRESSES) { /* * IPv6. On Linux, when an interface goes down it loses all its IPv6 * addresses, so we don't know which connections belonged to that interface * So we clear all unused IPv6 connections on the device by specifying an * empty IPv6 address. */ ifc_init6(); // This implicitly specifies an address of ::, i.e., kill all IPv6 sockets. memset(&ifr6, 0, sizeof(ifr6)); success = ioctl(ifc_ctl_sock6, SIOCKILLADDR, &ifr6); if (result == 0) { result = success; } ifc_close6(); } return result; #else return 0; #endif } /* * Removes the default route for the named interface. */ int ifc_remove_default_route(const char *ifname) { struct rtentry rt; int result; ifc_init(); memset(&rt, 0, sizeof(rt)); rt.rt_dev = (void *)ifname; rt.rt_flags = RTF_UP|RTF_GATEWAY; init_sockaddr_in(&rt.rt_dst, 0); if ((result = ioctl(ifc_ctl_sock, SIOCDELRT, &rt)) < 0) { ALOGD("failed to remove default route for %s: %s", ifname, strerror(errno)); } ifc_close(); return result; } int ifc_configure(const char *ifname, in_addr_t address, uint32_t prefixLength, in_addr_t gateway, in_addr_t dns1, in_addr_t dns2) { char dns_prop_name[PROPERTY_KEY_MAX]; ifc_init(); if (ifc_up(ifname)) { printerr("failed to turn on interface %s: %s\n", ifname, strerror(errno)); ifc_close(); return -1; } if (ifc_set_addr(ifname, address)) { printerr("failed to set ipaddr %s: %s\n", ipaddr_to_string(address), strerror(errno)); ifc_close(); return -1; } if (ifc_set_prefixLength(ifname, prefixLength)) { printerr("failed to set prefixLength %d: %s\n", prefixLength, strerror(errno)); ifc_close(); return -1; } if (ifc_create_default_route(ifname, gateway)) { printerr("failed to set default route %s: %s\n", ipaddr_to_string(gateway), strerror(errno)); ifc_close(); return -1; } ifc_close(); snprintf(dns_prop_name, sizeof(dns_prop_name), "net.%s.dns1", ifname); property_set(dns_prop_name, dns1 ? ipaddr_to_string(dns1) : ""); snprintf(dns_prop_name, sizeof(dns_prop_name), "net.%s.dns2", ifname); property_set(dns_prop_name, dns2 ? ipaddr_to_string(dns2) : ""); return 0; }