/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "devices.h" #include "init.h" #include "property_service.h" #include "bootchart.h" static int property_triggers_enabled = 0; #if BOOTCHART static int bootchart_count; #endif static char console[32]; static char serialno[32]; static char bootmode[32]; static char baseband[32]; static char carrier[32]; static char bootloader[32]; static char hardware[32]; static unsigned revision = 0; static char qemu[32]; static void drain_action_queue(void); static void notify_service_state(const char *name, const char *state) { char pname[PROP_NAME_MAX]; int len = strlen(name); if ((len + 10) > PROP_NAME_MAX) return; snprintf(pname, sizeof(pname), "init.svc.%s", name); property_set(pname, state); } static int have_console; static char *console_name = "/dev/console"; static time_t process_needs_restart; static const char *ENV[32]; /* add_environment - add "key=value" to the current environment */ int add_environment(const char *key, const char *val) { int n; for (n = 0; n < 31; n++) { if (!ENV[n]) { size_t len = strlen(key) + strlen(val) + 2; char *entry = malloc(len); snprintf(entry, len, "%s=%s", key, val); ENV[n] = entry; return 0; } } return 1; } static void zap_stdio(void) { int fd; fd = open("/dev/null", O_RDWR); dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } static void open_console() { int fd; if ((fd = open(console_name, O_RDWR)) < 0) { fd = open("/dev/null", O_RDWR); } dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } /* * gettime() - returns the time in seconds of the system's monotonic clock or * zero on error. */ static time_t gettime(void) { struct timespec ts; int ret; ret = clock_gettime(CLOCK_MONOTONIC, &ts); if (ret < 0) { ERROR("clock_gettime(CLOCK_MONOTONIC) failed: %s\n", strerror(errno)); return 0; } return ts.tv_sec; } static void publish_socket(const char *name, int fd) { char key[64] = ANDROID_SOCKET_ENV_PREFIX; char val[64]; strlcpy(key + sizeof(ANDROID_SOCKET_ENV_PREFIX) - 1, name, sizeof(key) - sizeof(ANDROID_SOCKET_ENV_PREFIX)); snprintf(val, sizeof(val), "%d", fd); add_environment(key, val); /* make sure we don't close-on-exec */ fcntl(fd, F_SETFD, 0); } void service_start(struct service *svc) { struct stat s; pid_t pid; int needs_console; int n; /* starting a service removes it from the disabled * state and immediately takes it out of the restarting * state if it was in there */ svc->flags &= (~(SVC_DISABLED|SVC_RESTARTING)); svc->time_started = 0; /* running processes require no additional work -- if * they're in the process of exiting, we've ensured * that they will immediately restart on exit, unless * they are ONESHOT */ if (svc->flags & SVC_RUNNING) { return; } needs_console = (svc->flags & SVC_CONSOLE) ? 1 : 0; if (needs_console && (!have_console)) { ERROR("service '%s' requires console\n", svc->name); svc->flags |= SVC_DISABLED; return; } if (stat(svc->args[0], &s) != 0) { ERROR("cannot find '%s', disabling '%s'\n", svc->args[0], svc->name); svc->flags |= SVC_DISABLED; return; } NOTICE("starting '%s'\n", svc->name); pid = fork(); if (pid == 0) { struct socketinfo *si; struct svcenvinfo *ei; char tmp[32]; int fd, sz; get_property_workspace(&fd, &sz); sprintf(tmp, "%d,%d", dup(fd), sz); add_environment("ANDROID_PROPERTY_WORKSPACE", tmp); for (ei = svc->envvars; ei; ei = ei->next) add_environment(ei->name, ei->value); for (si = svc->sockets; si; si = si->next) { int s = create_socket(si->name, !strcmp(si->type, "dgram") ? SOCK_DGRAM : SOCK_STREAM, si->perm, si->uid, si->gid); if (s >= 0) { publish_socket(si->name, s); } } if (needs_console) { setsid(); open_console(); } else { zap_stdio(); } #if 0 for (n = 0; svc->args[n]; n++) { INFO("args[%d] = '%s'\n", n, svc->args[n]); } for (n = 0; ENV[n]; n++) { INFO("env[%d] = '%s'\n", n, ENV[n]); } #endif setpgid(0, getpid()); /* as requested, set our gid, supplemental gids, and uid */ if (svc->gid) { setgid(svc->gid); } if (svc->nr_supp_gids) { setgroups(svc->nr_supp_gids, svc->supp_gids); } if (svc->uid) { setuid(svc->uid); } execve(svc->args[0], (char**) svc->args, (char**) ENV); _exit(127); } if (pid < 0) { ERROR("failed to start '%s'\n", svc->name); svc->pid = 0; return; } svc->time_started = gettime(); svc->pid = pid; svc->flags |= SVC_RUNNING; notify_service_state(svc->name, "running"); } void service_stop(struct service *svc) { /* we are no longer running, nor should we * attempt to restart */ svc->flags &= (~(SVC_RUNNING|SVC_RESTARTING)); /* if the service has not yet started, prevent * it from auto-starting with its class */ svc->flags |= SVC_DISABLED; if (svc->pid) { NOTICE("service '%s' is being killed\n", svc->name); kill(-svc->pid, SIGTERM); notify_service_state(svc->name, "stopping"); } else { notify_service_state(svc->name, "stopped"); } } void property_changed(const char *name, const char *value) { if (property_triggers_enabled) { queue_property_triggers(name, value); drain_action_queue(); } } #define CRITICAL_CRASH_THRESHOLD 4 /* if we crash >4 times ... */ #define CRITICAL_CRASH_WINDOW (4*60) /* ... in 4 minutes, goto recovery*/ static int wait_for_one_process(int block) { pid_t pid; int status; struct service *svc; struct socketinfo *si; time_t now; struct listnode *node; struct command *cmd; while ( (pid = waitpid(-1, &status, block ? 0 : WNOHANG)) == -1 && errno == EINTR ); if (pid <= 0) return -1; INFO("waitpid returned pid %d, status = %08x\n", pid, status); svc = service_find_by_pid(pid); if (!svc) { ERROR("untracked pid %d exited\n", pid); return 0; } NOTICE("process '%s', pid %d exited\n", svc->name, pid); if (!(svc->flags & SVC_ONESHOT)) { kill(-pid, SIGKILL); NOTICE("process '%s' killing any children in process group\n", svc->name); } /* remove any sockets we may have created */ for (si = svc->sockets; si; si = si->next) { char tmp[128]; snprintf(tmp, sizeof(tmp), ANDROID_SOCKET_DIR"/%s", si->name); unlink(tmp); } svc->pid = 0; svc->flags &= (~SVC_RUNNING); /* oneshot processes go into the disabled state on exit */ if (svc->flags & SVC_ONESHOT) { svc->flags |= SVC_DISABLED; } /* disabled processes do not get restarted automatically */ if (svc->flags & SVC_DISABLED) { notify_service_state(svc->name, "stopped"); return 0; } now = gettime(); if (svc->flags & SVC_CRITICAL) { if (svc->time_crashed + CRITICAL_CRASH_WINDOW >= now) { if (++svc->nr_crashed > CRITICAL_CRASH_THRESHOLD) { ERROR("critical process '%s' exited %d times in %d minutes; " "rebooting into recovery mode\n", svc->name, CRITICAL_CRASH_THRESHOLD, CRITICAL_CRASH_WINDOW / 60); sync(); __reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, LINUX_REBOOT_CMD_RESTART2, "recovery"); return 0; } } else { svc->time_crashed = now; svc->nr_crashed = 1; } } /* Execute all onrestart commands for this service. */ list_for_each(node, &svc->onrestart.commands) { cmd = node_to_item(node, struct command, clist); cmd->func(cmd->nargs, cmd->args); } svc->flags |= SVC_RESTARTING; notify_service_state(svc->name, "restarting"); return 0; } static void restart_service_if_needed(struct service *svc) { time_t next_start_time = svc->time_started + 5; if (next_start_time <= gettime()) { svc->flags &= (~SVC_RESTARTING); service_start(svc); return; } if ((next_start_time < process_needs_restart) || (process_needs_restart == 0)) { process_needs_restart = next_start_time; } } static void restart_processes() { process_needs_restart = 0; service_for_each_flags(SVC_RESTARTING, restart_service_if_needed); } static int signal_fd = -1; static void sigchld_handler(int s) { write(signal_fd, &s, 1); } static void msg_start(const char *name) { struct service *svc = service_find_by_name(name); if (svc) { service_start(svc); } else { ERROR("no such service '%s'\n", name); } } static void msg_stop(const char *name) { struct service *svc = service_find_by_name(name); if (svc) { service_stop(svc); } else { ERROR("no such service '%s'\n"); } } void handle_control_message(const char *msg, const char *arg) { if (!strcmp(msg,"start")) { msg_start(arg); } else if (!strcmp(msg,"stop")) { msg_stop(arg); } else { ERROR("unknown control msg '%s'\n", msg); } } #define MAX_MTD_PARTITIONS 16 static struct { char name[16]; int number; } mtd_part_map[MAX_MTD_PARTITIONS]; static int mtd_part_count = -1; static void find_mtd_partitions(void) { int fd; char buf[1024]; char *pmtdbufp; ssize_t pmtdsize; int r; fd = open("/proc/mtd", O_RDONLY); if (fd < 0) return; buf[sizeof(buf) - 1] = '\0'; pmtdsize = read(fd, buf, sizeof(buf) - 1); pmtdbufp = buf; while (pmtdsize > 0) { int mtdnum, mtdsize, mtderasesize; char mtdname[16]; mtdname[0] = '\0'; mtdnum = -1; r = sscanf(pmtdbufp, "mtd%d: %x %x %15s", &mtdnum, &mtdsize, &mtderasesize, mtdname); if ((r == 4) && (mtdname[0] == '"')) { char *x = strchr(mtdname + 1, '"'); if (x) { *x = 0; } INFO("mtd partition %d, %s\n", mtdnum, mtdname + 1); if (mtd_part_count < MAX_MTD_PARTITIONS) { strcpy(mtd_part_map[mtd_part_count].name, mtdname + 1); mtd_part_map[mtd_part_count].number = mtdnum; mtd_part_count++; } else { ERROR("too many mtd partitions\n"); } } while (pmtdsize > 0 && *pmtdbufp != '\n') { pmtdbufp++; pmtdsize--; } if (pmtdsize > 0) { pmtdbufp++; pmtdsize--; } } close(fd); } int mtd_name_to_number(const char *name) { int n; if (mtd_part_count < 0) { mtd_part_count = 0; find_mtd_partitions(); } for (n = 0; n < mtd_part_count; n++) { if (!strcmp(name, mtd_part_map[n].name)) { return mtd_part_map[n].number; } } return -1; } static void import_kernel_nv(char *name, int in_qemu) { char *value = strchr(name, '='); if (value == 0) return; *value++ = 0; if (*name == 0) return; if (!in_qemu) { /* on a real device, white-list the kernel options */ if (!strcmp(name,"qemu")) { strlcpy(qemu, value, sizeof(qemu)); } else if (!strcmp(name,"androidboot.console")) { strlcpy(console, value, sizeof(console)); } else if (!strcmp(name,"androidboot.mode")) { strlcpy(bootmode, value, sizeof(bootmode)); } else if (!strcmp(name,"androidboot.serialno")) { strlcpy(serialno, value, sizeof(serialno)); } else if (!strcmp(name,"androidboot.baseband")) { strlcpy(baseband, value, sizeof(baseband)); } else if (!strcmp(name,"androidboot.carrier")) { strlcpy(carrier, value, sizeof(carrier)); } else if (!strcmp(name,"androidboot.bootloader")) { strlcpy(bootloader, value, sizeof(bootloader)); } else if (!strcmp(name,"androidboot.hardware")) { strlcpy(hardware, value, sizeof(hardware)); } else { qemu_cmdline(name, value); } } else { /* in the emulator, export any kernel option with the * ro.kernel. prefix */ char buff[32]; int len = snprintf( buff, sizeof(buff), "ro.kernel.%s", name ); if (len < (int)sizeof(buff)) { property_set( buff, value ); } } } static void import_kernel_cmdline(int in_qemu) { char cmdline[1024]; char *ptr; int fd; fd = open("/proc/cmdline", O_RDONLY); if (fd >= 0) { int n = read(fd, cmdline, 1023); if (n < 0) n = 0; /* get rid of trailing newline, it happens */ if (n > 0 && cmdline[n-1] == '\n') n--; cmdline[n] = 0; close(fd); } else { cmdline[0] = 0; } ptr = cmdline; while (ptr && *ptr) { char *x = strchr(ptr, ' '); if (x != 0) *x++ = 0; import_kernel_nv(ptr, in_qemu); ptr = x; } /* don't expose the raw commandline to nonpriv processes */ chmod("/proc/cmdline", 0440); } static void get_hardware_name(void) { char data[1024]; int fd, n; char *x, *hw, *rev; /* Hardware string was provided on kernel command line */ if (hardware[0]) return; fd = open("/proc/cpuinfo", O_RDONLY); if (fd < 0) return; n = read(fd, data, 1023); close(fd); if (n < 0) return; data[n] = 0; hw = strstr(data, "\nHardware"); rev = strstr(data, "\nRevision"); if (hw) { x = strstr(hw, ": "); if (x) { x += 2; n = 0; while (*x && !isspace(*x)) { hardware[n++] = tolower(*x); x++; if (n == 31) break; } hardware[n] = 0; } } if (rev) { x = strstr(rev, ": "); if (x) { revision = strtoul(x + 2, 0, 16); } } } static void drain_action_queue(void) { struct listnode *node; struct command *cmd; struct action *act; int ret; while ((act = action_remove_queue_head())) { INFO("processing action %p (%s)\n", act, act->name); list_for_each(node, &act->commands) { cmd = node_to_item(node, struct command, clist); ret = cmd->func(cmd->nargs, cmd->args); INFO("command '%s' r=%d\n", cmd->args[0], ret); } } } void open_devnull_stdio(void) { int fd; static const char *name = "/dev/__null__"; if (mknod(name, S_IFCHR | 0600, (1 << 8) | 3) == 0) { fd = open(name, O_RDWR); unlink(name); if (fd >= 0) { dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); if (fd > 2) { close(fd); } return; } } exit(1); } int main(int argc, char **argv) { int device_fd = -1; int property_set_fd = -1; int signal_recv_fd = -1; int s[2]; int fd; struct sigaction act; char tmp[PROP_VALUE_MAX]; struct pollfd ufds[4]; char *tmpdev; act.sa_handler = sigchld_handler; act.sa_flags = SA_NOCLDSTOP; act.sa_mask = 0; act.sa_restorer = NULL; sigaction(SIGCHLD, &act, 0); /* clear the umask */ umask(0); /* Get the basic filesystem setup we need put * together in the initramdisk on / and then we'll * let the rc file figure out the rest. */ mkdir("/dev", 0755); mkdir("/proc", 0755); mkdir("/sys", 0755); mount("tmpfs", "/dev", "tmpfs", 0, "mode=0755"); mkdir("/dev/pts", 0755); mkdir("/dev/socket", 0755); mount("devpts", "/dev/pts", "devpts", 0, NULL); mount("proc", "/proc", "proc", 0, NULL); mount("sysfs", "/sys", "sysfs", 0, NULL); /* We must have some place other than / to create the * device nodes for kmsg and null, otherwise we won't * be able to remount / read-only later on. * Now that tmpfs is mounted on /dev, we can actually * talk to the outside world. */ open_devnull_stdio(); log_init(); INFO("reading config file\n"); parse_config_file("/init.rc"); /* pull the kernel commandline and ramdisk properties file in */ qemu_init(); import_kernel_cmdline(0); get_hardware_name(); snprintf(tmp, sizeof(tmp), "/init.%s.rc", hardware); parse_config_file(tmp); action_for_each_trigger("early-init", action_add_queue_tail); drain_action_queue(); INFO("device init\n"); device_fd = device_init(); property_init(); if (console[0]) { snprintf(tmp, sizeof(tmp), "/dev/%s", console); console_name = strdup(tmp); } fd = open(console_name, O_RDWR); if (fd >= 0) have_console = 1; close(fd); if( load_565rle_image(INIT_IMAGE_FILE) ) { fd = open("/dev/tty0", O_WRONLY); if (fd >= 0) { const char *msg; msg = "\n" "\n" "\n" "\n" "\n" "\n" "\n" // console is 40 cols x 30 lines "\n" "\n" "\n" "\n" "\n" "\n" "\n" " A N D R O I D "; write(fd, msg, strlen(msg)); close(fd); } } if (qemu[0]) import_kernel_cmdline(1); if (!strcmp(bootmode,"factory")) property_set("ro.factorytest", "1"); else if (!strcmp(bootmode,"factory2")) property_set("ro.factorytest", "2"); else property_set("ro.factorytest", "0"); property_set("ro.serialno", serialno[0] ? serialno : ""); property_set("ro.bootmode", bootmode[0] ? bootmode : "unknown"); property_set("ro.baseband", baseband[0] ? baseband : "unknown"); property_set("ro.carrier", carrier[0] ? carrier : "unknown"); property_set("ro.bootloader", bootloader[0] ? bootloader : "unknown"); property_set("ro.hardware", hardware); snprintf(tmp, PROP_VALUE_MAX, "%d", revision); property_set("ro.revision", tmp); /* execute all the boot actions to get us started */ action_for_each_trigger("init", action_add_queue_tail); drain_action_queue(); /* read any property files on system or data and * fire up the property service. This must happen * after the ro.foo properties are set above so * that /data/local.prop cannot interfere with them. */ property_set_fd = start_property_service(); /* create a signalling mechanism for the sigchld handler */ if (socketpair(AF_UNIX, SOCK_STREAM, 0, s) == 0) { signal_fd = s[0]; signal_recv_fd = s[1]; fcntl(s[0], F_SETFD, FD_CLOEXEC); fcntl(s[0], F_SETFL, O_NONBLOCK); fcntl(s[1], F_SETFD, FD_CLOEXEC); fcntl(s[1], F_SETFL, O_NONBLOCK); } /* make sure we actually have all the pieces we need */ if ((device_fd < 0) || (property_set_fd < 0) || (signal_recv_fd < 0)) { ERROR("init startup failure\n"); return 1; } /* execute all the boot actions to get us started */ action_for_each_trigger("early-boot", action_add_queue_tail); action_for_each_trigger("boot", action_add_queue_tail); drain_action_queue(); /* run all property triggers based on current state of the properties */ queue_all_property_triggers(); drain_action_queue(); /* enable property triggers */ property_triggers_enabled = 1; ufds[0].fd = device_fd; ufds[0].events = POLLIN; ufds[1].fd = property_set_fd; ufds[1].events = POLLIN; ufds[2].fd = signal_recv_fd; ufds[2].events = POLLIN; #if BOOTCHART bootchart_count = bootchart_init(); if (bootchart_count < 0) { ERROR("bootcharting init failure\n"); } else if (bootchart_count > 0) { NOTICE("bootcharting started (period=%d ms)\n", bootchart_count*BOOTCHART_POLLING_MS); } else { NOTICE("bootcharting ignored\n"); } #endif for(;;) { int nr, timeout = -1; ufds[0].revents = 0; ufds[1].revents = 0; ufds[2].revents = 0; drain_action_queue(); restart_processes(); if (process_needs_restart) { timeout = (process_needs_restart - gettime()) * 1000; if (timeout < 0) timeout = 0; } #if BOOTCHART if (bootchart_count > 0) { if (timeout < 0 || timeout > BOOTCHART_POLLING_MS) timeout = BOOTCHART_POLLING_MS; if (bootchart_step() < 0 || --bootchart_count == 0) { bootchart_finish(); bootchart_count = 0; } } #endif nr = poll(ufds, 3, timeout); if (nr <= 0) continue; if (ufds[2].revents == POLLIN) { /* we got a SIGCHLD - reap and restart as needed */ read(signal_recv_fd, tmp, sizeof(tmp)); while (!wait_for_one_process(0)) ; continue; } if (ufds[0].revents == POLLIN) handle_device_fd(device_fd); if (ufds[1].revents == POLLIN) handle_property_set_fd(property_set_fd); } return 0; }