android_system_core/libunwindstack/tests/ArmExidxDecodeTest.cpp

993 lines
28 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <deque>
#include <ios>
#include <memory>
#include <string>
#include <gtest/gtest.h>
#include "ArmExidx.h"
#include "Log.h"
#include "LogFake.h"
#include "MemoryFake.h"
class ArmExidxDecodeTest : public ::testing::TestWithParam<std::string> {
protected:
void Init(Memory* process_memory = nullptr) {
TearDown();
if (process_memory == nullptr) {
process_memory = &process_memory_;
}
regs32_.reset(new Regs32(0, 1, 32));
for (size_t i = 0; i < 32; i++) {
(*regs32_)[i] = 0;
}
exidx_.reset(new ArmExidx(regs32_.get(), &elf_memory_, process_memory));
if (log_) {
exidx_->set_log(true);
exidx_->set_log_indent(0);
exidx_->set_log_skip_execution(false);
}
data_ = exidx_->data();
exidx_->set_cfa(0x10000);
}
void SetUp() override {
if (GetParam() != "no_logging") {
log_ = false;
} else {
log_ = true;
}
ResetLogs();
elf_memory_.Clear();
process_memory_.Clear();
Init();
}
std::unique_ptr<ArmExidx> exidx_;
std::unique_ptr<Regs32> regs32_;
std::deque<uint8_t>* data_;
MemoryFake elf_memory_;
MemoryFake process_memory_;
bool log_;
};
TEST_P(ArmExidxDecodeTest, vsp_incr) {
// 00xxxxxx: vsp = vsp + (xxxxxx << 2) + 4
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 4\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10004U, exidx_->cfa());
ResetLogs();
data_->clear();
data_->push_back(0x01);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 8\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x1000cU, exidx_->cfa());
ResetLogs();
data_->clear();
data_->push_back(0x3f);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 256\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x1010cU, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, vsp_decr) {
// 01xxxxxx: vsp = vsp - (xxxxxx << 2) + 4
data_->push_back(0x40);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp - 4\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0xfffcU, exidx_->cfa());
ResetLogs();
data_->clear();
data_->push_back(0x41);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp - 8\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0xfff4U, exidx_->cfa());
ResetLogs();
data_->clear();
data_->push_back(0x7f);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp - 256\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0xfef4U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, refuse_unwind) {
// 10000000 00000000: Refuse to unwind
data_->push_back(0x80);
data_->push_back(0x00);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind Refuse to unwind\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(ARM_STATUS_NO_UNWIND, exidx_->status());
}
TEST_P(ArmExidxDecodeTest, pop_up_to_12) {
// 1000iiii iiiiiiii: Pop up to 12 integer registers
data_->push_back(0x80);
data_->push_back(0x01);
process_memory_.SetData(0x10000, 0x10);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10004U, exidx_->cfa());
ASSERT_EQ(0x10U, (*exidx_->regs())[4]);
ResetLogs();
data_->push_back(0x8f);
data_->push_back(0xff);
for (size_t i = 0; i < 12; i++) {
process_memory_.SetData(0x10004 + i * 4, i + 0x20);
}
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}\n",
GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
// Popping r13 results in a modified cfa.
ASSERT_EQ(0x29U, exidx_->cfa());
ASSERT_EQ(0x20U, (*exidx_->regs())[4]);
ASSERT_EQ(0x21U, (*exidx_->regs())[5]);
ASSERT_EQ(0x22U, (*exidx_->regs())[6]);
ASSERT_EQ(0x23U, (*exidx_->regs())[7]);
ASSERT_EQ(0x24U, (*exidx_->regs())[8]);
ASSERT_EQ(0x25U, (*exidx_->regs())[9]);
ASSERT_EQ(0x26U, (*exidx_->regs())[10]);
ASSERT_EQ(0x27U, (*exidx_->regs())[11]);
ASSERT_EQ(0x28U, (*exidx_->regs())[12]);
ASSERT_EQ(0x29U, (*exidx_->regs())[13]);
ASSERT_EQ(0x2aU, (*exidx_->regs())[14]);
ASSERT_EQ(0x2bU, (*exidx_->regs())[15]);
ResetLogs();
exidx_->set_cfa(0x10034);
data_->push_back(0x81);
data_->push_back(0x28);
process_memory_.SetData(0x10034, 0x11);
process_memory_.SetData(0x10038, 0x22);
process_memory_.SetData(0x1003c, 0x33);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r7, r9, r12}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10040U, exidx_->cfa());
ASSERT_EQ(0x11U, (*exidx_->regs())[7]);
ASSERT_EQ(0x22U, (*exidx_->regs())[9]);
ASSERT_EQ(0x33U, (*exidx_->regs())[12]);
}
TEST_P(ArmExidxDecodeTest, set_vsp_from_register) {
// 1001nnnn: Set vsp = r[nnnn] (nnnn != 13, 15)
exidx_->set_cfa(0x100);
for (size_t i = 0; i < 15; i++) {
(*regs32_)[i] = i + 1;
}
data_->push_back(0x90);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = r0\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(1U, exidx_->cfa());
ResetLogs();
data_->push_back(0x93);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = r3\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(4U, exidx_->cfa());
ResetLogs();
data_->push_back(0x9e);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = r14\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(15U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, reserved_prefix) {
// 10011101: Reserved as prefix for ARM register to register moves
data_->push_back(0x9d);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind [Reserved]\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(ARM_STATUS_RESERVED, exidx_->status());
// 10011111: Reserved as prefix for Intel Wireless MMX register to register moves
ResetLogs();
data_->push_back(0x9f);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind [Reserved]\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(ARM_STATUS_RESERVED, exidx_->status());
}
TEST_P(ArmExidxDecodeTest, pop_registers) {
// 10100nnn: Pop r4-r[4+nnn]
data_->push_back(0xa0);
process_memory_.SetData(0x10000, 0x14);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10004U, exidx_->cfa());
ASSERT_EQ(0x14U, (*exidx_->regs())[4]);
ResetLogs();
data_->push_back(0xa3);
process_memory_.SetData(0x10004, 0x20);
process_memory_.SetData(0x10008, 0x30);
process_memory_.SetData(0x1000c, 0x40);
process_memory_.SetData(0x10010, 0x50);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4-r7}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10014U, exidx_->cfa());
ASSERT_EQ(0x20U, (*exidx_->regs())[4]);
ASSERT_EQ(0x30U, (*exidx_->regs())[5]);
ASSERT_EQ(0x40U, (*exidx_->regs())[6]);
ASSERT_EQ(0x50U, (*exidx_->regs())[7]);
ResetLogs();
data_->push_back(0xa7);
process_memory_.SetData(0x10014, 0x41);
process_memory_.SetData(0x10018, 0x51);
process_memory_.SetData(0x1001c, 0x61);
process_memory_.SetData(0x10020, 0x71);
process_memory_.SetData(0x10024, 0x81);
process_memory_.SetData(0x10028, 0x91);
process_memory_.SetData(0x1002c, 0xa1);
process_memory_.SetData(0x10030, 0xb1);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4-r11}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10034U, exidx_->cfa());
ASSERT_EQ(0x41U, (*exidx_->regs())[4]);
ASSERT_EQ(0x51U, (*exidx_->regs())[5]);
ASSERT_EQ(0x61U, (*exidx_->regs())[6]);
ASSERT_EQ(0x71U, (*exidx_->regs())[7]);
ASSERT_EQ(0x81U, (*exidx_->regs())[8]);
ASSERT_EQ(0x91U, (*exidx_->regs())[9]);
ASSERT_EQ(0xa1U, (*exidx_->regs())[10]);
ASSERT_EQ(0xb1U, (*exidx_->regs())[11]);
}
TEST_P(ArmExidxDecodeTest, pop_registers_with_r14) {
// 10101nnn: Pop r4-r[4+nnn], r14
data_->push_back(0xa8);
process_memory_.SetData(0x10000, 0x12);
process_memory_.SetData(0x10004, 0x22);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4, r14}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10008U, exidx_->cfa());
ASSERT_EQ(0x12U, (*exidx_->regs())[4]);
ASSERT_EQ(0x22U, (*exidx_->regs())[14]);
ResetLogs();
data_->push_back(0xab);
process_memory_.SetData(0x10008, 0x1);
process_memory_.SetData(0x1000c, 0x2);
process_memory_.SetData(0x10010, 0x3);
process_memory_.SetData(0x10014, 0x4);
process_memory_.SetData(0x10018, 0x5);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4-r7, r14}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x1001cU, exidx_->cfa());
ASSERT_EQ(0x1U, (*exidx_->regs())[4]);
ASSERT_EQ(0x2U, (*exidx_->regs())[5]);
ASSERT_EQ(0x3U, (*exidx_->regs())[6]);
ASSERT_EQ(0x4U, (*exidx_->regs())[7]);
ASSERT_EQ(0x5U, (*exidx_->regs())[14]);
ResetLogs();
data_->push_back(0xaf);
process_memory_.SetData(0x1001c, 0x1a);
process_memory_.SetData(0x10020, 0x2a);
process_memory_.SetData(0x10024, 0x3a);
process_memory_.SetData(0x10028, 0x4a);
process_memory_.SetData(0x1002c, 0x5a);
process_memory_.SetData(0x10030, 0x6a);
process_memory_.SetData(0x10034, 0x7a);
process_memory_.SetData(0x10038, 0x8a);
process_memory_.SetData(0x1003c, 0x9a);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r4-r11, r14}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10040U, exidx_->cfa());
ASSERT_EQ(0x1aU, (*exidx_->regs())[4]);
ASSERT_EQ(0x2aU, (*exidx_->regs())[5]);
ASSERT_EQ(0x3aU, (*exidx_->regs())[6]);
ASSERT_EQ(0x4aU, (*exidx_->regs())[7]);
ASSERT_EQ(0x5aU, (*exidx_->regs())[8]);
ASSERT_EQ(0x6aU, (*exidx_->regs())[9]);
ASSERT_EQ(0x7aU, (*exidx_->regs())[10]);
ASSERT_EQ(0x8aU, (*exidx_->regs())[11]);
ASSERT_EQ(0x9aU, (*exidx_->regs())[14]);
}
TEST_P(ArmExidxDecodeTest, finish) {
// 10110000: Finish
data_->push_back(0xb0);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind finish\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10000U, exidx_->cfa());
ASSERT_EQ(ARM_STATUS_FINISH, exidx_->status());
}
TEST_P(ArmExidxDecodeTest, spare) {
// 10110001 00000000: Spare
data_->push_back(0xb1);
data_->push_back(0x00);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10000U, exidx_->cfa());
ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status());
// 10110001 xxxxyyyy: Spare (xxxx != 0000)
for (size_t x = 1; x < 16; x++) {
for (size_t y = 0; y < 16; y++) {
ResetLogs();
data_->push_back(0xb1);
data_->push_back((x << 4) | y);
ASSERT_FALSE(exidx_->Decode()) << "x, y = " << x << ", " << y;
ASSERT_EQ("", GetFakeLogBuf()) << "x, y = " << x << ", " << y;
if (log_) {
ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "x, y = " << x << ", " << y;
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10000U, exidx_->cfa()) << "x, y = " << x << ", " << y;
ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status());
}
}
// 101101nn: Spare
for (size_t n = 0; n < 4; n++) {
ResetLogs();
data_->push_back(0xb4 | n);
ASSERT_FALSE(exidx_->Decode()) << "n = " << n;
ASSERT_EQ("", GetFakeLogBuf()) << "n = " << n;
if (log_) {
ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "n = " << n;
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10000U, exidx_->cfa()) << "n = " << n;
ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status());
}
// 11000111 00000000: Spare
ResetLogs();
data_->push_back(0xc7);
data_->push_back(0x00);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10000U, exidx_->cfa());
ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status());
// 11000111 xxxxyyyy: Spare (xxxx != 0000)
for (size_t x = 1; x < 16; x++) {
for (size_t y = 0; y < 16; y++) {
ResetLogs();
data_->push_back(0xc7);
data_->push_back(0x10);
ASSERT_FALSE(exidx_->Decode()) << "x, y = " << x << ", " << y;
ASSERT_EQ("", GetFakeLogBuf()) << "x, y = " << x << ", " << y;
if (log_) {
ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "x, y = " << x << ", " << y;
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10000U, exidx_->cfa()) << "x, y = " << x << ", " << y;
ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status());
}
}
// 11001yyy: Spare (yyy != 000, 001)
for (size_t y = 2; y < 8; y++) {
ResetLogs();
data_->push_back(0xc8 | y);
ASSERT_FALSE(exidx_->Decode()) << "y = " << y;
ASSERT_EQ("", GetFakeLogBuf()) << "y = " << y;
if (log_) {
ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "y = " << y;
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10000U, exidx_->cfa()) << "y = " << y;
ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status());
}
// 11xxxyyy: Spare (xxx != 000, 001, 010)
for (size_t x = 3; x < 8; x++) {
for (size_t y = 0; y < 8; y++) {
ResetLogs();
data_->push_back(0xc0 | (x << 3) | y);
ASSERT_FALSE(exidx_->Decode()) << "x, y = " << x << ", " << y;
ASSERT_EQ("", GetFakeLogBuf()) << "x, y = " << x << ", " << y;
if (log_) {
ASSERT_EQ("4 unwind Spare\n", GetFakeLogPrint()) << "x, y = " << x << ", " << y;
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10000U, exidx_->cfa()) << "x, y = " << x << ", " << y;
ASSERT_EQ(ARM_STATUS_SPARE, exidx_->status());
}
}
}
TEST_P(ArmExidxDecodeTest, pop_registers_under_mask) {
// 10110001 0000iiii: Pop integer registers {r0, r1, r2, r3}
data_->push_back(0xb1);
data_->push_back(0x01);
process_memory_.SetData(0x10000, 0x45);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r0}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10004U, exidx_->cfa());
ASSERT_EQ(0x45U, (*exidx_->regs())[0]);
ResetLogs();
data_->push_back(0xb1);
data_->push_back(0x0a);
process_memory_.SetData(0x10004, 0x23);
process_memory_.SetData(0x10008, 0x24);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r1, r3}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x1000cU, exidx_->cfa());
ASSERT_EQ(0x23U, (*exidx_->regs())[1]);
ASSERT_EQ(0x24U, (*exidx_->regs())[3]);
ResetLogs();
data_->push_back(0xb1);
data_->push_back(0x0f);
process_memory_.SetData(0x1000c, 0x65);
process_memory_.SetData(0x10010, 0x54);
process_memory_.SetData(0x10014, 0x43);
process_memory_.SetData(0x10018, 0x32);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {r0, r1, r2, r3}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x1001cU, exidx_->cfa());
ASSERT_EQ(0x65U, (*exidx_->regs())[0]);
ASSERT_EQ(0x54U, (*exidx_->regs())[1]);
ASSERT_EQ(0x43U, (*exidx_->regs())[2]);
ASSERT_EQ(0x32U, (*exidx_->regs())[3]);
}
TEST_P(ArmExidxDecodeTest, vsp_large_incr) {
// 10110010 uleb128: vsp = vsp + 0x204 + (uleb128 << 2)
data_->push_back(0xb2);
data_->push_back(0x7f);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 1024\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10400U, exidx_->cfa());
ResetLogs();
data_->push_back(0xb2);
data_->push_back(0xff);
data_->push_back(0x02);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 2048\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10c00U, exidx_->cfa());
ResetLogs();
data_->push_back(0xb2);
data_->push_back(0xff);
data_->push_back(0x82);
data_->push_back(0x30);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind vsp = vsp + 3147776\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x311400U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, pop_vfp_fstmfdx) {
// 10110011 sssscccc: Pop VFP double precision registers D[ssss]-D[ssss+cccc] by FSTMFDX
data_->push_back(0xb3);
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d0}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x1000cU, exidx_->cfa());
ResetLogs();
data_->push_back(0xb3);
data_->push_back(0x48);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d4-d12}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10058U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, pop_vfp8_fstmfdx) {
// 10111nnn: Pop VFP double precision registers D[8]-D[8+nnn] by FSTMFDX
data_->push_back(0xb8);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x1000cU, exidx_->cfa());
ResetLogs();
data_->push_back(0xbb);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8-d11}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10030U, exidx_->cfa());
ResetLogs();
data_->push_back(0xbf);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8-d15}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10074U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, pop_mmx_wr10) {
// 11000nnn: Intel Wireless MMX pop wR[10]-wR[10+nnn] (nnn != 6, 7)
data_->push_back(0xc0);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR10}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10008U, exidx_->cfa());
ResetLogs();
data_->push_back(0xc2);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR10-wR12}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10020U, exidx_->cfa());
ResetLogs();
data_->push_back(0xc5);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR10-wR15}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10050U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, pop_mmx_wr) {
// 11000110 sssscccc: Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc]
data_->push_back(0xc6);
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR0}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10008U, exidx_->cfa());
ResetLogs();
data_->push_back(0xc6);
data_->push_back(0x25);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR2-wR7}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10038U, exidx_->cfa());
ResetLogs();
data_->push_back(0xc6);
data_->push_back(0xff);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wR15-wR30}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x100b8U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, pop_mmx_wcgr) {
// 11000111 0000iiii: Intel Wireless MMX pop wCGR registes {wCGR0,1,2,3}
data_->push_back(0xc7);
data_->push_back(0x01);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wCGR0}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10004U, exidx_->cfa());
ResetLogs();
data_->push_back(0xc7);
data_->push_back(0x0a);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wCGR1, wCGR3}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x1000cU, exidx_->cfa());
ResetLogs();
data_->push_back(0xc7);
data_->push_back(0x0f);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {wCGR0, wCGR1, wCGR2, wCGR3}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x1001cU, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, pop_vfp16_vpush) {
// 11001000 sssscccc: Pop VFP double precision registers d[16+ssss]-D[16+ssss+cccc] by VPUSH
data_->push_back(0xc8);
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d16}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10008U, exidx_->cfa());
ResetLogs();
data_->push_back(0xc8);
data_->push_back(0x14);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d17-d21}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10030U, exidx_->cfa());
ResetLogs();
data_->push_back(0xc8);
data_->push_back(0xff);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d31-d46}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x100b0U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, pop_vfp_vpush) {
// 11001001 sssscccc: Pop VFP double precision registers d[ssss]-D[ssss+cccc] by VPUSH
data_->push_back(0xc9);
data_->push_back(0x00);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d0}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10008U, exidx_->cfa());
ResetLogs();
data_->push_back(0xc9);
data_->push_back(0x23);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d2-d5}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10028U, exidx_->cfa());
ResetLogs();
data_->push_back(0xc9);
data_->push_back(0xff);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d15-d30}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x100a8U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, pop_vfp8_vpush) {
// 11010nnn: Pop VFP double precision registers D[8]-D[8+nnn] by VPUSH
data_->push_back(0xd0);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10008U, exidx_->cfa());
ResetLogs();
data_->push_back(0xd2);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8-d10}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10020U, exidx_->cfa());
ResetLogs();
data_->push_back(0xd7);
ASSERT_TRUE(exidx_->Decode());
ASSERT_EQ("", GetFakeLogBuf());
if (log_) {
ASSERT_EQ("4 unwind pop {d8-d15}\n", GetFakeLogPrint());
} else {
ASSERT_EQ("", GetFakeLogPrint());
}
ASSERT_EQ(0x10060U, exidx_->cfa());
}
TEST_P(ArmExidxDecodeTest, expect_truncated) {
// This test verifies that any op that requires extra ops will
// fail if the data is not present.
data_->push_back(0x80);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status());
data_->clear();
data_->push_back(0xb1);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status());
data_->clear();
data_->push_back(0xb2);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status());
data_->clear();
data_->push_back(0xb3);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status());
data_->clear();
data_->push_back(0xc6);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status());
data_->clear();
data_->push_back(0xc7);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status());
data_->clear();
data_->push_back(0xc8);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status());
data_->clear();
data_->push_back(0xc9);
ASSERT_FALSE(exidx_->Decode());
ASSERT_EQ(ARM_STATUS_TRUNCATED, exidx_->status());
}
TEST_P(ArmExidxDecodeTest, verify_no_truncated) {
// This test verifies that no pattern results in a crash or truncation.
MemoryFakeAlwaysReadZero memory_zero;
Init(&memory_zero);
for (size_t x = 0; x < 256; x++) {
if (x == 0xb2) {
// This opcode is followed by an uleb128, so just skip this one.
continue;
}
for (size_t y = 0; y < 256; y++) {
data_->clear();
data_->push_back(x);
data_->push_back(y);
if (!exidx_->Decode()) {
ASSERT_NE(ARM_STATUS_TRUNCATED, exidx_->status())
<< "x y = 0x" << std::hex << x << " 0x" << y;
ASSERT_NE(ARM_STATUS_READ_FAILED, exidx_->status())
<< "x y = 0x" << std::hex << x << " 0x" << y;
}
}
}
}
INSTANTIATE_TEST_CASE_P(, ArmExidxDecodeTest, ::testing::Values("logging", "no_logging"));