android_system_core/libpixelflinger/codeflinger/Arm64Assembler.cpp

1242 lines
38 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2013 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define LOG_TAG "ArmToArm64Assembler"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <private/pixelflinger/ggl_context.h>
#include "codeflinger/Arm64Assembler.h"
#include "codeflinger/Arm64Disassembler.h"
#include "codeflinger/CodeCache.h"
/*
** --------------------------------------------
** Support for Arm64 in GGLAssembler JIT
** --------------------------------------------
**
** Approach
** - GGLAssembler and associated files are largely un-changed.
** - A translator class maps ArmAssemblerInterface calls to
** generate Arm64 instructions.
**
** ----------------------
** ArmToArm64Assembler
** ----------------------
**
** - Subclassed from ArmAssemblerInterface
**
** - Translates each ArmAssemblerInterface call to generate
** one or more Arm64 instructions as necessary.
**
** - Does not implement ArmAssemblerInterface portions unused by GGLAssembler
** It calls NOT_IMPLEMENTED() for such cases, which in turn logs
** a fatal message.
**
** - Uses A64_.. series of functions to generate instruction machine code
** for Arm64 instructions. These functions also log the instruction
** to LOG, if ARM64_ASM_DEBUG define is set to 1
**
** - Dumps machine code and eqvt assembly if "debug.pf.disasm" option is set
** It uses arm64_disassemble to perform disassembly
**
** - Uses register 13 (SP in ARM), 15 (PC in ARM), 16, 17 for storing
** intermediate results. GGLAssembler does not use SP and PC as these
** registers are marked as reserved. The temporary registers are not
** saved/restored on stack as these are caller-saved registers in Arm64
**
** - Uses CSEL instruction to support conditional execution. The result is
** stored in a temporary register and then copied to the target register
** if the condition is true.
**
** - In the case of conditional data transfer instructions, conditional
** branch is used to skip over instruction, if the condition is false
**
** - Wherever possible, immediate values are transferred to temporary
** register prior to processing. This simplifies overall implementation
** as instructions requiring immediate values are converted to
** move immediate instructions followed by register-register instruction.
**
** --------------------------------------------
** ArmToArm64Assembler unit test bench
** --------------------------------------------
**
** - Tests ArmToArm64Assembler interface for all the possible
** ways in which GGLAssembler uses ArmAssemblerInterface interface.
**
** - Uses test jacket (written in assembly) to set the registers,
** condition flags prior to calling generated instruction. It also
** copies registers and flags at the end of execution. Caller then
** checks if generated code performed correct operation based on
** output registers and flags.
**
** - Broadly contains three type of tests, (i) data operation tests
** (ii) data transfer tests and (iii) LDM/STM tests.
**
** ----------------------
** Arm64 disassembler
** ----------------------
** - This disassembler disassembles only those machine codes which can be
** generated by ArmToArm64Assembler. It has a unit testbench which
** tests all the instructions supported by the disassembler.
**
** ------------------------------------------------------------------
** ARMAssembler/ARMAssemblerInterface/ARMAssemblerProxy changes
** ------------------------------------------------------------------
**
** - In existing code, addresses were being handled as 32 bit values at
** certain places.
**
** - Added a new set of functions for address load/store/manipulation.
** These are ADDR_LDR, ADDR_STR, ADDR_ADD, ADDR_SUB and they map to
** default 32 bit implementations in ARMAssemblerInterface.
**
** - ArmToArm64Assembler maps these functions to appropriate 64 bit
** functions.
**
** ----------------------
** GGLAssembler changes
** ----------------------
** - Since ArmToArm64Assembler can generate 4 Arm64 instructions for
** each call in worst case, the memory required is set to 4 times
** ARM memory
**
** - Address load/store/manipulation were changed to use new functions
** added in the ARMAssemblerInterface.
**
*/
#define NOT_IMPLEMENTED() LOG_FATAL("Arm instruction %s not yet implemented\n", __func__)
#define ARM64_ASM_DEBUG 0
#if ARM64_ASM_DEBUG
#define LOG_INSTR(...) ALOGD("\t" __VA_ARGS__)
#define LOG_LABEL(...) ALOGD(__VA_ARGS__)
#else
#define LOG_INSTR(...) ((void)0)
#define LOG_LABEL(...) ((void)0)
#endif
namespace android {
static __unused const char* shift_codes[] =
{
"LSL", "LSR", "ASR", "ROR"
};
static __unused const char *cc_codes[] =
{
"EQ", "NE", "CS", "CC", "MI",
"PL", "VS", "VC", "HI", "LS",
"GE", "LT", "GT", "LE", "AL", "NV"
};
ArmToArm64Assembler::ArmToArm64Assembler(const sp<Assembly>& assembly)
: ARMAssemblerInterface(),
mAssembly(assembly)
{
mBase = mPC = (uint32_t *)assembly->base();
mDuration = ggl_system_time();
mZeroReg = 13;
mTmpReg1 = 15;
mTmpReg2 = 16;
mTmpReg3 = 17;
}
ArmToArm64Assembler::ArmToArm64Assembler(void *base)
: ARMAssemblerInterface(), mAssembly(NULL)
{
mBase = mPC = (uint32_t *)base;
mDuration = ggl_system_time();
// Regs 13, 15, 16, 17 are used as temporary registers
mZeroReg = 13;
mTmpReg1 = 15;
mTmpReg2 = 16;
mTmpReg3 = 17;
}
ArmToArm64Assembler::~ArmToArm64Assembler()
{
}
uint32_t* ArmToArm64Assembler::pc() const
{
return mPC;
}
uint32_t* ArmToArm64Assembler::base() const
{
return mBase;
}
void ArmToArm64Assembler::reset()
{
if(mAssembly == NULL)
mPC = mBase;
else
mBase = mPC = (uint32_t *)mAssembly->base();
mBranchTargets.clear();
mLabels.clear();
mLabelsInverseMapping.clear();
mComments.clear();
#if ARM64_ASM_DEBUG
ALOGI("RESET\n");
#endif
}
int ArmToArm64Assembler::getCodegenArch()
{
return CODEGEN_ARCH_ARM64;
}
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::disassemble(const char* name)
{
if(name)
{
printf("%s:\n", name);
}
size_t count = pc()-base();
uint32_t* i = base();
while (count--)
{
ssize_t label = mLabelsInverseMapping.indexOfKey(i);
if (label >= 0)
{
printf("%s:\n", mLabelsInverseMapping.valueAt(label));
}
ssize_t comment = mComments.indexOfKey(i);
if (comment >= 0)
{
printf("; %s\n", mComments.valueAt(comment));
}
printf("%p: %08x ", i, uint32_t(i[0]));
{
char instr[256];
::arm64_disassemble(*i, instr);
printf("%s\n", instr);
}
i++;
}
}
void ArmToArm64Assembler::comment(const char* string)
{
mComments.add(mPC, string);
LOG_INSTR("//%s\n", string);
}
void ArmToArm64Assembler::label(const char* theLabel)
{
mLabels.add(theLabel, mPC);
mLabelsInverseMapping.add(mPC, theLabel);
LOG_LABEL("%s:\n", theLabel);
}
void ArmToArm64Assembler::B(int cc, const char* label)
{
mBranchTargets.add(branch_target_t(label, mPC));
LOG_INSTR("B%s %s\n", cc_codes[cc], label );
*mPC++ = (0x54 << 24) | cc;
}
void ArmToArm64Assembler::BL(int /*cc*/, const char* /*label*/)
{
NOT_IMPLEMENTED(); //Not Required
}
// ----------------------------------------------------------------------------
//Prolog/Epilog & Generate...
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::prolog()
{
// write prolog code
mPrologPC = mPC;
*mPC++ = A64_MOVZ_X(mZeroReg,0,0);
}
void ArmToArm64Assembler::epilog(uint32_t /*touched*/)
{
// write epilog code
static const int XLR = 30;
*mPC++ = A64_RET(XLR);
}
int ArmToArm64Assembler::generate(const char* name)
{
// fixup all the branches
size_t count = mBranchTargets.size();
while (count--)
{
const branch_target_t& bt = mBranchTargets[count];
uint32_t* target_pc = mLabels.valueFor(bt.label);
LOG_ALWAYS_FATAL_IF(!target_pc,
"error resolving branch targets, target_pc is null");
int32_t offset = int32_t(target_pc - bt.pc);
*bt.pc |= (offset & 0x7FFFF) << 5;
}
if(mAssembly != NULL)
mAssembly->resize( int(pc()-base())*4 );
// the instruction cache is flushed by CodeCache
const int64_t duration = ggl_system_time() - mDuration;
const char * const format = "generated %s (%d ins) at [%p:%p] in %ld ns\n";
ALOGI(format, name, int(pc()-base()), base(), pc(), duration);
char value[PROPERTY_VALUE_MAX];
property_get("debug.pf.disasm", value, "0");
if (atoi(value) != 0)
{
printf(format, name, int(pc()-base()), base(), pc(), duration);
disassemble(name);
}
return NO_ERROR;
}
uint32_t* ArmToArm64Assembler::pcForLabel(const char* label)
{
return mLabels.valueFor(label);
}
// ----------------------------------------------------------------------------
// Data Processing...
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::dataProcessingCommon(int opcode,
int s, int Rd, int Rn, uint32_t Op2)
{
if(opcode != opSUB && s == 1)
{
NOT_IMPLEMENTED(); //Not required
return;
}
if(opcode != opSUB && opcode != opADD && opcode != opAND &&
opcode != opORR && opcode != opMVN)
{
NOT_IMPLEMENTED(); //Not required
return;
}
if(Op2 == OPERAND_REG_IMM && mAddrMode.reg_imm_shift > 31)
{
NOT_IMPLEMENTED();
return;
}
//Store immediate in temporary register and convert
//immediate operation into register operation
if(Op2 == OPERAND_IMM)
{
int imm = mAddrMode.immediate;
*mPC++ = A64_MOVZ_W(mTmpReg2, imm & 0x0000FFFF, 0);
*mPC++ = A64_MOVK_W(mTmpReg2, (imm >> 16) & 0x0000FFFF, 16);
Op2 = mTmpReg2;
}
{
uint32_t shift;
uint32_t amount;
uint32_t Rm;
if(Op2 == OPERAND_REG_IMM)
{
shift = mAddrMode.reg_imm_type;
amount = mAddrMode.reg_imm_shift;
Rm = mAddrMode.reg_imm_Rm;
}
else if(Op2 < OPERAND_REG)
{
shift = 0;
amount = 0;
Rm = Op2;
}
else
{
NOT_IMPLEMENTED(); //Not required
return;
}
switch(opcode)
{
case opADD: *mPC++ = A64_ADD_W(Rd, Rn, Rm, shift, amount); break;
case opAND: *mPC++ = A64_AND_W(Rd, Rn, Rm, shift, amount); break;
case opORR: *mPC++ = A64_ORR_W(Rd, Rn, Rm, shift, amount); break;
case opMVN: *mPC++ = A64_ORN_W(Rd, Rn, Rm, shift, amount); break;
case opSUB: *mPC++ = A64_SUB_W(Rd, Rn, Rm, shift, amount, s);break;
};
}
}
void ArmToArm64Assembler::dataProcessing(int opcode, int cc,
int s, int Rd, int Rn, uint32_t Op2)
{
uint32_t Wd;
if(cc != AL)
Wd = mTmpReg1;
else
Wd = Rd;
if(opcode == opADD || opcode == opAND || opcode == opORR ||opcode == opSUB)
{
dataProcessingCommon(opcode, s, Wd, Rn, Op2);
}
else if(opcode == opCMP)
{
dataProcessingCommon(opSUB, 1, mTmpReg3, Rn, Op2);
}
else if(opcode == opRSB)
{
dataProcessingCommon(opSUB, s, Wd, Rn, Op2);
dataProcessingCommon(opSUB, s, Wd, mZeroReg, Wd);
}
else if(opcode == opMOV)
{
dataProcessingCommon(opORR, 0, Wd, mZeroReg, Op2);
if(s == 1)
{
dataProcessingCommon(opSUB, 1, mTmpReg3, Wd, mZeroReg);
}
}
else if(opcode == opMVN)
{
dataProcessingCommon(opMVN, s, Wd, mZeroReg, Op2);
}
else if(opcode == opBIC)
{
dataProcessingCommon(opMVN, s, mTmpReg3, mZeroReg, Op2);
dataProcessingCommon(opAND, s, Wd, Rn, mTmpReg3);
}
else
{
NOT_IMPLEMENTED();
return;
}
if(cc != AL)
{
*mPC++ = A64_CSEL_W(Rd, mTmpReg1, Rd, cc);
}
}
// ----------------------------------------------------------------------------
// Address Processing...
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::ADDR_ADD(int cc,
int s, int Rd, int Rn, uint32_t Op2)
{
if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
if(s != 0) { NOT_IMPLEMENTED(); return;} //Not required
if(Op2 == OPERAND_REG_IMM && mAddrMode.reg_imm_type == LSL)
{
int Rm = mAddrMode.reg_imm_Rm;
int amount = mAddrMode.reg_imm_shift;
*mPC++ = A64_ADD_X_Wm_SXTW(Rd, Rn, Rm, amount);
}
else if(Op2 < OPERAND_REG)
{
int Rm = Op2;
int amount = 0;
*mPC++ = A64_ADD_X_Wm_SXTW(Rd, Rn, Rm, amount);
}
else if(Op2 == OPERAND_IMM)
{
int imm = mAddrMode.immediate;
*mPC++ = A64_MOVZ_W(mTmpReg1, imm & 0x0000FFFF, 0);
*mPC++ = A64_MOVK_W(mTmpReg1, (imm >> 16) & 0x0000FFFF, 16);
int Rm = mTmpReg1;
int amount = 0;
*mPC++ = A64_ADD_X_Wm_SXTW(Rd, Rn, Rm, amount);
}
else
{
NOT_IMPLEMENTED(); //Not required
}
}
void ArmToArm64Assembler::ADDR_SUB(int cc,
int s, int Rd, int Rn, uint32_t Op2)
{
if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
if(s != 0) { NOT_IMPLEMENTED(); return;} //Not required
if(Op2 == OPERAND_REG_IMM && mAddrMode.reg_imm_type == LSR)
{
*mPC++ = A64_ADD_W(mTmpReg1, mZeroReg, mAddrMode.reg_imm_Rm,
LSR, mAddrMode.reg_imm_shift);
*mPC++ = A64_SUB_X_Wm_SXTW(Rd, Rn, mTmpReg1, 0);
}
else
{
NOT_IMPLEMENTED(); //Not required
}
}
// ----------------------------------------------------------------------------
// multiply...
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::MLA(int cc, int s,int Rd, int Rm, int Rs, int Rn)
{
if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
*mPC++ = A64_MADD_W(Rd, Rm, Rs, Rn);
if(s == 1)
dataProcessingCommon(opSUB, 1, mTmpReg1, Rd, mZeroReg);
}
void ArmToArm64Assembler::MUL(int cc, int s, int Rd, int Rm, int Rs)
{
if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
if(s != 0) { NOT_IMPLEMENTED(); return;} //Not required
*mPC++ = A64_MADD_W(Rd, Rm, Rs, mZeroReg);
}
void ArmToArm64Assembler::UMULL(int /*cc*/, int /*s*/,
int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::UMUAL(int /*cc*/, int /*s*/,
int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::SMULL(int /*cc*/, int /*s*/,
int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::SMUAL(int /*cc*/, int /*s*/,
int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/)
{
NOT_IMPLEMENTED(); //Not required
}
// ----------------------------------------------------------------------------
// branches relative to PC...
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::B(int /*cc*/, uint32_t* /*pc*/){
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::BL(int /*cc*/, uint32_t* /*pc*/){
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::BX(int /*cc*/, int /*Rn*/){
NOT_IMPLEMENTED(); //Not required
}
// ----------------------------------------------------------------------------
// data transfer...
// ----------------------------------------------------------------------------
enum dataTransferOp
{
opLDR,opLDRB,opLDRH,opSTR,opSTRB,opSTRH
};
void ArmToArm64Assembler::dataTransfer(int op, int cc,
int Rd, int Rn, uint32_t op_type, uint32_t size)
{
const int XSP = 31;
if(Rn == SP)
Rn = XSP;
if(op_type == OPERAND_IMM)
{
int addrReg;
int imm = mAddrMode.immediate;
if(imm >= 0 && imm < (1<<12))
*mPC++ = A64_ADD_IMM_X(mTmpReg1, mZeroReg, imm, 0);
else if(imm < 0 && -imm < (1<<12))
*mPC++ = A64_SUB_IMM_X(mTmpReg1, mZeroReg, -imm, 0);
else
{
NOT_IMPLEMENTED();
return;
}
addrReg = Rn;
if(mAddrMode.preindex == true || mAddrMode.postindex == true)
{
*mPC++ = A64_ADD_X(mTmpReg2, addrReg, mTmpReg1);
if(mAddrMode.preindex == true)
addrReg = mTmpReg2;
}
if(cc != AL)
*mPC++ = A64_B_COND(cc^1, 8);
*mPC++ = A64_LDRSTR_Wm_SXTW_0(op, size, Rd, addrReg, mZeroReg);
if(mAddrMode.writeback == true)
*mPC++ = A64_CSEL_X(Rn, mTmpReg2, Rn, cc);
}
else if(op_type == OPERAND_REG_OFFSET)
{
if(cc != AL)
*mPC++ = A64_B_COND(cc^1, 8);
*mPC++ = A64_LDRSTR_Wm_SXTW_0(op, size, Rd, Rn, mAddrMode.reg_offset);
}
else if(op_type > OPERAND_UNSUPPORTED)
{
if(cc != AL)
*mPC++ = A64_B_COND(cc^1, 8);
*mPC++ = A64_LDRSTR_Wm_SXTW_0(op, size, Rd, Rn, mZeroReg);
}
else
{
NOT_IMPLEMENTED(); // Not required
}
return;
}
void ArmToArm64Assembler::ADDR_LDR(int cc, int Rd, int Rn, uint32_t op_type)
{
return dataTransfer(opLDR, cc, Rd, Rn, op_type, 64);
}
void ArmToArm64Assembler::ADDR_STR(int cc, int Rd, int Rn, uint32_t op_type)
{
return dataTransfer(opSTR, cc, Rd, Rn, op_type, 64);
}
void ArmToArm64Assembler::LDR(int cc, int Rd, int Rn, uint32_t op_type)
{
return dataTransfer(opLDR, cc, Rd, Rn, op_type);
}
void ArmToArm64Assembler::LDRB(int cc, int Rd, int Rn, uint32_t op_type)
{
return dataTransfer(opLDRB, cc, Rd, Rn, op_type);
}
void ArmToArm64Assembler::STR(int cc, int Rd, int Rn, uint32_t op_type)
{
return dataTransfer(opSTR, cc, Rd, Rn, op_type);
}
void ArmToArm64Assembler::STRB(int cc, int Rd, int Rn, uint32_t op_type)
{
return dataTransfer(opSTRB, cc, Rd, Rn, op_type);
}
void ArmToArm64Assembler::LDRH(int cc, int Rd, int Rn, uint32_t op_type)
{
return dataTransfer(opLDRH, cc, Rd, Rn, op_type);
}
void ArmToArm64Assembler::LDRSB(int /*cc*/, int /*Rd*/, int /*Rn*/, uint32_t /*offset*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::LDRSH(int /*cc*/, int /*Rd*/, int /*Rn*/, uint32_t /*offset*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::STRH(int cc, int Rd, int Rn, uint32_t op_type)
{
return dataTransfer(opSTRH, cc, Rd, Rn, op_type);
}
// ----------------------------------------------------------------------------
// block data transfer...
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::LDM(int cc, int dir,
int Rn, int W, uint32_t reg_list)
{
const int XSP = 31;
if(cc != AL || dir != IA || W == 0 || Rn != SP)
{
NOT_IMPLEMENTED();
return;
}
for(int i = 0; i < 32; ++i)
{
if((reg_list & (1 << i)))
{
int reg = i;
int size = 16;
*mPC++ = A64_LDR_IMM_PostIndex(reg, XSP, size);
}
}
}
void ArmToArm64Assembler::STM(int cc, int dir,
int Rn, int W, uint32_t reg_list)
{
const int XSP = 31;
if(cc != AL || dir != DB || W == 0 || Rn != SP)
{
NOT_IMPLEMENTED();
return;
}
for(int i = 31; i >= 0; --i)
{
if((reg_list & (1 << i)))
{
int size = -16;
int reg = i;
*mPC++ = A64_STR_IMM_PreIndex(reg, XSP, size);
}
}
}
// ----------------------------------------------------------------------------
// special...
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::SWP(int /*cc*/, int /*Rn*/, int /*Rd*/, int /*Rm*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::SWPB(int /*cc*/, int /*Rn*/, int /*Rd*/, int /*Rm*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::SWI(int /*cc*/, uint32_t /*comment*/)
{
NOT_IMPLEMENTED(); //Not required
}
// ----------------------------------------------------------------------------
// DSP instructions...
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::PLD(int /*Rn*/, uint32_t /*offset*/) {
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::CLZ(int /*cc*/, int /*Rd*/, int /*Rm*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::QADD(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::QDADD(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::QSUB(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/)
{
NOT_IMPLEMENTED(); //Not required
}
void ArmToArm64Assembler::QDSUB(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/)
{
NOT_IMPLEMENTED(); //Not required
}
// ----------------------------------------------------------------------------
// 16 x 16 multiplication
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::SMUL(int cc, int xy,
int Rd, int Rm, int Rs)
{
if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
if (xy & xyTB)
*mPC++ = A64_SBFM_W(mTmpReg1, Rm, 16, 31);
else
*mPC++ = A64_SBFM_W(mTmpReg1, Rm, 0, 15);
if (xy & xyBT)
*mPC++ = A64_SBFM_W(mTmpReg2, Rs, 16, 31);
else
*mPC++ = A64_SBFM_W(mTmpReg2, Rs, 0, 15);
*mPC++ = A64_MADD_W(Rd,mTmpReg1,mTmpReg2, mZeroReg);
}
// ----------------------------------------------------------------------------
// 32 x 16 multiplication
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::SMULW(int cc, int y, int Rd, int Rm, int Rs)
{
if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
if (y & yT)
*mPC++ = A64_SBFM_W(mTmpReg1, Rs, 16, 31);
else
*mPC++ = A64_SBFM_W(mTmpReg1, Rs, 0, 15);
*mPC++ = A64_SBFM_W(mTmpReg2, Rm, 0, 31);
*mPC++ = A64_SMADDL(mTmpReg3,mTmpReg1,mTmpReg2, mZeroReg);
*mPC++ = A64_UBFM_X(Rd,mTmpReg3, 16, 47);
}
// ----------------------------------------------------------------------------
// 16 x 16 multiplication and accumulate
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::SMLA(int cc, int xy, int Rd, int Rm, int Rs, int Rn)
{
if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
if(xy != xyBB) { NOT_IMPLEMENTED(); return;} //Not required
*mPC++ = A64_SBFM_W(mTmpReg1, Rm, 0, 15);
*mPC++ = A64_SBFM_W(mTmpReg2, Rs, 0, 15);
*mPC++ = A64_MADD_W(Rd, mTmpReg1, mTmpReg2, Rn);
}
void ArmToArm64Assembler::SMLAL(int /*cc*/, int /*xy*/,
int /*RdHi*/, int /*RdLo*/, int /*Rs*/, int /*Rm*/)
{
NOT_IMPLEMENTED(); //Not required
return;
}
void ArmToArm64Assembler::SMLAW(int /*cc*/, int /*y*/,
int /*Rd*/, int /*Rm*/, int /*Rs*/, int /*Rn*/)
{
NOT_IMPLEMENTED(); //Not required
return;
}
// ----------------------------------------------------------------------------
// Byte/half word extract and extend
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::UXTB16(int cc, int Rd, int Rm, int rotate)
{
if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
*mPC++ = A64_EXTR_W(mTmpReg1, Rm, Rm, rotate * 8);
uint32_t imm = 0x00FF00FF;
*mPC++ = A64_MOVZ_W(mTmpReg2, imm & 0xFFFF, 0);
*mPC++ = A64_MOVK_W(mTmpReg2, (imm >> 16) & 0x0000FFFF, 16);
*mPC++ = A64_AND_W(Rd,mTmpReg1, mTmpReg2);
}
// ----------------------------------------------------------------------------
// Bit manipulation
// ----------------------------------------------------------------------------
void ArmToArm64Assembler::UBFX(int cc, int Rd, int Rn, int lsb, int width)
{
if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
*mPC++ = A64_UBFM_W(Rd, Rn, lsb, lsb + width - 1);
}
// ----------------------------------------------------------------------------
// Shifters...
// ----------------------------------------------------------------------------
int ArmToArm64Assembler::buildImmediate(
uint32_t immediate, uint32_t& rot, uint32_t& imm)
{
rot = 0;
imm = immediate;
return 0; // Always true
}
bool ArmToArm64Assembler::isValidImmediate(uint32_t immediate)
{
uint32_t rot, imm;
return buildImmediate(immediate, rot, imm) == 0;
}
uint32_t ArmToArm64Assembler::imm(uint32_t immediate)
{
mAddrMode.immediate = immediate;
mAddrMode.writeback = false;
mAddrMode.preindex = false;
mAddrMode.postindex = false;
return OPERAND_IMM;
}
uint32_t ArmToArm64Assembler::reg_imm(int Rm, int type, uint32_t shift)
{
mAddrMode.reg_imm_Rm = Rm;
mAddrMode.reg_imm_type = type;
mAddrMode.reg_imm_shift = shift;
return OPERAND_REG_IMM;
}
uint32_t ArmToArm64Assembler::reg_rrx(int /*Rm*/)
{
NOT_IMPLEMENTED();
return OPERAND_UNSUPPORTED;
}
uint32_t ArmToArm64Assembler::reg_reg(int /*Rm*/, int /*type*/, int /*Rs*/)
{
NOT_IMPLEMENTED(); //Not required
return OPERAND_UNSUPPORTED;
}
// ----------------------------------------------------------------------------
// Addressing modes...
// ----------------------------------------------------------------------------
uint32_t ArmToArm64Assembler::immed12_pre(int32_t immed12, int W)
{
mAddrMode.immediate = immed12;
mAddrMode.writeback = W;
mAddrMode.preindex = true;
mAddrMode.postindex = false;
return OPERAND_IMM;
}
uint32_t ArmToArm64Assembler::immed12_post(int32_t immed12)
{
mAddrMode.immediate = immed12;
mAddrMode.writeback = true;
mAddrMode.preindex = false;
mAddrMode.postindex = true;
return OPERAND_IMM;
}
uint32_t ArmToArm64Assembler::reg_scale_pre(int Rm, int type,
uint32_t shift, int W)
{
if(type != 0 || shift != 0 || W != 0)
{
NOT_IMPLEMENTED(); //Not required
return OPERAND_UNSUPPORTED;
}
else
{
mAddrMode.reg_offset = Rm;
return OPERAND_REG_OFFSET;
}
}
uint32_t ArmToArm64Assembler::reg_scale_post(int /*Rm*/, int /*type*/, uint32_t /*shift*/)
{
NOT_IMPLEMENTED(); //Not required
return OPERAND_UNSUPPORTED;
}
uint32_t ArmToArm64Assembler::immed8_pre(int32_t immed8, int W)
{
mAddrMode.immediate = immed8;
mAddrMode.writeback = W;
mAddrMode.preindex = true;
mAddrMode.postindex = false;
return OPERAND_IMM;
}
uint32_t ArmToArm64Assembler::immed8_post(int32_t immed8)
{
mAddrMode.immediate = immed8;
mAddrMode.writeback = true;
mAddrMode.preindex = false;
mAddrMode.postindex = true;
return OPERAND_IMM;
}
uint32_t ArmToArm64Assembler::reg_pre(int Rm, int W)
{
if(W != 0)
{
NOT_IMPLEMENTED(); //Not required
return OPERAND_UNSUPPORTED;
}
else
{
mAddrMode.reg_offset = Rm;
return OPERAND_REG_OFFSET;
}
}
uint32_t ArmToArm64Assembler::reg_post(int /*Rm*/)
{
NOT_IMPLEMENTED(); //Not required
return OPERAND_UNSUPPORTED;
}
// ----------------------------------------------------------------------------
// A64 instructions
// ----------------------------------------------------------------------------
static __unused const char * dataTransferOpName[] =
{
"LDR","LDRB","LDRH","STR","STRB","STRH"
};
static const uint32_t dataTransferOpCode [] =
{
((0xB8u << 24) | (0x3 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)),
((0x38u << 24) | (0x3 << 21) | (0x6 << 13) | (0x1 << 12) |(0x1 << 11)),
((0x78u << 24) | (0x3 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)),
((0xB8u << 24) | (0x1 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)),
((0x38u << 24) | (0x1 << 21) | (0x6 << 13) | (0x1 << 12) |(0x1 << 11)),
((0x78u << 24) | (0x1 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11))
};
uint32_t ArmToArm64Assembler::A64_LDRSTR_Wm_SXTW_0(uint32_t op,
uint32_t size, uint32_t Rt,
uint32_t Rn, uint32_t Rm)
{
if(size == 32)
{
LOG_INSTR("%s W%d, [X%d, W%d, SXTW #0]\n",
dataTransferOpName[op], Rt, Rn, Rm);
return(dataTransferOpCode[op] | (Rm << 16) | (Rn << 5) | Rt);
}
else
{
LOG_INSTR("%s X%d, [X%d, W%d, SXTW #0]\n",
dataTransferOpName[op], Rt, Rn, Rm);
return(dataTransferOpCode[op] | (0x1<<30) | (Rm<<16) | (Rn<<5)|Rt);
}
}
uint32_t ArmToArm64Assembler::A64_STR_IMM_PreIndex(uint32_t Rt,
uint32_t Rn, int32_t simm)
{
if(Rn == 31)
LOG_INSTR("STR W%d, [SP, #%d]!\n", Rt, simm);
else
LOG_INSTR("STR W%d, [X%d, #%d]!\n", Rt, Rn, simm);
uint32_t imm9 = (unsigned)(simm) & 0x01FF;
return (0xB8 << 24) | (imm9 << 12) | (0x3 << 10) | (Rn << 5) | Rt;
}
uint32_t ArmToArm64Assembler::A64_LDR_IMM_PostIndex(uint32_t Rt,
uint32_t Rn, int32_t simm)
{
if(Rn == 31)
LOG_INSTR("LDR W%d, [SP], #%d\n",Rt,simm);
else
LOG_INSTR("LDR W%d, [X%d], #%d\n",Rt, Rn, simm);
uint32_t imm9 = (unsigned)(simm) & 0x01FF;
return (0xB8 << 24) | (0x1 << 22) |
(imm9 << 12) | (0x1 << 10) | (Rn << 5) | Rt;
}
uint32_t ArmToArm64Assembler::A64_ADD_X_Wm_SXTW(uint32_t Rd,
uint32_t Rn,
uint32_t Rm,
uint32_t amount)
{
LOG_INSTR("ADD X%d, X%d, W%d, SXTW #%d\n", Rd, Rn, Rm, amount);
return ((0x8B << 24) | (0x1 << 21) |(Rm << 16) |
(0x6 << 13) | (amount << 10) | (Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_SUB_X_Wm_SXTW(uint32_t Rd,
uint32_t Rn,
uint32_t Rm,
uint32_t amount)
{
LOG_INSTR("SUB X%d, X%d, W%d, SXTW #%d\n", Rd, Rn, Rm, amount);
return ((0xCB << 24) | (0x1 << 21) |(Rm << 16) |
(0x6 << 13) | (amount << 10) | (Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_B_COND(uint32_t cc, uint32_t offset)
{
LOG_INSTR("B.%s #.+%d\n", cc_codes[cc], offset);
return (0x54 << 24) | ((offset/4) << 5) | (cc);
}
uint32_t ArmToArm64Assembler::A64_ADD_X(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t shift,
uint32_t amount)
{
LOG_INSTR("ADD X%d, X%d, X%d, %s #%d\n",
Rd, Rn, Rm, shift_codes[shift], amount);
return ((0x8B << 24) | (shift << 22) | ( Rm << 16) |
(amount << 10) |(Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_ADD_IMM_X(uint32_t Rd, uint32_t Rn,
uint32_t imm, uint32_t shift)
{
LOG_INSTR("ADD X%d, X%d, #%d, LSL #%d\n", Rd, Rn, imm, shift);
return (0x91 << 24) | ((shift/12) << 22) | (imm << 10) | (Rn << 5) | Rd;
}
uint32_t ArmToArm64Assembler::A64_SUB_IMM_X(uint32_t Rd, uint32_t Rn,
uint32_t imm, uint32_t shift)
{
LOG_INSTR("SUB X%d, X%d, #%d, LSL #%d\n", Rd, Rn, imm, shift);
return (0xD1 << 24) | ((shift/12) << 22) | (imm << 10) | (Rn << 5) | Rd;
}
uint32_t ArmToArm64Assembler::A64_ADD_W(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t shift,
uint32_t amount)
{
LOG_INSTR("ADD W%d, W%d, W%d, %s #%d\n",
Rd, Rn, Rm, shift_codes[shift], amount);
return ((0x0B << 24) | (shift << 22) | ( Rm << 16) |
(amount << 10) |(Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_SUB_W(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t shift,
uint32_t amount,
uint32_t setflag)
{
if(setflag == 0)
{
LOG_INSTR("SUB W%d, W%d, W%d, %s #%d\n",
Rd, Rn, Rm, shift_codes[shift], amount);
return ((0x4B << 24) | (shift << 22) | ( Rm << 16) |
(amount << 10) |(Rn << 5) | Rd);
}
else
{
LOG_INSTR("SUBS W%d, W%d, W%d, %s #%d\n",
Rd, Rn, Rm, shift_codes[shift], amount);
return ((0x6B << 24) | (shift << 22) | ( Rm << 16) |
(amount << 10) |(Rn << 5) | Rd);
}
}
uint32_t ArmToArm64Assembler::A64_AND_W(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t shift,
uint32_t amount)
{
LOG_INSTR("AND W%d, W%d, W%d, %s #%d\n",
Rd, Rn, Rm, shift_codes[shift], amount);
return ((0x0A << 24) | (shift << 22) | ( Rm << 16) |
(amount << 10) |(Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_ORR_W(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t shift,
uint32_t amount)
{
LOG_INSTR("ORR W%d, W%d, W%d, %s #%d\n",
Rd, Rn, Rm, shift_codes[shift], amount);
return ((0x2A << 24) | (shift << 22) | ( Rm << 16) |
(amount << 10) |(Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_ORN_W(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t shift,
uint32_t amount)
{
LOG_INSTR("ORN W%d, W%d, W%d, %s #%d\n",
Rd, Rn, Rm, shift_codes[shift], amount);
return ((0x2A << 24) | (shift << 22) | (0x1 << 21) | ( Rm << 16) |
(amount << 10) |(Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_CSEL_X(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t cond)
{
LOG_INSTR("CSEL X%d, X%d, X%d, %s\n", Rd, Rn, Rm, cc_codes[cond]);
return ((0x9A << 24)|(0x1 << 23)|(Rm << 16) |(cond << 12)| (Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_CSEL_W(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t cond)
{
LOG_INSTR("CSEL W%d, W%d, W%d, %s\n", Rd, Rn, Rm, cc_codes[cond]);
return ((0x1A << 24)|(0x1 << 23)|(Rm << 16) |(cond << 12)| (Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_RET(uint32_t Rn)
{
LOG_INSTR("RET X%d\n", Rn);
return ((0xD6 << 24) | (0x1 << 22) | (0x1F << 16) | (Rn << 5));
}
uint32_t ArmToArm64Assembler::A64_MOVZ_X(uint32_t Rd, uint32_t imm,
uint32_t shift)
{
LOG_INSTR("MOVZ X%d, #0x%x, LSL #%d\n", Rd, imm, shift);
return(0xD2 << 24) | (0x1 << 23) | ((shift/16) << 21) | (imm << 5) | Rd;
}
uint32_t ArmToArm64Assembler::A64_MOVK_W(uint32_t Rd, uint32_t imm,
uint32_t shift)
{
LOG_INSTR("MOVK W%d, #0x%x, LSL #%d\n", Rd, imm, shift);
return (0x72 << 24) | (0x1 << 23) | ((shift/16) << 21) | (imm << 5) | Rd;
}
uint32_t ArmToArm64Assembler::A64_MOVZ_W(uint32_t Rd, uint32_t imm,
uint32_t shift)
{
LOG_INSTR("MOVZ W%d, #0x%x, LSL #%d\n", Rd, imm, shift);
return(0x52 << 24) | (0x1 << 23) | ((shift/16) << 21) | (imm << 5) | Rd;
}
uint32_t ArmToArm64Assembler::A64_SMADDL(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t Ra)
{
LOG_INSTR("SMADDL X%d, W%d, W%d, X%d\n",Rd, Rn, Rm, Ra);
return ((0x9B << 24) | (0x1 << 21) | (Rm << 16)|(Ra << 10)|(Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_MADD_W(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t Ra)
{
LOG_INSTR("MADD W%d, W%d, W%d, W%d\n",Rd, Rn, Rm, Ra);
return ((0x1B << 24) | (Rm << 16) | (Ra << 10) |(Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_SBFM_W(uint32_t Rd, uint32_t Rn,
uint32_t immr, uint32_t imms)
{
LOG_INSTR("SBFM W%d, W%d, #%d, #%d\n", Rd, Rn, immr, imms);
return ((0x13 << 24) | (immr << 16) | (imms << 10) | (Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_UBFM_W(uint32_t Rd, uint32_t Rn,
uint32_t immr, uint32_t imms)
{
LOG_INSTR("UBFM W%d, W%d, #%d, #%d\n", Rd, Rn, immr, imms);
return ((0x53 << 24) | (immr << 16) | (imms << 10) | (Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_UBFM_X(uint32_t Rd, uint32_t Rn,
uint32_t immr, uint32_t imms)
{
LOG_INSTR("UBFM X%d, X%d, #%d, #%d\n", Rd, Rn, immr, imms);
return ((0xD3 << 24) | (0x1 << 22) |
(immr << 16) | (imms << 10) | (Rn << 5) | Rd);
}
uint32_t ArmToArm64Assembler::A64_EXTR_W(uint32_t Rd, uint32_t Rn,
uint32_t Rm, uint32_t lsb)
{
LOG_INSTR("EXTR W%d, W%d, W%d, #%d\n", Rd, Rn, Rm, lsb);
return (0x13 << 24)|(0x1 << 23) | (Rm << 16) | (lsb << 10)|(Rn << 5) | Rd;
}
}; // namespace android