android_system_core/libmeminfo/libmeminfo_test.cpp

423 lines
13 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include <meminfo/pageacct.h>
#include <meminfo/procmeminfo.h>
#include <meminfo/sysmeminfo.h>
#include <pagemap/pagemap.h>
#include <android-base/file.h>
#include <android-base/logging.h>
using namespace std;
using namespace android::meminfo;
pid_t pid = -1;
class ValidateProcMemInfo : public ::testing::Test {
protected:
void SetUp() override {
ASSERT_EQ(0, pm_kernel_create(&ker));
ASSERT_EQ(0, pm_process_create(ker, pid, &proc));
proc_mem = new ProcMemInfo(pid);
ASSERT_NE(proc_mem, nullptr);
}
void TearDown() override {
delete proc_mem;
pm_process_destroy(proc);
pm_kernel_destroy(ker);
}
pm_kernel_t* ker;
pm_process_t* proc;
ProcMemInfo* proc_mem;
};
TEST_F(ValidateProcMemInfo, TestMapsSize) {
const std::vector<Vma>& maps = proc_mem->Maps();
ASSERT_FALSE(maps.empty()) << "Process " << getpid() << " maps are empty";
}
TEST_F(ValidateProcMemInfo, TestMapsEquality) {
const std::vector<Vma>& maps = proc_mem->Maps();
ASSERT_EQ(proc->num_maps, maps.size());
for (size_t i = 0; i < maps.size(); ++i) {
EXPECT_EQ(proc->maps[i]->start, maps[i].start);
EXPECT_EQ(proc->maps[i]->end, maps[i].end);
EXPECT_EQ(proc->maps[i]->offset, maps[i].offset);
EXPECT_EQ(std::string(proc->maps[i]->name), maps[i].name);
}
}
TEST_F(ValidateProcMemInfo, TestMaps) {
const std::vector<Vma>& maps = proc_mem->Maps();
ASSERT_FALSE(maps.empty());
ASSERT_EQ(proc->num_maps, maps.size());
pm_memusage_t map_usage, proc_usage;
pm_memusage_zero(&map_usage);
pm_memusage_zero(&proc_usage);
for (size_t i = 0; i < maps.size(); i++) {
ASSERT_EQ(0, pm_map_usage(proc->maps[i], &map_usage));
EXPECT_EQ(map_usage.vss, maps[i].usage.vss) << "VSS mismatch for map: " << maps[i].name;
EXPECT_EQ(map_usage.rss, maps[i].usage.rss) << "RSS mismatch for map: " << maps[i].name;
EXPECT_EQ(map_usage.pss, maps[i].usage.pss) << "PSS mismatch for map: " << maps[i].name;
EXPECT_EQ(map_usage.uss, maps[i].usage.uss) << "USS mismatch for map: " << maps[i].name;
pm_memusage_add(&proc_usage, &map_usage);
}
EXPECT_EQ(proc_usage.vss, proc_mem->Usage().vss);
EXPECT_EQ(proc_usage.rss, proc_mem->Usage().rss);
EXPECT_EQ(proc_usage.pss, proc_mem->Usage().pss);
EXPECT_EQ(proc_usage.uss, proc_mem->Usage().uss);
}
TEST_F(ValidateProcMemInfo, TestSwapUsage) {
const std::vector<Vma>& maps = proc_mem->Maps();
ASSERT_FALSE(maps.empty());
ASSERT_EQ(proc->num_maps, maps.size());
pm_memusage_t map_usage, proc_usage;
pm_memusage_zero(&map_usage);
pm_memusage_zero(&proc_usage);
for (size_t i = 0; i < maps.size(); i++) {
ASSERT_EQ(0, pm_map_usage(proc->maps[i], &map_usage));
EXPECT_EQ(map_usage.swap, maps[i].usage.swap) << "SWAP mismatch for map: " << maps[i].name;
pm_memusage_add(&proc_usage, &map_usage);
}
EXPECT_EQ(proc_usage.swap, proc_mem->Usage().swap);
}
TEST_F(ValidateProcMemInfo, TestSwapOffsets) {
const MemUsage& proc_usage = proc_mem->Usage();
const std::vector<uint16_t>& swap_offsets = proc_mem->SwapOffsets();
EXPECT_EQ(proc_usage.swap / getpagesize(), swap_offsets.size());
}
class ValidateProcMemInfoWss : public ::testing::Test {
protected:
void SetUp() override {
ASSERT_EQ(0, pm_kernel_create(&ker));
ASSERT_EQ(0, pm_process_create(ker, pid, &proc));
proc_mem = new ProcMemInfo(pid, true);
ASSERT_NE(proc_mem, nullptr);
}
void TearDown() override {
delete proc_mem;
pm_process_destroy(proc);
pm_kernel_destroy(ker);
}
pm_kernel_t* ker;
pm_process_t* proc;
ProcMemInfo* proc_mem;
};
TEST_F(ValidateProcMemInfoWss, TestWorkingTestReset) {
// Expect reset to succeed
EXPECT_TRUE(ProcMemInfo::ResetWorkingSet(pid));
}
TEST_F(ValidateProcMemInfoWss, TestWssEquality) {
// Read wss using libpagemap
pm_memusage_t wss_pagemap;
EXPECT_EQ(0, pm_process_workingset(proc, &wss_pagemap, 0));
// Read wss using libmeminfo
MemUsage wss = proc_mem->Wss();
// compare
EXPECT_EQ(wss_pagemap.rss, wss.rss);
EXPECT_EQ(wss_pagemap.pss, wss.pss);
EXPECT_EQ(wss_pagemap.uss, wss.uss);
}
class ValidatePageAcct : public ::testing::Test {
protected:
void SetUp() override {
ASSERT_EQ(0, pm_kernel_create(&ker));
ASSERT_EQ(0, pm_process_create(ker, pid, &proc));
}
void TearDown() override {
pm_process_destroy(proc);
pm_kernel_destroy(ker);
}
pm_kernel_t* ker;
pm_process_t* proc;
};
TEST_F(ValidatePageAcct, TestPageFlags) {
PageAcct& pi = PageAcct::Instance();
pi.InitPageAcct(false);
uint64_t* pagemap;
size_t num_pages;
for (size_t i = 0; i < proc->num_maps; i++) {
ASSERT_EQ(0, pm_map_pagemap(proc->maps[i], &pagemap, &num_pages));
for (size_t j = 0; j < num_pages; j++) {
if (!PM_PAGEMAP_PRESENT(pagemap[j])) continue;
uint64_t pfn = PM_PAGEMAP_PFN(pagemap[j]);
uint64_t page_flags_pagemap, page_flags_meminfo;
ASSERT_EQ(0, pm_kernel_flags(ker, pfn, &page_flags_pagemap));
ASSERT_TRUE(pi.PageFlags(pfn, &page_flags_meminfo));
// check if page flags equal
EXPECT_EQ(page_flags_pagemap, page_flags_meminfo);
}
free(pagemap);
}
}
TEST_F(ValidatePageAcct, TestPageCounts) {
PageAcct& pi = PageAcct::Instance();
pi.InitPageAcct(false);
uint64_t* pagemap;
size_t num_pages;
for (size_t i = 0; i < proc->num_maps; i++) {
ASSERT_EQ(0, pm_map_pagemap(proc->maps[i], &pagemap, &num_pages));
for (size_t j = 0; j < num_pages; j++) {
uint64_t pfn = PM_PAGEMAP_PFN(pagemap[j]);
uint64_t map_count_pagemap, map_count_meminfo;
ASSERT_EQ(0, pm_kernel_count(ker, pfn, &map_count_pagemap));
ASSERT_TRUE(pi.PageMapCount(pfn, &map_count_meminfo));
// check if map counts are equal
EXPECT_EQ(map_count_pagemap, map_count_meminfo);
}
free(pagemap);
}
}
TEST_F(ValidatePageAcct, TestPageIdle) {
// skip the test if idle page tracking isn't enabled
if (pm_kernel_init_page_idle(ker) != 0) {
return;
}
PageAcct& pi = PageAcct::Instance();
ASSERT_TRUE(pi.InitPageAcct(true));
uint64_t* pagemap;
size_t num_pages;
for (size_t i = 0; i < proc->num_maps; i++) {
ASSERT_EQ(0, pm_map_pagemap(proc->maps[i], &pagemap, &num_pages));
for (size_t j = 0; j < num_pages; j++) {
if (!PM_PAGEMAP_PRESENT(pagemap[j])) continue;
uint64_t pfn = PM_PAGEMAP_PFN(pagemap[j]);
ASSERT_EQ(0, pm_kernel_mark_page_idle(ker, &pfn, 1));
int idle_status_pagemap = pm_kernel_get_page_idle(ker, pfn);
int idle_status_meminfo = pi.IsPageIdle(pfn);
EXPECT_EQ(idle_status_pagemap, idle_status_meminfo);
}
free(pagemap);
}
}
TEST(TestProcMemInfo, TestMapsEmpty) {
ProcMemInfo proc_mem(pid);
const std::vector<Vma>& maps = proc_mem.Maps();
EXPECT_GT(maps.size(), 0);
}
TEST(TestProcMemInfo, TestUsageEmpty) {
// If we created the object for getting working set,
// the usage must be empty
ProcMemInfo proc_mem(pid, true);
const MemUsage& usage = proc_mem.Usage();
EXPECT_EQ(usage.rss, 0);
EXPECT_EQ(usage.vss, 0);
EXPECT_EQ(usage.pss, 0);
EXPECT_EQ(usage.uss, 0);
EXPECT_EQ(usage.swap, 0);
}
TEST(TestProcMemInfoWssReset, TestWssEmpty) {
// If we created the object for getting usage,
// the working set must be empty
ProcMemInfo proc_mem(pid, false);
const MemUsage& wss = proc_mem.Wss();
EXPECT_EQ(wss.rss, 0);
EXPECT_EQ(wss.vss, 0);
EXPECT_EQ(wss.pss, 0);
EXPECT_EQ(wss.uss, 0);
EXPECT_EQ(wss.swap, 0);
}
TEST(TestProcMemInfoWssReset, TestSwapOffsetsEmpty) {
// If we created the object for getting working set,
// the swap offsets must be empty
ProcMemInfo proc_mem(pid, true);
const std::vector<uint16_t>& swap_offsets = proc_mem.SwapOffsets();
EXPECT_EQ(swap_offsets.size(), 0);
}
TEST(ValidateProcMemInfoFlags, TestPageFlags1) {
// Create proc object using libpagemap
pm_kernel_t* ker;
ASSERT_EQ(0, pm_kernel_create(&ker));
pm_process_t* proc;
ASSERT_EQ(0, pm_process_create(ker, pid, &proc));
// count swapbacked pages using libpagemap
pm_memusage_t proc_usage;
pm_memusage_zero(&proc_usage);
ASSERT_EQ(0, pm_process_usage_flags(proc, &proc_usage, (1 << KPF_SWAPBACKED),
(1 << KPF_SWAPBACKED)));
// Create ProcMemInfo that counts swapbacked pages
ProcMemInfo proc_mem(pid, false, (1 << KPF_SWAPBACKED), (1 << KPF_SWAPBACKED));
EXPECT_EQ(proc_usage.vss, proc_mem.Usage().vss);
EXPECT_EQ(proc_usage.rss, proc_mem.Usage().rss);
EXPECT_EQ(proc_usage.pss, proc_mem.Usage().pss);
EXPECT_EQ(proc_usage.uss, proc_mem.Usage().uss);
pm_process_destroy(proc);
pm_kernel_destroy(ker);
}
TEST(ValidateProcMemInfoFlags, TestPageFlags2) {
// Create proc object using libpagemap
pm_kernel_t* ker;
ASSERT_EQ(0, pm_kernel_create(&ker));
pm_process_t* proc;
ASSERT_EQ(0, pm_process_create(ker, pid, &proc));
// count non-swapbacked pages using libpagemap
pm_memusage_t proc_usage;
pm_memusage_zero(&proc_usage);
ASSERT_EQ(0, pm_process_usage_flags(proc, &proc_usage, (1 << KPF_SWAPBACKED), 0));
// Create ProcMemInfo that counts non-swapbacked pages
ProcMemInfo proc_mem(pid, false, 0, (1 << KPF_SWAPBACKED));
EXPECT_EQ(proc_usage.vss, proc_mem.Usage().vss);
EXPECT_EQ(proc_usage.rss, proc_mem.Usage().rss);
EXPECT_EQ(proc_usage.pss, proc_mem.Usage().pss);
EXPECT_EQ(proc_usage.uss, proc_mem.Usage().uss);
pm_process_destroy(proc);
pm_kernel_destroy(ker);
}
TEST(SysMemInfoParser, TestSysMemInfoFile) {
std::string meminfo = R"meminfo(MemTotal: 3019740 kB
MemFree: 1809728 kB
MemAvailable: 2546560 kB
Buffers: 54736 kB
Cached: 776052 kB
SwapCached: 0 kB
Active: 445856 kB
Inactive: 459092 kB
Active(anon): 78492 kB
Inactive(anon): 2240 kB
Active(file): 367364 kB
Inactive(file): 456852 kB
Unevictable: 3096 kB
Mlocked: 3096 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 32 kB
Writeback: 0 kB
AnonPages: 74988 kB
Mapped: 62624 kB
Shmem: 4020 kB
Slab: 86464 kB
SReclaimable: 44432 kB
SUnreclaim: 42032 kB
KernelStack: 4880 kB
PageTables: 2900 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 1509868 kB
Committed_AS: 80296 kB
VmallocTotal: 263061440 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
AnonHugePages: 6144 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
CmaTotal: 131072 kB
CmaFree: 130380 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB)meminfo";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(meminfo, tf.fd));
SysMemInfo mi;
ASSERT_TRUE(mi.ReadMemInfo(tf.path));
EXPECT_EQ(mi.mem_total_kb(), 3019740);
EXPECT_EQ(mi.mem_page_tables_kb(), 2900);
}
TEST(SysMemInfoParser, TestEmptyFile) {
TemporaryFile tf;
std::string empty_string = "";
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(empty_string, tf.fd));
SysMemInfo mi;
EXPECT_TRUE(mi.ReadMemInfo(tf.path));
EXPECT_EQ(mi.mem_total_kb(), 0);
}
TEST(SysMemInfoParse, TestZramTotal) {
std::string exec_dir = ::android::base::GetExecutableDirectory();
SysMemInfo mi;
std::string zram_mmstat_dir = exec_dir + "/testdata1/";
EXPECT_EQ(mi.mem_zram_kb(zram_mmstat_dir), 30504);
std::string zram_memused_dir = exec_dir + "/testdata2/";
EXPECT_EQ(mi.mem_zram_kb(zram_memused_dir), 30504);
}
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
if (argc <= 1) {
cerr << "Pid of a permanently sleeping process must be provided." << endl;
exit(EXIT_FAILURE);
}
::android::base::InitLogging(argv, android::base::StderrLogger);
pid = std::stoi(std::string(argv[1]));
return RUN_ALL_TESTS();
}