/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "DwarfCfa.h" #include "DwarfError.h" #include "DwarfLocation.h" #include "DwarfMemory.h" #include "DwarfOp.h" #include "DwarfSection.h" #include "DwarfStructs.h" #include "Log.h" #include "Memory.h" #include "Regs.h" const DwarfFde* DwarfSection::GetFdeFromPc(uint64_t pc) { uint64_t fde_offset; if (!GetFdeOffsetFromPc(pc, &fde_offset)) { return nullptr; } const DwarfFde* fde = GetFdeFromOffset(fde_offset); // Guaranteed pc >= pc_start, need to check pc in the fde range. if (pc < fde->pc_end) { return fde; } last_error_ = DWARF_ERROR_ILLEGAL_STATE; return nullptr; } bool DwarfSection::Step(uint64_t pc, Regs* regs, Memory* process_memory) { const DwarfFde* fde = GetFdeFromPc(pc); if (fde == nullptr || fde->cie == nullptr) { last_error_ = DWARF_ERROR_ILLEGAL_STATE; return false; } // Now get the location information for this pc. dwarf_loc_regs_t loc_regs; if (!GetCfaLocationInfo(pc, fde, &loc_regs)) { return false; } // Now eval the actual registers. return Eval(fde->cie, process_memory, loc_regs, regs); } template bool DwarfSectionImpl::EvalExpression(const DwarfLocation& loc, uint8_t version, Memory* regular_memory, AddressType* value) { DwarfOp op(&memory_, regular_memory); // Need to evaluate the op data. uint64_t start = loc.values[1]; uint64_t end = start + loc.values[0]; if (!op.Eval(start, end, version)) { last_error_ = op.last_error(); return false; } if (op.StackSize() == 0) { last_error_ = DWARF_ERROR_ILLEGAL_STATE; return false; } // We don't support an expression that evaluates to a register number. if (op.is_register()) { last_error_ = DWARF_ERROR_NOT_IMPLEMENTED; return false; } *value = op.StackAt(0); return true; } template bool DwarfSectionImpl::Eval(const DwarfCie* cie, Memory* regular_memory, const dwarf_loc_regs_t& loc_regs, Regs* regs) { RegsTmpl* cur_regs = reinterpret_cast*>(regs); if (cie->return_address_register >= cur_regs->total_regs()) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } // Get the cfa value; auto cfa_entry = loc_regs.find(CFA_REG); if (cfa_entry == loc_regs.end()) { last_error_ = DWARF_ERROR_CFA_NOT_DEFINED; return false; } AddressType prev_pc = regs->pc(); AddressType prev_cfa = regs->sp(); AddressType cfa; const DwarfLocation* loc = &cfa_entry->second; // Only a few location types are valid for the cfa. switch (loc->type) { case DWARF_LOCATION_REGISTER: if (loc->values[0] >= cur_regs->total_regs()) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } // If the stack pointer register is the CFA, and the stack // pointer register does not have any associated location // information, use the current cfa value. if (regs->sp_reg() == loc->values[0] && loc_regs.count(regs->sp_reg()) == 0) { cfa = prev_cfa; } else { cfa = (*cur_regs)[loc->values[0]]; } cfa += loc->values[1]; break; case DWARF_LOCATION_EXPRESSION: case DWARF_LOCATION_VAL_EXPRESSION: { AddressType value; if (!EvalExpression(*loc, cie->version, regular_memory, &value)) { return false; } if (loc->type == DWARF_LOCATION_EXPRESSION) { if (!regular_memory->Read(value, &cfa, sizeof(AddressType))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } } else { cfa = value; } break; } default: last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } // This code is not guaranteed to work in cases where a register location // is a double indirection to the actual value. For example, if r3 is set // to r5 + 4, and r5 is set to CFA + 4, then this won't necessarily work // because it does not guarantee that r5 is evaluated before r3. // Check that this case does not exist, and error if it does. bool return_address_undefined = false; for (const auto& entry : loc_regs) { uint16_t reg = entry.first; // Already handled the CFA register. if (reg == CFA_REG) continue; if (reg >= cur_regs->total_regs()) { // Skip this unknown register. continue; } const DwarfLocation* loc = &entry.second; switch (loc->type) { case DWARF_LOCATION_OFFSET: if (!regular_memory->Read(cfa + loc->values[0], &(*cur_regs)[reg], sizeof(AddressType))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } break; case DWARF_LOCATION_VAL_OFFSET: (*cur_regs)[reg] = cfa + loc->values[0]; break; case DWARF_LOCATION_REGISTER: { uint16_t cur_reg = loc->values[0]; if (cur_reg >= cur_regs->total_regs()) { last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } if (loc_regs.find(cur_reg) != loc_regs.end()) { // This is a double indirection, a register definition references // another register which is also defined as something other // than a register. log(0, "Invalid indirection: register %d references register %d which is " "not a plain register.\n", reg, cur_reg); last_error_ = DWARF_ERROR_ILLEGAL_STATE; return false; } (*cur_regs)[reg] = (*cur_regs)[cur_reg] + loc->values[1]; break; } case DWARF_LOCATION_EXPRESSION: case DWARF_LOCATION_VAL_EXPRESSION: { AddressType value; if (!EvalExpression(*loc, cie->version, regular_memory, &value)) { return false; } if (loc->type == DWARF_LOCATION_EXPRESSION) { if (!regular_memory->Read(value, &(*cur_regs)[reg], sizeof(AddressType))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } } else { (*cur_regs)[reg] = value; } break; } case DWARF_LOCATION_UNDEFINED: if (reg == cie->return_address_register) { return_address_undefined = true; } default: break; } } // Find the return address location. if (return_address_undefined) { cur_regs->set_pc(0); } else { cur_regs->set_pc((*cur_regs)[cie->return_address_register]); } cur_regs->set_sp(cfa); // Stop if the cfa and pc are the same. return prev_cfa != cfa || prev_pc != cur_regs->pc(); } template const DwarfCie* DwarfSectionImpl::GetCie(uint64_t offset) { auto cie_entry = cie_entries_.find(offset); if (cie_entry != cie_entries_.end()) { return &cie_entry->second; } DwarfCie* cie = &cie_entries_[offset]; memory_.set_cur_offset(offset); if (!FillInCie(cie)) { // Erase the cached entry. cie_entries_.erase(offset); return nullptr; } return cie; } template bool DwarfSectionImpl::FillInCie(DwarfCie* cie) { uint32_t length32; if (!memory_.ReadBytes(&length32, sizeof(length32))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (length32 == static_cast(-1)) { // 64 bit Cie uint64_t length64; if (!memory_.ReadBytes(&length64, sizeof(length64))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } cie->cfa_instructions_end = memory_.cur_offset() + length64; cie->fde_address_encoding = DW_EH_PE_sdata8; uint64_t cie_id; if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (!IsCie64(cie_id)) { // This is not a Cie, something has gone horribly wrong. last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } } else { // 32 bit Cie cie->cfa_instructions_end = memory_.cur_offset() + length32; cie->fde_address_encoding = DW_EH_PE_sdata4; uint32_t cie_id; if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (!IsCie32(cie_id)) { // This is not a Cie, something has gone horribly wrong. last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } } if (!memory_.ReadBytes(&cie->version, sizeof(cie->version))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (cie->version != 1 && cie->version != 3 && cie->version != 4) { // Unrecognized version. last_error_ = DWARF_ERROR_UNSUPPORTED_VERSION; return false; } // Read the augmentation string. char aug_value; do { if (!memory_.ReadBytes(&aug_value, 1)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } cie->augmentation_string.push_back(aug_value); } while (aug_value != '\0'); if (cie->version == 4) { // Skip the Address Size field since we only use it for validation. memory_.set_cur_offset(memory_.cur_offset() + 1); // Segment Size if (!memory_.ReadBytes(&cie->segment_size, 1)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } } // Code Alignment Factor if (!memory_.ReadULEB128(&cie->code_alignment_factor)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } // Data Alignment Factor if (!memory_.ReadSLEB128(&cie->data_alignment_factor)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (cie->version == 1) { // Return Address is a single byte. uint8_t return_address_register; if (!memory_.ReadBytes(&return_address_register, 1)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } cie->return_address_register = return_address_register; } else if (!memory_.ReadULEB128(&cie->return_address_register)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (cie->augmentation_string[0] != 'z') { cie->cfa_instructions_offset = memory_.cur_offset(); return true; } uint64_t aug_length; if (!memory_.ReadULEB128(&aug_length)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } cie->cfa_instructions_offset = memory_.cur_offset() + aug_length; for (size_t i = 1; i < cie->augmentation_string.size(); i++) { switch (cie->augmentation_string[i]) { case 'L': if (!memory_.ReadBytes(&cie->lsda_encoding, 1)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } break; case 'P': { uint8_t encoding; if (!memory_.ReadBytes(&encoding, 1)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (!memory_.ReadEncodedValue(encoding, &cie->personality_handler)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } } break; case 'R': if (!memory_.ReadBytes(&cie->fde_address_encoding, 1)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } break; } } return true; } template const DwarfFde* DwarfSectionImpl::GetFdeFromOffset(uint64_t offset) { auto fde_entry = fde_entries_.find(offset); if (fde_entry != fde_entries_.end()) { return &fde_entry->second; } DwarfFde* fde = &fde_entries_[offset]; memory_.set_cur_offset(offset); if (!FillInFde(fde)) { fde_entries_.erase(offset); return nullptr; } return fde; } template bool DwarfSectionImpl::FillInFde(DwarfFde* fde) { uint32_t length32; if (!memory_.ReadBytes(&length32, sizeof(length32))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (length32 == static_cast(-1)) { // 64 bit Fde. uint64_t length64; if (!memory_.ReadBytes(&length64, sizeof(length64))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } fde->cfa_instructions_end = memory_.cur_offset() + length64; uint64_t value64; if (!memory_.ReadBytes(&value64, sizeof(value64))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (IsCie64(value64)) { // This is a Cie, this means something has gone wrong. last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } // Get the Cie pointer, which is necessary to properly read the rest of // of the Fde information. fde->cie_offset = GetCieOffsetFromFde64(value64); } else { // 32 bit Fde. fde->cfa_instructions_end = memory_.cur_offset() + length32; uint32_t value32; if (!memory_.ReadBytes(&value32, sizeof(value32))) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } if (IsCie32(value32)) { // This is a Cie, this means something has gone wrong. last_error_ = DWARF_ERROR_ILLEGAL_VALUE; return false; } // Get the Cie pointer, which is necessary to properly read the rest of // of the Fde information. fde->cie_offset = GetCieOffsetFromFde32(value32); } uint64_t cur_offset = memory_.cur_offset(); const DwarfCie* cie = GetCie(fde->cie_offset); if (cie == nullptr) { return false; } fde->cie = cie; if (cie->segment_size != 0) { // Skip over the segment selector for now. cur_offset += cie->segment_size; } memory_.set_cur_offset(cur_offset); if (!memory_.ReadEncodedValue(cie->fde_address_encoding & 0xf, &fde->pc_start)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } fde->pc_start = AdjustPcFromFde(fde->pc_start); if (!memory_.ReadEncodedValue(cie->fde_address_encoding & 0xf, &fde->pc_end)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } fde->pc_end += fde->pc_start; if (cie->augmentation_string.size() > 0 && cie->augmentation_string[0] == 'z') { // Augmentation Size uint64_t aug_length; if (!memory_.ReadULEB128(&aug_length)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } uint64_t cur_offset = memory_.cur_offset(); if (!memory_.ReadEncodedValue(cie->lsda_encoding, &fde->lsda_address)) { last_error_ = DWARF_ERROR_MEMORY_INVALID; return false; } // Set our position to after all of the augmentation data. memory_.set_cur_offset(cur_offset + aug_length); } fde->cfa_instructions_offset = memory_.cur_offset(); return true; } template bool DwarfSectionImpl::GetCfaLocationInfo(uint64_t pc, const DwarfFde* fde, dwarf_loc_regs_t* loc_regs) { DwarfCfa cfa(&memory_, fde); // Look for the cached copy of the cie data. auto reg_entry = cie_loc_regs_.find(fde->cie_offset); if (reg_entry == cie_loc_regs_.end()) { if (!cfa.GetLocationInfo(pc, fde->cie->cfa_instructions_offset, fde->cie->cfa_instructions_end, loc_regs)) { last_error_ = cfa.last_error(); return false; } cie_loc_regs_[fde->cie_offset] = *loc_regs; } cfa.set_cie_loc_regs(&cie_loc_regs_[fde->cie_offset]); if (!cfa.GetLocationInfo(pc, fde->cfa_instructions_offset, fde->cfa_instructions_end, loc_regs)) { last_error_ = cfa.last_error(); return false; } return true; } template bool DwarfSectionImpl::Log(uint8_t indent, uint64_t pc, uint64_t load_bias, const DwarfFde* fde) { DwarfCfa cfa(&memory_, fde); // Always print the cie information. const DwarfCie* cie = fde->cie; if (!cfa.Log(indent, pc, load_bias, cie->cfa_instructions_offset, cie->cfa_instructions_end)) { last_error_ = cfa.last_error(); return false; } if (!cfa.Log(indent, pc, load_bias, fde->cfa_instructions_offset, fde->cfa_instructions_end)) { last_error_ = cfa.last_error(); return false; } return true; } // Explicitly instantiate DwarfSectionImpl template class DwarfSectionImpl; template class DwarfSectionImpl;