android_system_core/libutils/tests/BlobCache_test.cpp

422 lines
12 KiB
C++
Raw Normal View History

/*
** Copyright 2011, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <fcntl.h>
#include <stdio.h>
#include <gtest/gtest.h>
#include <utils/BlobCache.h>
#include <utils/Errors.h>
namespace android {
class BlobCacheTest : public ::testing::Test {
protected:
enum {
MAX_KEY_SIZE = 6,
MAX_VALUE_SIZE = 8,
MAX_TOTAL_SIZE = 13,
};
virtual void SetUp() {
mBC = new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE);
}
virtual void TearDown() {
mBC.clear();
}
sp<BlobCache> mBC;
};
TEST_F(BlobCacheTest, CacheSingleValueSucceeds) {
unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4));
ASSERT_EQ('e', buf[0]);
ASSERT_EQ('f', buf[1]);
ASSERT_EQ('g', buf[2]);
ASSERT_EQ('h', buf[3]);
}
TEST_F(BlobCacheTest, CacheTwoValuesSucceeds) {
unsigned char buf[2] = { 0xee, 0xee };
mBC->set("ab", 2, "cd", 2);
mBC->set("ef", 2, "gh", 2);
ASSERT_EQ(size_t(2), mBC->get("ab", 2, buf, 2));
ASSERT_EQ('c', buf[0]);
ASSERT_EQ('d', buf[1]);
ASSERT_EQ(size_t(2), mBC->get("ef", 2, buf, 2));
ASSERT_EQ('g', buf[0]);
ASSERT_EQ('h', buf[1]);
}
TEST_F(BlobCacheTest, GetOnlyWritesInsideBounds) {
unsigned char buf[6] = { 0xee, 0xee, 0xee, 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf+1, 4));
ASSERT_EQ(0xee, buf[0]);
ASSERT_EQ('e', buf[1]);
ASSERT_EQ('f', buf[2]);
ASSERT_EQ('g', buf[3]);
ASSERT_EQ('h', buf[4]);
ASSERT_EQ(0xee, buf[5]);
}
TEST_F(BlobCacheTest, GetOnlyWritesIfBufferIsLargeEnough) {
unsigned char buf[3] = { 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 3));
ASSERT_EQ(0xee, buf[0]);
ASSERT_EQ(0xee, buf[1]);
ASSERT_EQ(0xee, buf[2]);
}
TEST_F(BlobCacheTest, GetDoesntAccessNullBuffer) {
mBC->set("abcd", 4, "efgh", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, NULL, 0));
}
TEST_F(BlobCacheTest, MultipleSetsCacheLatestValue) {
unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
mBC->set("abcd", 4, "ijkl", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4));
ASSERT_EQ('i', buf[0]);
ASSERT_EQ('j', buf[1]);
ASSERT_EQ('k', buf[2]);
ASSERT_EQ('l', buf[3]);
}
TEST_F(BlobCacheTest, SecondSetKeepsFirstValueIfTooLarge) {
unsigned char buf[MAX_VALUE_SIZE+1] = { 0xee, 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
mBC->set("abcd", 4, buf, MAX_VALUE_SIZE+1);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4));
ASSERT_EQ('e', buf[0]);
ASSERT_EQ('f', buf[1]);
ASSERT_EQ('g', buf[2]);
ASSERT_EQ('h', buf[3]);
}
TEST_F(BlobCacheTest, DoesntCacheIfKeyIsTooBig) {
char key[MAX_KEY_SIZE+1];
unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee };
for (int i = 0; i < MAX_KEY_SIZE+1; i++) {
key[i] = 'a';
}
mBC->set(key, MAX_KEY_SIZE+1, "bbbb", 4);
ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE+1, buf, 4));
ASSERT_EQ(0xee, buf[0]);
ASSERT_EQ(0xee, buf[1]);
ASSERT_EQ(0xee, buf[2]);
ASSERT_EQ(0xee, buf[3]);
}
TEST_F(BlobCacheTest, DoesntCacheIfValueIsTooBig) {
char buf[MAX_VALUE_SIZE+1];
for (int i = 0; i < MAX_VALUE_SIZE+1; i++) {
buf[i] = 'b';
}
mBC->set("abcd", 4, buf, MAX_VALUE_SIZE+1);
for (int i = 0; i < MAX_VALUE_SIZE+1; i++) {
buf[i] = 0xee;
}
ASSERT_EQ(size_t(0), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE+1));
for (int i = 0; i < MAX_VALUE_SIZE+1; i++) {
SCOPED_TRACE(i);
ASSERT_EQ(0xee, buf[i]);
}
}
TEST_F(BlobCacheTest, DoesntCacheIfKeyValuePairIsTooBig) {
// Check a testing assumptions
ASSERT_TRUE(MAX_TOTAL_SIZE < MAX_KEY_SIZE + MAX_VALUE_SIZE);
ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE);
enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE + 1 };
char key[MAX_KEY_SIZE];
char buf[bufSize];
for (int i = 0; i < MAX_KEY_SIZE; i++) {
key[i] = 'a';
}
for (int i = 0; i < bufSize; i++) {
buf[i] = 'b';
}
mBC->set(key, MAX_KEY_SIZE, buf, MAX_VALUE_SIZE);
ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE, NULL, 0));
}
TEST_F(BlobCacheTest, CacheMaxKeySizeSucceeds) {
char key[MAX_KEY_SIZE];
unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee };
for (int i = 0; i < MAX_KEY_SIZE; i++) {
key[i] = 'a';
}
mBC->set(key, MAX_KEY_SIZE, "wxyz", 4);
ASSERT_EQ(size_t(4), mBC->get(key, MAX_KEY_SIZE, buf, 4));
ASSERT_EQ('w', buf[0]);
ASSERT_EQ('x', buf[1]);
ASSERT_EQ('y', buf[2]);
ASSERT_EQ('z', buf[3]);
}
TEST_F(BlobCacheTest, CacheMaxValueSizeSucceeds) {
char buf[MAX_VALUE_SIZE];
for (int i = 0; i < MAX_VALUE_SIZE; i++) {
buf[i] = 'b';
}
mBC->set("abcd", 4, buf, MAX_VALUE_SIZE);
for (int i = 0; i < MAX_VALUE_SIZE; i++) {
buf[i] = 0xee;
}
ASSERT_EQ(size_t(MAX_VALUE_SIZE), mBC->get("abcd", 4, buf,
MAX_VALUE_SIZE));
for (int i = 0; i < MAX_VALUE_SIZE; i++) {
SCOPED_TRACE(i);
ASSERT_EQ('b', buf[i]);
}
}
TEST_F(BlobCacheTest, CacheMaxKeyValuePairSizeSucceeds) {
// Check a testing assumption
ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE);
enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE };
char key[MAX_KEY_SIZE];
char buf[bufSize];
for (int i = 0; i < MAX_KEY_SIZE; i++) {
key[i] = 'a';
}
for (int i = 0; i < bufSize; i++) {
buf[i] = 'b';
}
mBC->set(key, MAX_KEY_SIZE, buf, bufSize);
ASSERT_EQ(size_t(bufSize), mBC->get(key, MAX_KEY_SIZE, NULL, 0));
}
TEST_F(BlobCacheTest, CacheMinKeyAndValueSizeSucceeds) {
unsigned char buf[1] = { 0xee };
mBC->set("x", 1, "y", 1);
ASSERT_EQ(size_t(1), mBC->get("x", 1, buf, 1));
ASSERT_EQ('y', buf[0]);
}
TEST_F(BlobCacheTest, CacheSizeDoesntExceedTotalLimit) {
for (int i = 0; i < 256; i++) {
uint8_t k = i;
mBC->set(&k, 1, "x", 1);
}
int numCached = 0;
for (int i = 0; i < 256; i++) {
uint8_t k = i;
if (mBC->get(&k, 1, NULL, 0) == 1) {
numCached++;
}
}
ASSERT_GE(MAX_TOTAL_SIZE / 2, numCached);
}
TEST_F(BlobCacheTest, ExceedingTotalLimitHalvesCacheSize) {
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, "x", 1);
}
// Insert one more entry, causing a cache overflow.
{
uint8_t k = maxEntries;
mBC->set(&k, 1, "x", 1);
}
// Count the number of entries in the cache.
int numCached = 0;
for (int i = 0; i < maxEntries+1; i++) {
uint8_t k = i;
if (mBC->get(&k, 1, NULL, 0) == 1) {
numCached++;
}
}
ASSERT_EQ(maxEntries/2 + 1, numCached);
}
class BlobCacheFlattenTest : public BlobCacheTest {
protected:
virtual void SetUp() {
BlobCacheTest::SetUp();
mBC2 = new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE);
}
virtual void TearDown() {
mBC2.clear();
BlobCacheTest::TearDown();
}
void roundTrip() {
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
ASSERT_EQ(OK, mBC2->unflatten(flat, size));
delete[] flat;
}
sp<BlobCache> mBC2;
};
TEST_F(BlobCacheFlattenTest, FlattenOneValue) {
unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
roundTrip();
ASSERT_EQ(size_t(4), mBC2->get("abcd", 4, buf, 4));
ASSERT_EQ('e', buf[0]);
ASSERT_EQ('f', buf[1]);
ASSERT_EQ('g', buf[2]);
ASSERT_EQ('h', buf[3]);
}
TEST_F(BlobCacheFlattenTest, FlattenFullCache) {
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, &k, 1);
}
roundTrip();
// Verify the deserialized cache
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
uint8_t v = 0xee;
ASSERT_EQ(size_t(1), mBC2->get(&k, 1, &v, 1));
ASSERT_EQ(k, v);
}
}
TEST_F(BlobCacheFlattenTest, FlattenDoesntChangeCache) {
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, &k, 1);
}
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
delete[] flat;
// Verify the cache that we just serialized
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
uint8_t v = 0xee;
ASSERT_EQ(size_t(1), mBC->get(&k, 1, &v, 1));
ASSERT_EQ(k, v);
}
}
TEST_F(BlobCacheFlattenTest, FlattenCatchesBufferTooSmall) {
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, &k, 1);
}
size_t size = mBC->getFlattenedSize() - 1;
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(BAD_VALUE, mBC->flatten(flat, size));
delete[] flat;
}
TEST_F(BlobCacheFlattenTest, UnflattenCatchesBadMagic) {
unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
flat[1] = ~flat[1];
// Bad magic should cause an error.
ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size));
delete[] flat;
// The error should cause the unflatten to result in an empty cache
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
}
TEST_F(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheVersion) {
unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
flat[5] = ~flat[5];
// Version mismatches shouldn't cause errors, but should not use the
// serialized entries
ASSERT_EQ(OK, mBC2->unflatten(flat, size));
delete[] flat;
// The version mismatch should cause the unflatten to result in an empty
// cache
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
}
TEST_F(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheDeviceVersion) {
unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
flat[10] = ~flat[10];
// Version mismatches shouldn't cause errors, but should not use the
// serialized entries
ASSERT_EQ(OK, mBC2->unflatten(flat, size));
delete[] flat;
// The version mismatch should cause the unflatten to result in an empty
// cache
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
}
TEST_F(BlobCacheFlattenTest, UnflattenCatchesBufferTooSmall) {
unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee };
mBC->set("abcd", 4, "efgh", 4);
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
// A buffer truncation shouldt cause an error
ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size-1));
delete[] flat;
// The error should cause the unflatten to result in an empty cache
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
}
} // namespace android