/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG TRACE_USB #include "sysdeps.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adb.h" #include "transport.h" using namespace std::literals; /* usb scan debugging is waaaay too verbose */ #define DBGX(x...) struct usb_handle { ~usb_handle() { if (fd != -1) unix_close(fd); } std::string path; int fd = -1; unsigned char ep_in; unsigned char ep_out; unsigned zero_mask; unsigned writeable = 1; usbdevfs_urb urb_in; usbdevfs_urb urb_out; bool urb_in_busy = false; bool urb_out_busy = false; bool dead = false; std::condition_variable cv; std::mutex mutex; // for garbage collecting disconnected devices bool mark; // ID of thread currently in REAPURB pthread_t reaper_thread = 0; }; static std::mutex g_usb_handles_mutex; static std::list g_usb_handles; static int is_known_device(const char* dev_name) { std::lock_guard lock(g_usb_handles_mutex); for (usb_handle* usb : g_usb_handles) { if (usb->path == dev_name) { // set mark flag to indicate this device is still alive usb->mark = true; return 1; } } return 0; } static void kick_disconnected_devices() { std::lock_guard lock(g_usb_handles_mutex); // kick any devices in the device list that were not found in the device scan for (usb_handle* usb : g_usb_handles) { if (!usb->mark) { usb_kick(usb); } else { usb->mark = false; } } } static inline bool contains_non_digit(const char* name) { while (*name) { if (!isdigit(*name++)) return true; } return false; } static void find_usb_device(const std::string& base, void (*register_device_callback) (const char*, const char*, unsigned char, unsigned char, int, int, unsigned)) { std::unique_ptr bus_dir(opendir(base.c_str()), closedir); if (!bus_dir) return; dirent* de; while ((de = readdir(bus_dir.get())) != 0) { if (contains_non_digit(de->d_name)) continue; std::string bus_name = base + "/" + de->d_name; std::unique_ptr dev_dir(opendir(bus_name.c_str()), closedir); if (!dev_dir) continue; while ((de = readdir(dev_dir.get()))) { unsigned char devdesc[4096]; unsigned char* bufptr = devdesc; unsigned char* bufend; struct usb_device_descriptor* device; struct usb_config_descriptor* config; struct usb_interface_descriptor* interface; struct usb_endpoint_descriptor *ep1, *ep2; unsigned zero_mask = 0; unsigned vid, pid; if (contains_non_digit(de->d_name)) continue; std::string dev_name = bus_name + "/" + de->d_name; if (is_known_device(dev_name.c_str())) { continue; } int fd = unix_open(dev_name.c_str(), O_RDONLY | O_CLOEXEC); if (fd == -1) { continue; } size_t desclength = unix_read(fd, devdesc, sizeof(devdesc)); bufend = bufptr + desclength; // should have device and configuration descriptors, and atleast two endpoints if (desclength < USB_DT_DEVICE_SIZE + USB_DT_CONFIG_SIZE) { D("desclength %zu is too small", desclength); unix_close(fd); continue; } device = (struct usb_device_descriptor*)bufptr; bufptr += USB_DT_DEVICE_SIZE; if((device->bLength != USB_DT_DEVICE_SIZE) || (device->bDescriptorType != USB_DT_DEVICE)) { unix_close(fd); continue; } vid = device->idVendor; pid = device->idProduct; DBGX("[ %s is V:%04x P:%04x ]\n", dev_name.c_str(), vid, pid); // should have config descriptor next config = (struct usb_config_descriptor *)bufptr; bufptr += USB_DT_CONFIG_SIZE; if (config->bLength != USB_DT_CONFIG_SIZE || config->bDescriptorType != USB_DT_CONFIG) { D("usb_config_descriptor not found"); unix_close(fd); continue; } // loop through all the descriptors and look for the ADB interface while (bufptr < bufend) { unsigned char length = bufptr[0]; unsigned char type = bufptr[1]; if (type == USB_DT_INTERFACE) { interface = (struct usb_interface_descriptor *)bufptr; bufptr += length; if (length != USB_DT_INTERFACE_SIZE) { D("interface descriptor has wrong size"); break; } DBGX("bInterfaceClass: %d, bInterfaceSubClass: %d," "bInterfaceProtocol: %d, bNumEndpoints: %d\n", interface->bInterfaceClass, interface->bInterfaceSubClass, interface->bInterfaceProtocol, interface->bNumEndpoints); if (interface->bNumEndpoints == 2 && is_adb_interface(vid, pid, interface->bInterfaceClass, interface->bInterfaceSubClass, interface->bInterfaceProtocol)) { struct stat st; char pathbuf[128]; char link[256]; char *devpath = nullptr; DBGX("looking for bulk endpoints\n"); // looks like ADB... ep1 = (struct usb_endpoint_descriptor *)bufptr; bufptr += USB_DT_ENDPOINT_SIZE; // For USB 3.0 SuperSpeed devices, skip potential // USB 3.0 SuperSpeed Endpoint Companion descriptor if (bufptr+2 <= devdesc + desclength && bufptr[0] == USB_DT_SS_EP_COMP_SIZE && bufptr[1] == USB_DT_SS_ENDPOINT_COMP) { bufptr += USB_DT_SS_EP_COMP_SIZE; } ep2 = (struct usb_endpoint_descriptor *)bufptr; bufptr += USB_DT_ENDPOINT_SIZE; if (bufptr+2 <= devdesc + desclength && bufptr[0] == USB_DT_SS_EP_COMP_SIZE && bufptr[1] == USB_DT_SS_ENDPOINT_COMP) { bufptr += USB_DT_SS_EP_COMP_SIZE; } if (bufptr > devdesc + desclength || ep1->bLength != USB_DT_ENDPOINT_SIZE || ep1->bDescriptorType != USB_DT_ENDPOINT || ep2->bLength != USB_DT_ENDPOINT_SIZE || ep2->bDescriptorType != USB_DT_ENDPOINT) { D("endpoints not found"); break; } // both endpoints should be bulk if (ep1->bmAttributes != USB_ENDPOINT_XFER_BULK || ep2->bmAttributes != USB_ENDPOINT_XFER_BULK) { D("bulk endpoints not found"); continue; } /* aproto 01 needs 0 termination */ if(interface->bInterfaceProtocol == 0x01) { zero_mask = ep1->wMaxPacketSize - 1; } // we have a match. now we just need to figure out which is in and which is out. unsigned char local_ep_in, local_ep_out; if (ep1->bEndpointAddress & USB_ENDPOINT_DIR_MASK) { local_ep_in = ep1->bEndpointAddress; local_ep_out = ep2->bEndpointAddress; } else { local_ep_in = ep2->bEndpointAddress; local_ep_out = ep1->bEndpointAddress; } // Determine the device path if (!fstat(fd, &st) && S_ISCHR(st.st_mode)) { snprintf(pathbuf, sizeof(pathbuf), "/sys/dev/char/%d:%d", major(st.st_rdev), minor(st.st_rdev)); ssize_t link_len = readlink(pathbuf, link, sizeof(link) - 1); if (link_len > 0) { link[link_len] = '\0'; const char* slash = strrchr(link, '/'); if (slash) { snprintf(pathbuf, sizeof(pathbuf), "usb:%s", slash + 1); devpath = pathbuf; } } } register_device_callback(dev_name.c_str(), devpath, local_ep_in, local_ep_out, interface->bInterfaceNumber, device->iSerialNumber, zero_mask); break; } } else { bufptr += length; } } // end of while unix_close(fd); } } } static int usb_bulk_write(usb_handle* h, const void* data, int len) { std::unique_lock lock(h->mutex); D("++ usb_bulk_write ++"); usbdevfs_urb* urb = &h->urb_out; memset(urb, 0, sizeof(*urb)); urb->type = USBDEVFS_URB_TYPE_BULK; urb->endpoint = h->ep_out; urb->status = -1; urb->buffer = const_cast(data); urb->buffer_length = len; if (h->dead) { errno = EINVAL; return -1; } if (TEMP_FAILURE_RETRY(ioctl(h->fd, USBDEVFS_SUBMITURB, urb)) == -1) { return -1; } h->urb_out_busy = true; while (true) { auto now = std::chrono::system_clock::now(); if (h->cv.wait_until(lock, now + 5s) == std::cv_status::timeout || h->dead) { // TODO: call USBDEVFS_DISCARDURB? errno = ETIMEDOUT; return -1; } if (!h->urb_out_busy) { if (urb->status != 0) { errno = -urb->status; return -1; } return urb->actual_length; } } } static int usb_bulk_read(usb_handle* h, void* data, int len) { std::unique_lock lock(h->mutex); D("++ usb_bulk_read ++"); usbdevfs_urb* urb = &h->urb_in; memset(urb, 0, sizeof(*urb)); urb->type = USBDEVFS_URB_TYPE_BULK; urb->endpoint = h->ep_in; urb->status = -1; urb->buffer = data; urb->buffer_length = len; if (h->dead) { errno = EINVAL; return -1; } if (TEMP_FAILURE_RETRY(ioctl(h->fd, USBDEVFS_SUBMITURB, urb)) == -1) { return -1; } h->urb_in_busy = true; while (true) { D("[ reap urb - wait ]"); h->reaper_thread = pthread_self(); int fd = h->fd; lock.unlock(); // This ioctl must not have TEMP_FAILURE_RETRY because we send SIGALRM to break out. usbdevfs_urb* out = nullptr; int res = ioctl(fd, USBDEVFS_REAPURB, &out); int saved_errno = errno; lock.lock(); h->reaper_thread = 0; if (h->dead) { errno = EINVAL; return -1; } if (res < 0) { if (saved_errno == EINTR) { continue; } D("[ reap urb - error ]"); errno = saved_errno; return -1; } D("[ urb @%p status = %d, actual = %d ]", out, out->status, out->actual_length); if (out == &h->urb_in) { D("[ reap urb - IN complete ]"); h->urb_in_busy = false; if (urb->status != 0) { errno = -urb->status; return -1; } return urb->actual_length; } if (out == &h->urb_out) { D("[ reap urb - OUT compelete ]"); h->urb_out_busy = false; h->cv.notify_all(); } } } int usb_write(usb_handle *h, const void *_data, int len) { D("++ usb_write ++"); unsigned char *data = (unsigned char*) _data; int n = usb_bulk_write(h, data, len); if (n != len) { D("ERROR: n = %d, errno = %d (%s)", n, errno, strerror(errno)); return -1; } if (h->zero_mask && !(len & h->zero_mask)) { // If we need 0-markers and our transfer is an even multiple of the packet size, // then send a zero marker. return usb_bulk_write(h, _data, 0); } D("-- usb_write --"); return 0; } int usb_read(usb_handle *h, void *_data, int len) { unsigned char *data = (unsigned char*) _data; int n; D("++ usb_read ++"); while(len > 0) { int xfer = len; D("[ usb read %d fd = %d], path=%s", xfer, h->fd, h->path.c_str()); n = usb_bulk_read(h, data, xfer); D("[ usb read %d ] = %d, path=%s", xfer, n, h->path.c_str()); if(n != xfer) { if((errno == ETIMEDOUT) && (h->fd != -1)) { D("[ timeout ]"); if(n > 0){ data += n; len -= n; } continue; } D("ERROR: n = %d, errno = %d (%s)", n, errno, strerror(errno)); return -1; } len -= xfer; data += xfer; } D("-- usb_read --"); return 0; } void usb_kick(usb_handle* h) { std::lock_guard lock(h->mutex); D("[ kicking %p (fd = %d) ]", h, h->fd); if (!h->dead) { h->dead = true; if (h->writeable) { /* HACK ALERT! ** Sometimes we get stuck in ioctl(USBDEVFS_REAPURB). ** This is a workaround for that problem. */ if (h->reaper_thread) { pthread_kill(h->reaper_thread, SIGALRM); } /* cancel any pending transactions ** these will quietly fail if the txns are not active, ** but this ensures that a reader blocked on REAPURB ** will get unblocked */ ioctl(h->fd, USBDEVFS_DISCARDURB, &h->urb_in); ioctl(h->fd, USBDEVFS_DISCARDURB, &h->urb_out); h->urb_in.status = -ENODEV; h->urb_out.status = -ENODEV; h->urb_in_busy = false; h->urb_out_busy = false; h->cv.notify_all(); } else { unregister_usb_transport(h); } } } int usb_close(usb_handle* h) { std::lock_guard lock(g_usb_handles_mutex); g_usb_handles.remove(h); D("-- usb close %p (fd = %d) --", h, h->fd); delete h; return 0; } static void register_device(const char* dev_name, const char* dev_path, unsigned char ep_in, unsigned char ep_out, int interface, int serial_index, unsigned zero_mask) { // Since Linux will not reassign the device ID (and dev_name) as long as the // device is open, we can add to the list here once we open it and remove // from the list when we're finally closed and everything will work out // fine. // // If we have a usb_handle on the list of handles with a matching name, we // have no further work to do. { std::lock_guard lock(g_usb_handles_mutex); for (usb_handle* usb: g_usb_handles) { if (usb->path == dev_name) { return; } } } D("[ usb located new device %s (%d/%d/%d) ]", dev_name, ep_in, ep_out, interface); std::unique_ptr usb(new usb_handle); usb->path = dev_name; usb->ep_in = ep_in; usb->ep_out = ep_out; usb->zero_mask = zero_mask; // Initialize mark so we don't get garbage collected after the device scan. usb->mark = true; usb->fd = unix_open(usb->path.c_str(), O_RDWR | O_CLOEXEC); if (usb->fd == -1) { // Opening RW failed, so see if we have RO access. usb->fd = unix_open(usb->path.c_str(), O_RDONLY | O_CLOEXEC); if (usb->fd == -1) { D("[ usb open %s failed: %s]", usb->path.c_str(), strerror(errno)); return; } usb->writeable = 0; } D("[ usb opened %s%s, fd=%d]", usb->path.c_str(), (usb->writeable ? "" : " (read-only)"), usb->fd); if (usb->writeable) { if (ioctl(usb->fd, USBDEVFS_CLAIMINTERFACE, &interface) != 0) { D("[ usb ioctl(%d, USBDEVFS_CLAIMINTERFACE) failed: %s]", usb->fd, strerror(errno)); return; } } // Read the device's serial number. std::string serial_path = android::base::StringPrintf( "/sys/bus/usb/devices/%s/serial", dev_path + 4); std::string serial; if (!android::base::ReadFileToString(serial_path, &serial)) { D("[ usb read %s failed: %s ]", serial_path.c_str(), strerror(errno)); // We don't actually want to treat an unknown serial as an error because // devices aren't able to communicate a serial number in early bringup. // http://b/20883914 serial = ""; } serial = android::base::Trim(serial); // Add to the end of the active handles. usb_handle* done_usb = usb.release(); { std::lock_guard lock(g_usb_handles_mutex); g_usb_handles.push_back(done_usb); } register_usb_transport(done_usb, serial.c_str(), dev_path, done_usb->writeable); } static void* device_poll_thread(void* unused) { adb_thread_setname("device poll"); D("Created device thread"); while (true) { // TODO: Use inotify. find_usb_device("/dev/bus/usb", register_device); kick_disconnected_devices(); sleep(1); } return nullptr; } void usb_init() { struct sigaction actions; memset(&actions, 0, sizeof(actions)); sigemptyset(&actions.sa_mask); actions.sa_flags = 0; actions.sa_handler = [](int) {}; sigaction(SIGALRM, &actions, nullptr); if (!adb_thread_create(device_poll_thread, nullptr)) { fatal_errno("cannot create device_poll thread"); } }