/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "flashing.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fastboot_device.h" #include "utility.h" using namespace android::fs_mgr; using namespace std::literals; namespace { constexpr uint32_t SPARSE_HEADER_MAGIC = 0xed26ff3a; void WipeOverlayfsForPartition(FastbootDevice* device, const std::string& partition_name) { // May be called, in the case of sparse data, multiple times so cache/skip. static std::set wiped; if (wiped.find(partition_name) != wiped.end()) return; wiped.insert(partition_name); // Following appears to have a first time 2% impact on flashing speeds. // Convert partition_name to a validated mount point and wipe. Fstab fstab; ReadDefaultFstab(&fstab); std::optional mount_metadata; for (const auto& entry : fstab) { auto partition = android::base::Basename(entry.mount_point); if ("/" == entry.mount_point) { partition = "system"; } if ((partition + device->GetCurrentSlot()) == partition_name) { mount_metadata.emplace(); android::fs_mgr::TeardownAllOverlayForMountPoint(entry.mount_point); } } } } // namespace int FlashRawDataChunk(PartitionHandle* handle, const char* data, size_t len) { size_t ret = 0; const size_t max_write_size = 1048576; void* aligned_buffer; if (posix_memalign(&aligned_buffer, 4096, max_write_size)) { PLOG(ERROR) << "Failed to allocate write buffer"; return -ENOMEM; } auto aligned_buffer_unique_ptr = std::unique_ptr{aligned_buffer, free}; while (ret < len) { int this_len = std::min(max_write_size, len - ret); memcpy(aligned_buffer_unique_ptr.get(), data, this_len); // In case of non 4KB aligned writes, reopen without O_DIRECT flag if (this_len & 0xFFF) { if (handle->Reset(O_WRONLY) != true) { PLOG(ERROR) << "Failed to reset file descriptor"; return -1; } } int this_ret = write(handle->fd(), aligned_buffer_unique_ptr.get(), this_len); if (this_ret < 0) { PLOG(ERROR) << "Failed to flash data of len " << len; return -1; } data += this_ret; ret += this_ret; } return 0; } int FlashRawData(PartitionHandle* handle, const std::vector& downloaded_data) { int ret = FlashRawDataChunk(handle, downloaded_data.data(), downloaded_data.size()); if (ret < 0) { return -errno; } return ret; } int WriteCallback(void* priv, const void* data, size_t len) { PartitionHandle* handle = reinterpret_cast(priv); if (!data) { if (lseek64(handle->fd(), len, SEEK_CUR) < 0) { int rv = -errno; PLOG(ERROR) << "lseek failed"; return rv; } return 0; } return FlashRawDataChunk(handle, reinterpret_cast(data), len); } int FlashSparseData(PartitionHandle* handle, std::vector& downloaded_data) { struct sparse_file* file = sparse_file_import_buf(downloaded_data.data(), downloaded_data.size(), true, false); if (!file) { // Invalid sparse format LOG(ERROR) << "Unable to open sparse data for flashing"; return -EINVAL; } return sparse_file_callback(file, false, false, WriteCallback, reinterpret_cast(handle)); } int FlashBlockDevice(PartitionHandle* handle, std::vector& downloaded_data) { lseek64(handle->fd(), 0, SEEK_SET); if (downloaded_data.size() >= sizeof(SPARSE_HEADER_MAGIC) && *reinterpret_cast(downloaded_data.data()) == SPARSE_HEADER_MAGIC) { return FlashSparseData(handle, downloaded_data); } else { return FlashRawData(handle, downloaded_data); } } static void CopyAVBFooter(std::vector* data, const uint64_t block_device_size) { if (data->size() < AVB_FOOTER_SIZE) { return; } std::string footer; uint64_t footer_offset = data->size() - AVB_FOOTER_SIZE; for (int idx = 0; idx < AVB_FOOTER_MAGIC_LEN; idx++) { footer.push_back(data->at(footer_offset + idx)); } if (0 != footer.compare(AVB_FOOTER_MAGIC)) { return; } // copy AVB footer from end of data to end of block device uint64_t original_data_size = data->size(); data->resize(block_device_size, 0); for (int idx = 0; idx < AVB_FOOTER_SIZE; idx++) { data->at(block_device_size - 1 - idx) = data->at(original_data_size - 1 - idx); } } int Flash(FastbootDevice* device, const std::string& partition_name) { PartitionHandle handle; if (!OpenPartition(device, partition_name, &handle, O_WRONLY | O_DIRECT)) { return -ENOENT; } std::vector data = std::move(device->download_data()); if (data.size() == 0) { LOG(ERROR) << "Cannot flash empty data vector"; return -EINVAL; } uint64_t block_device_size = get_block_device_size(handle.fd()); if (data.size() > block_device_size) { LOG(ERROR) << "Cannot flash " << data.size() << " bytes to block device of size " << block_device_size; return -EOVERFLOW; } else if (data.size() < block_device_size && (partition_name == "boot" || partition_name == "boot_a" || partition_name == "boot_b" || partition_name == "init_boot" || partition_name == "init_boot_a" || partition_name == "init_boot_b")) { CopyAVBFooter(&data, block_device_size); } if (android::base::GetProperty("ro.system.build.type", "") != "user") { WipeOverlayfsForPartition(device, partition_name); } int result = FlashBlockDevice(&handle, data); sync(); return result; } static void RemoveScratchPartition() { AutoMountMetadata mount_metadata; android::fs_mgr::TeardownAllOverlayForMountPoint(); } bool UpdateSuper(FastbootDevice* device, const std::string& super_name, bool wipe) { std::vector data = std::move(device->download_data()); if (data.empty()) { return device->WriteFail("No data available"); } std::unique_ptr new_metadata = ReadFromImageBlob(data.data(), data.size()); if (!new_metadata) { return device->WriteFail("Data is not a valid logical partition metadata image"); } if (!FindPhysicalPartition(super_name)) { return device->WriteFail("Cannot find " + super_name + ", build may be missing broken or missing boot_devices"); } std::string slot_suffix = device->GetCurrentSlot(); uint32_t slot_number = SlotNumberForSlotSuffix(slot_suffix); std::string other_slot_suffix; if (!slot_suffix.empty()) { other_slot_suffix = (slot_suffix == "_a") ? "_b" : "_a"; } // If we are unable to read the existing metadata, then the super partition // is corrupt. In this case we reflash the whole thing using the provided // image. std::unique_ptr old_metadata = ReadMetadata(super_name, slot_number); if (wipe || !old_metadata) { if (!FlashPartitionTable(super_name, *new_metadata.get())) { return device->WriteFail("Unable to flash new partition table"); } RemoveScratchPartition(); sync(); return device->WriteOkay("Successfully flashed partition table"); } std::set partitions_to_keep; bool virtual_ab = android::base::GetBoolProperty("ro.virtual_ab.enabled", false); for (const auto& partition : old_metadata->partitions) { // Preserve partitions in the other slot, but not the current slot. std::string partition_name = GetPartitionName(partition); if (!slot_suffix.empty()) { auto part_suffix = GetPartitionSlotSuffix(partition_name); if (part_suffix == slot_suffix || (part_suffix == other_slot_suffix && virtual_ab)) { continue; } } std::string group_name = GetPartitionGroupName(old_metadata->groups[partition.group_index]); // Skip partitions in the COW group if (group_name == android::snapshot::kCowGroupName) { continue; } partitions_to_keep.emplace(partition_name); } // Do not preserve the scratch partition. partitions_to_keep.erase("scratch"); if (!partitions_to_keep.empty()) { std::unique_ptr builder = MetadataBuilder::New(*new_metadata.get()); if (!builder->ImportPartitions(*old_metadata.get(), partitions_to_keep)) { return device->WriteFail( "Old partitions are not compatible with the new super layout; wipe needed"); } new_metadata = builder->Export(); if (!new_metadata) { return device->WriteFail("Unable to build new partition table; wipe needed"); } } // Write the new table to every metadata slot. if (!UpdateAllPartitionMetadata(device, super_name, *new_metadata.get())) { return device->WriteFail("Unable to write new partition table"); } RemoveScratchPartition(); sync(); return device->WriteOkay("Successfully updated partition table"); }