/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG SOCKETS #include "sysdeps.h" #include #include #include #include #include #include #include #include #include #include #if !ADB_HOST #include #include #endif #include "adb.h" #include "adb_io.h" #include "transport.h" #include "types.h" static std::recursive_mutex& local_socket_list_lock = *new std::recursive_mutex(); static unsigned local_socket_next_id = 1; static auto& local_socket_list = *new std::vector(); /* the the list of currently closing local sockets. ** these have no peer anymore, but still packets to ** write to their fd. */ static auto& local_socket_closing_list = *new std::vector(); // Parse the global list of sockets to find one with id |local_id|. // If |peer_id| is not 0, also check that it is connected to a peer // with id |peer_id|. Returns an asocket handle on success, NULL on failure. asocket* find_local_socket(unsigned local_id, unsigned peer_id) { asocket* result = nullptr; std::lock_guard lock(local_socket_list_lock); for (asocket* s : local_socket_list) { if (s->id != local_id) { continue; } if (peer_id == 0 || (s->peer && s->peer->id == peer_id)) { result = s; } break; } return result; } void install_local_socket(asocket* s) { std::lock_guard lock(local_socket_list_lock); s->id = local_socket_next_id++; // Socket ids should never be 0. if (local_socket_next_id == 0) { fatal("local socket id overflow"); } local_socket_list.push_back(s); } void remove_socket(asocket* s) { std::lock_guard lock(local_socket_list_lock); for (auto list : { &local_socket_list, &local_socket_closing_list }) { list->erase(std::remove_if(list->begin(), list->end(), [s](asocket* x) { return x == s; }), list->end()); } } void close_all_sockets(atransport* t) { /* this is a little gross, but since s->close() *will* modify ** the list out from under you, your options are limited. */ std::lock_guard lock(local_socket_list_lock); restart: for (asocket* s : local_socket_list) { if (s->transport == t || (s->peer && s->peer->transport == t)) { s->close(s); goto restart; } } } enum class SocketFlushResult { Destroyed, TryAgain, Completed, }; static SocketFlushResult local_socket_flush_incoming(asocket* s) { if (!s->packet_queue.empty()) { std::vector iov = s->packet_queue.iovecs(); ssize_t rc = adb_writev(s->fd, iov.data(), iov.size()); if (rc > 0 && static_cast(rc) == s->packet_queue.size()) { s->packet_queue.clear(); } else if (rc > 0) { // TODO: Implement a faster drop_front? s->packet_queue.take_front(rc); fdevent_add(s->fde, FDE_WRITE); return SocketFlushResult::TryAgain; } else if (rc == -1 && errno == EAGAIN) { fdevent_add(s->fde, FDE_WRITE); return SocketFlushResult::TryAgain; } else { // We failed to write, but it's possible that we can still read from the socket. // Give that a try before giving up. s->has_write_error = true; } } // If we sent the last packet of a closing socket, we can now destroy it. if (s->closing) { s->close(s); return SocketFlushResult::Destroyed; } fdevent_del(s->fde, FDE_WRITE); return SocketFlushResult::Completed; } // Returns false if the socket has been closed and destroyed as a side-effect of this function. static bool local_socket_flush_outgoing(asocket* s) { const size_t max_payload = s->get_max_payload(); apacket::payload_type data; data.resize(max_payload); char* x = &data[0]; size_t avail = max_payload; int r = 0; int is_eof = 0; while (avail > 0) { r = adb_read(s->fd, x, avail); D("LS(%d): post adb_read(fd=%d,...) r=%d (errno=%d) avail=%zu", s->id, s->fd, r, r < 0 ? errno : 0, avail); if (r == -1) { if (errno == EAGAIN) { break; } } else if (r > 0) { avail -= r; x += r; continue; } /* r = 0 or unhandled error */ is_eof = 1; break; } D("LS(%d): fd=%d post avail loop. r=%d is_eof=%d forced_eof=%d", s->id, s->fd, r, is_eof, s->fde->force_eof); if (avail != max_payload && s->peer) { data.resize(max_payload - avail); // s->peer->enqueue() may call s->close() and free s, // so save variables for debug printing below. unsigned saved_id = s->id; int saved_fd = s->fd; r = s->peer->enqueue(s->peer, std::move(data)); D("LS(%u): fd=%d post peer->enqueue(). r=%d", saved_id, saved_fd, r); if (r < 0) { // Error return means they closed us as a side-effect and we must // return immediately. // // Note that if we still have buffered packets, the socket will be // placed on the closing socket list. This handler function will be // called again to process FDE_WRITE events. return false; } if (r > 0) { /* if the remote cannot accept further events, ** we disable notification of READs. They'll ** be enabled again when we get a call to ready() */ fdevent_del(s->fde, FDE_READ); } } // Don't allow a forced eof if data is still there. if ((s->fde->force_eof && !r) || is_eof) { D(" closing because is_eof=%d r=%d s->fde.force_eof=%d", is_eof, r, s->fde->force_eof); s->close(s); return false; } return true; } static int local_socket_enqueue(asocket* s, apacket::payload_type data) { D("LS(%d): enqueue %zu", s->id, data.size()); s->packet_queue.append(std::move(data)); switch (local_socket_flush_incoming(s)) { case SocketFlushResult::Destroyed: return -1; case SocketFlushResult::TryAgain: return 1; case SocketFlushResult::Completed: return 0; } return !s->packet_queue.empty(); } static void local_socket_ready(asocket* s) { /* far side is ready for data, pay attention to readable events */ fdevent_add(s->fde, FDE_READ); } // be sure to hold the socket list lock when calling this static void local_socket_destroy(asocket* s) { int exit_on_close = s->exit_on_close; D("LS(%d): destroying fde.fd=%d", s->id, s->fd); /* IMPORTANT: the remove closes the fd ** that belongs to this socket */ fdevent_destroy(s->fde); remove_socket(s); delete s; if (exit_on_close) { D("local_socket_destroy: exiting"); exit(1); } } static void local_socket_close(asocket* s) { D("entered local_socket_close. LS(%d) fd=%d", s->id, s->fd); std::lock_guard lock(local_socket_list_lock); if (s->peer) { D("LS(%d): closing peer. peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd); /* Note: it's important to call shutdown before disconnecting from * the peer, this ensures that remote sockets can still get the id * of the local socket they're connected to, to send a CLOSE() * protocol event. */ if (s->peer->shutdown) { s->peer->shutdown(s->peer); } s->peer->peer = nullptr; s->peer->close(s->peer); s->peer = nullptr; } /* If we are already closing, or if there are no ** pending packets, destroy immediately */ if (s->closing || s->has_write_error || s->packet_queue.empty()) { int id = s->id; local_socket_destroy(s); D("LS(%d): closed", id); return; } /* otherwise, put on the closing list */ D("LS(%d): closing", s->id); s->closing = 1; fdevent_del(s->fde, FDE_READ); remove_socket(s); D("LS(%d): put on socket_closing_list fd=%d", s->id, s->fd); local_socket_closing_list.push_back(s); CHECK_EQ(FDE_WRITE, s->fde->state & FDE_WRITE); } static void local_socket_event_func(int fd, unsigned ev, void* _s) { asocket* s = reinterpret_cast(_s); D("LS(%d): event_func(fd=%d(==%d), ev=%04x)", s->id, s->fd, fd, ev); /* put the FDE_WRITE processing before the FDE_READ ** in order to simplify the code. */ if (ev & FDE_WRITE) { switch (local_socket_flush_incoming(s)) { case SocketFlushResult::Destroyed: return; case SocketFlushResult::TryAgain: break; case SocketFlushResult::Completed: s->peer->ready(s->peer); break; } } if (ev & FDE_READ) { if (!local_socket_flush_outgoing(s)) { return; } } if (ev & FDE_ERROR) { /* this should be caught be the next read or write ** catching it here means we may skip the last few ** bytes of readable data. */ D("LS(%d): FDE_ERROR (fd=%d)", s->id, s->fd); return; } } asocket* create_local_socket(int fd) { asocket* s = new asocket(); s->fd = fd; s->enqueue = local_socket_enqueue; s->ready = local_socket_ready; s->shutdown = NULL; s->close = local_socket_close; install_local_socket(s); s->fde = fdevent_create(fd, local_socket_event_func, s); D("LS(%d): created (fd=%d)", s->id, s->fd); return s; } asocket* create_local_service_socket(const char* name, atransport* transport) { #if !ADB_HOST if (!strcmp(name, "jdwp")) { return create_jdwp_service_socket(); } if (!strcmp(name, "track-jdwp")) { return create_jdwp_tracker_service_socket(); } #endif int fd = service_to_fd(name, transport); if (fd < 0) { return nullptr; } asocket* s = create_local_socket(fd); D("LS(%d): bound to '%s' via %d", s->id, name, fd); #if !ADB_HOST if ((!strncmp(name, "root:", 5) && getuid() != 0 && __android_log_is_debuggable()) || (!strncmp(name, "unroot:", 7) && getuid() == 0) || !strncmp(name, "usb:", 4) || !strncmp(name, "tcpip:", 6)) { D("LS(%d): enabling exit_on_close", s->id); s->exit_on_close = 1; } #endif return s; } #if ADB_HOST static asocket* create_host_service_socket(const char* name, const char* serial, TransportId transport_id) { asocket* s; s = host_service_to_socket(name, serial, transport_id); if (s != NULL) { D("LS(%d) bound to '%s'", s->id, name); return s; } return s; } #endif /* ADB_HOST */ static int remote_socket_enqueue(asocket* s, apacket::payload_type data) { D("entered remote_socket_enqueue RS(%d) WRITE fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd); apacket* p = get_apacket(); p->msg.command = A_WRTE; p->msg.arg0 = s->peer->id; p->msg.arg1 = s->id; if (data.size() > MAX_PAYLOAD) { put_apacket(p); return -1; } p->payload = std::move(data); p->msg.data_length = p->payload.size(); send_packet(p, s->transport); return 1; } static void remote_socket_ready(asocket* s) { D("entered remote_socket_ready RS(%d) OKAY fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd); apacket* p = get_apacket(); p->msg.command = A_OKAY; p->msg.arg0 = s->peer->id; p->msg.arg1 = s->id; send_packet(p, s->transport); } static void remote_socket_shutdown(asocket* s) { D("entered remote_socket_shutdown RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd, s->peer ? s->peer->fd : -1); apacket* p = get_apacket(); p->msg.command = A_CLSE; if (s->peer) { p->msg.arg0 = s->peer->id; } p->msg.arg1 = s->id; send_packet(p, s->transport); } static void remote_socket_close(asocket* s) { if (s->peer) { s->peer->peer = 0; D("RS(%d) peer->close()ing peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd); s->peer->close(s->peer); } D("entered remote_socket_close RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd, s->peer ? s->peer->fd : -1); D("RS(%d): closed", s->id); delete s; } // Create a remote socket to exchange packets with a remote service through transport // |t|. Where |id| is the socket id of the corresponding service on the other // side of the transport (it is allocated by the remote side and _cannot_ be 0). // Returns a new non-NULL asocket handle. asocket* create_remote_socket(unsigned id, atransport* t) { if (id == 0) { fatal("invalid remote socket id (0)"); } asocket* s = new asocket(); s->id = id; s->enqueue = remote_socket_enqueue; s->ready = remote_socket_ready; s->shutdown = remote_socket_shutdown; s->close = remote_socket_close; s->transport = t; D("RS(%d): created", s->id); return s; } void connect_to_remote(asocket* s, const char* destination) { D("Connect_to_remote call RS(%d) fd=%d", s->id, s->fd); apacket* p = get_apacket(); D("LS(%d): connect('%s')", s->id, destination); p->msg.command = A_OPEN; p->msg.arg0 = s->id; // adbd expects a null-terminated string. p->payload.assign(destination, destination + strlen(destination) + 1); p->msg.data_length = p->payload.size(); if (p->msg.data_length > s->get_max_payload()) { fatal("destination oversized"); } send_packet(p, s->transport); } /* this is used by magic sockets to rig local sockets to send the go-ahead message when they connect */ static void local_socket_ready_notify(asocket* s) { s->ready = local_socket_ready; s->shutdown = NULL; s->close = local_socket_close; SendOkay(s->fd); s->ready(s); } /* this is used by magic sockets to rig local sockets to send the failure message if they are closed before connected (to avoid closing them without a status message) */ static void local_socket_close_notify(asocket* s) { s->ready = local_socket_ready; s->shutdown = NULL; s->close = local_socket_close; SendFail(s->fd, "closed"); s->close(s); } static unsigned unhex(const char* s, int len) { unsigned n = 0, c; while (len-- > 0) { switch ((c = *s++)) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': c -= '0'; break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': c = c - 'a' + 10; break; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': c = c - 'A' + 10; break; default: return 0xffffffff; } n = (n << 4) | c; } return n; } #if ADB_HOST namespace internal { // Returns the position in |service| following the target serial parameter. Serial format can be // any of: // * [tcp:|udp:][:]: // * :: // Where must be a base-10 number and may be any of {usb,product,model,device}. // // The returned pointer will point to the ':' just before , or nullptr if not found. char* skip_host_serial(char* service) { static const std::vector& prefixes = *(new std::vector{"usb:", "product:", "model:", "device:"}); for (const std::string& prefix : prefixes) { if (!strncmp(service, prefix.c_str(), prefix.length())) { return strchr(service + prefix.length(), ':'); } } // For fastboot compatibility, ignore protocol prefixes. if (!strncmp(service, "tcp:", 4) || !strncmp(service, "udp:", 4)) { service += 4; } // Check for an IPv6 address. `adb connect` creates the serial number from the canonical // network address so it will always have the [] delimiters. if (service[0] == '[') { char* ipv6_end = strchr(service, ']'); if (ipv6_end != nullptr) { service = ipv6_end; } } // The next colon we find must either begin the port field or the command field. char* colon_ptr = strchr(service, ':'); if (!colon_ptr) { // No colon in service string. return nullptr; } // If the next field is only decimal digits and ends with another colon, it's a port. char* serial_end = colon_ptr; if (isdigit(serial_end[1])) { serial_end++; while (*serial_end && isdigit(*serial_end)) { serial_end++; } if (*serial_end != ':') { // Something other than ":" was found, this must be the command field instead. serial_end = colon_ptr; } } return serial_end; } } // namespace internal #endif // ADB_HOST static int smart_socket_enqueue(asocket* s, apacket::payload_type data) { #if ADB_HOST char* service = nullptr; char* serial = nullptr; TransportId transport_id = 0; TransportType type = kTransportAny; #endif D("SS(%d): enqueue %zu", s->id, data.size()); if (s->smart_socket_data.empty()) { // TODO: Make this an IOVector? s->smart_socket_data.assign(data.begin(), data.end()); } else { std::copy(data.begin(), data.end(), std::back_inserter(s->smart_socket_data)); } /* don't bother if we can't decode the length */ if (s->smart_socket_data.size() < 4) { return 0; } uint32_t len = unhex(s->smart_socket_data.data(), 4); if (len == 0 || len > MAX_PAYLOAD) { D("SS(%d): bad size (%u)", s->id, len); goto fail; } D("SS(%d): len is %u", s->id, len); /* can't do anything until we have the full header */ if ((len + 4) > s->smart_socket_data.size()) { D("SS(%d): waiting for %zu more bytes", s->id, len + 4 - s->smart_socket_data.size()); return 0; } s->smart_socket_data[len + 4] = 0; D("SS(%d): '%s'", s->id, (char*)(s->smart_socket_data.data() + 4)); #if ADB_HOST service = &s->smart_socket_data[4]; if (!strncmp(service, "host-serial:", strlen("host-serial:"))) { char* serial_end; service += strlen("host-serial:"); // serial number should follow "host:" and could be a host:port string. serial_end = internal::skip_host_serial(service); if (serial_end) { *serial_end = 0; // terminate string serial = service; service = serial_end + 1; } } else if (!strncmp(service, "host-transport-id:", strlen("host-transport-id:"))) { service += strlen("host-transport-id:"); transport_id = strtoll(service, &service, 10); if (*service != ':') { return -1; } service++; } else if (!strncmp(service, "host-usb:", strlen("host-usb:"))) { type = kTransportUsb; service += strlen("host-usb:"); } else if (!strncmp(service, "host-local:", strlen("host-local:"))) { type = kTransportLocal; service += strlen("host-local:"); } else if (!strncmp(service, "host:", strlen("host:"))) { type = kTransportAny; service += strlen("host:"); } else { service = nullptr; } if (service) { asocket* s2; /* some requests are handled immediately -- in that ** case the handle_host_request() routine has sent ** the OKAY or FAIL message and all we have to do ** is clean up. */ if (handle_host_request(service, type, serial, transport_id, s->peer->fd, s) == 0) { /* XXX fail message? */ D("SS(%d): handled host service '%s'", s->id, service); goto fail; } if (!strncmp(service, "transport", strlen("transport"))) { D("SS(%d): okay transport", s->id); s->smart_socket_data.clear(); return 0; } /* try to find a local service with this name. ** if no such service exists, we'll fail out ** and tear down here. */ s2 = create_host_service_socket(service, serial, transport_id); if (s2 == 0) { D("SS(%d): couldn't create host service '%s'", s->id, service); SendFail(s->peer->fd, "unknown host service"); goto fail; } /* we've connected to a local host service, ** so we make our peer back into a regular ** local socket and bind it to the new local ** service socket, acknowledge the successful ** connection, and close this smart socket now ** that its work is done. */ SendOkay(s->peer->fd); s->peer->ready = local_socket_ready; s->peer->shutdown = nullptr; s->peer->close = local_socket_close; s->peer->peer = s2; s2->peer = s->peer; s->peer = 0; D("SS(%d): okay", s->id); s->close(s); /* initial state is "ready" */ s2->ready(s2); return 0; } #else /* !ADB_HOST */ if (s->transport == nullptr) { std::string error_msg = "unknown failure"; s->transport = acquire_one_transport(kTransportAny, nullptr, 0, nullptr, &error_msg); if (s->transport == nullptr) { SendFail(s->peer->fd, error_msg); goto fail; } } #endif if (!s->transport) { SendFail(s->peer->fd, "device offline (no transport)"); goto fail; } else if (!ConnectionStateIsOnline(s->transport->GetConnectionState())) { /* if there's no remote we fail the connection ** right here and terminate it */ SendFail(s->peer->fd, "device offline (transport offline)"); goto fail; } /* instrument our peer to pass the success or fail ** message back once it connects or closes, then ** detach from it, request the connection, and ** tear down */ s->peer->ready = local_socket_ready_notify; s->peer->shutdown = nullptr; s->peer->close = local_socket_close_notify; s->peer->peer = 0; /* give him our transport and upref it */ s->peer->transport = s->transport; connect_to_remote(s->peer, s->smart_socket_data.data() + 4); s->peer = 0; s->close(s); return 1; fail: /* we're going to close our peer as a side-effect, so ** return -1 to signal that state to the local socket ** who is enqueueing against us */ s->close(s); return -1; } static void smart_socket_ready(asocket* s) { D("SS(%d): ready", s->id); } static void smart_socket_close(asocket* s) { D("SS(%d): closed", s->id); if (s->peer) { s->peer->peer = 0; s->peer->close(s->peer); s->peer = 0; } delete s; } static asocket* create_smart_socket(void) { D("Creating smart socket"); asocket* s = new asocket(); s->enqueue = smart_socket_enqueue; s->ready = smart_socket_ready; s->shutdown = NULL; s->close = smart_socket_close; D("SS(%d)", s->id); return s; } void connect_to_smartsocket(asocket* s) { D("Connecting to smart socket"); asocket* ss = create_smart_socket(); s->peer = ss; ss->peer = s; s->ready(s); } size_t asocket::get_max_payload() const { size_t max_payload = MAX_PAYLOAD; if (transport) { max_payload = std::min(max_payload, transport->get_max_payload()); } if (peer && peer->transport) { max_payload = std::min(max_payload, peer->transport->get_max_payload()); } return max_payload; }