android_system_core/libunwindstack/Elf.cpp

285 lines
7.7 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <string.h>
#include <memory>
#include <mutex>
#include <string>
#define LOG_TAG "unwind"
#include <log/log.h>
#include <unwindstack/Elf.h>
#include <unwindstack/ElfInterface.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>
#include "ElfInterfaceArm.h"
#include "Symbols.h"
namespace unwindstack {
Multiple bugfixes, small restructuring. - Move the load bias stored out of ElfInterface into Elf. For the compressed sections, the load bias was not the same as the data from the uncompressed section. - Move the initialization of the compressed section into Init. It was too easy to forget to call the init of the compressed section. - Do not automatically add in load bias to the pc before calling ElfInterface code. Do all of the pc manipulations in the Elf object. - Change the interface GetFunctionName code to pass in the load_bias instead of modifying the pc inside the code. - Modify the Step function to pass in the elf offset, not add it to the pc. It is necessary to have two different relative values when executing the Step: a pc that is relative to the beginning of the elf for the reading data the actual instructions when trying to determine if this is in a signal frame, and a pc that is relative to the map for finding the appropriate unwind information. - Add a feature to Unwinder so that an unwind can be stopped if it ends up in map that has a specified suffix. This is so that the ART unwinding code doesn't require skipping the compressed section. Instead, stop at if trying to unwind through a known suffix code that means the code is in java code. This is important because the compressed section data is not only used by the jave compiled code, so that will continue to work. - Fix tests for restructuring, add new tests for new functionality. Test: Ran art test 137-cfi using new unwinder as default. Test: Ran new unit tests. Change-Id: I42e658c64c5e14f698ba34944a3043afac967884
2017-10-19 23:08:58 +00:00
bool Elf::Init(bool init_gnu_debugdata) {
load_bias_ = 0;
if (!memory_) {
return false;
}
interface_.reset(CreateInterfaceFromMemory(memory_.get()));
if (!interface_) {
return false;
}
Multiple bugfixes, small restructuring. - Move the load bias stored out of ElfInterface into Elf. For the compressed sections, the load bias was not the same as the data from the uncompressed section. - Move the initialization of the compressed section into Init. It was too easy to forget to call the init of the compressed section. - Do not automatically add in load bias to the pc before calling ElfInterface code. Do all of the pc manipulations in the Elf object. - Change the interface GetFunctionName code to pass in the load_bias instead of modifying the pc inside the code. - Modify the Step function to pass in the elf offset, not add it to the pc. It is necessary to have two different relative values when executing the Step: a pc that is relative to the beginning of the elf for the reading data the actual instructions when trying to determine if this is in a signal frame, and a pc that is relative to the map for finding the appropriate unwind information. - Add a feature to Unwinder so that an unwind can be stopped if it ends up in map that has a specified suffix. This is so that the ART unwinding code doesn't require skipping the compressed section. Instead, stop at if trying to unwind through a known suffix code that means the code is in java code. This is important because the compressed section data is not only used by the jave compiled code, so that will continue to work. - Fix tests for restructuring, add new tests for new functionality. Test: Ran art test 137-cfi using new unwinder as default. Test: Ran new unit tests. Change-Id: I42e658c64c5e14f698ba34944a3043afac967884
2017-10-19 23:08:58 +00:00
valid_ = interface_->Init(&load_bias_);
if (valid_) {
interface_->InitHeaders();
Multiple bugfixes, small restructuring. - Move the load bias stored out of ElfInterface into Elf. For the compressed sections, the load bias was not the same as the data from the uncompressed section. - Move the initialization of the compressed section into Init. It was too easy to forget to call the init of the compressed section. - Do not automatically add in load bias to the pc before calling ElfInterface code. Do all of the pc manipulations in the Elf object. - Change the interface GetFunctionName code to pass in the load_bias instead of modifying the pc inside the code. - Modify the Step function to pass in the elf offset, not add it to the pc. It is necessary to have two different relative values when executing the Step: a pc that is relative to the beginning of the elf for the reading data the actual instructions when trying to determine if this is in a signal frame, and a pc that is relative to the map for finding the appropriate unwind information. - Add a feature to Unwinder so that an unwind can be stopped if it ends up in map that has a specified suffix. This is so that the ART unwinding code doesn't require skipping the compressed section. Instead, stop at if trying to unwind through a known suffix code that means the code is in java code. This is important because the compressed section data is not only used by the jave compiled code, so that will continue to work. - Fix tests for restructuring, add new tests for new functionality. Test: Ran art test 137-cfi using new unwinder as default. Test: Ran new unit tests. Change-Id: I42e658c64c5e14f698ba34944a3043afac967884
2017-10-19 23:08:58 +00:00
if (init_gnu_debugdata) {
InitGnuDebugdata();
} else {
gnu_debugdata_interface_.reset(nullptr);
}
} else {
interface_.reset(nullptr);
}
return valid_;
}
// It is expensive to initialize the .gnu_debugdata section. Provide a method
// to initialize this data separately.
void Elf::InitGnuDebugdata() {
if (!valid_ || interface_->gnu_debugdata_offset() == 0) {
return;
}
gnu_debugdata_memory_.reset(interface_->CreateGnuDebugdataMemory());
gnu_debugdata_interface_.reset(CreateInterfaceFromMemory(gnu_debugdata_memory_.get()));
ElfInterface* gnu = gnu_debugdata_interface_.get();
if (gnu == nullptr) {
return;
}
Multiple bugfixes, small restructuring. - Move the load bias stored out of ElfInterface into Elf. For the compressed sections, the load bias was not the same as the data from the uncompressed section. - Move the initialization of the compressed section into Init. It was too easy to forget to call the init of the compressed section. - Do not automatically add in load bias to the pc before calling ElfInterface code. Do all of the pc manipulations in the Elf object. - Change the interface GetFunctionName code to pass in the load_bias instead of modifying the pc inside the code. - Modify the Step function to pass in the elf offset, not add it to the pc. It is necessary to have two different relative values when executing the Step: a pc that is relative to the beginning of the elf for the reading data the actual instructions when trying to determine if this is in a signal frame, and a pc that is relative to the map for finding the appropriate unwind information. - Add a feature to Unwinder so that an unwind can be stopped if it ends up in map that has a specified suffix. This is so that the ART unwinding code doesn't require skipping the compressed section. Instead, stop at if trying to unwind through a known suffix code that means the code is in java code. This is important because the compressed section data is not only used by the jave compiled code, so that will continue to work. - Fix tests for restructuring, add new tests for new functionality. Test: Ran art test 137-cfi using new unwinder as default. Test: Ran new unit tests. Change-Id: I42e658c64c5e14f698ba34944a3043afac967884
2017-10-19 23:08:58 +00:00
// Ignore the load_bias from the compressed section, the correct load bias
// is in the uncompressed data.
uint64_t load_bias;
if (gnu->Init(&load_bias)) {
gnu->InitHeaders();
interface_->SetGnuDebugdataInterface(gnu);
} else {
// Free all of the memory associated with the gnu_debugdata section.
gnu_debugdata_memory_.reset(nullptr);
gnu_debugdata_interface_.reset(nullptr);
}
}
bool Elf::GetSoname(std::string* name) {
std::lock_guard<std::mutex> guard(lock_);
return valid_ && interface_->GetSoname(name);
}
uint64_t Elf::GetRelPc(uint64_t pc, const MapInfo* map_info) {
Multiple bugfixes, small restructuring. - Move the load bias stored out of ElfInterface into Elf. For the compressed sections, the load bias was not the same as the data from the uncompressed section. - Move the initialization of the compressed section into Init. It was too easy to forget to call the init of the compressed section. - Do not automatically add in load bias to the pc before calling ElfInterface code. Do all of the pc manipulations in the Elf object. - Change the interface GetFunctionName code to pass in the load_bias instead of modifying the pc inside the code. - Modify the Step function to pass in the elf offset, not add it to the pc. It is necessary to have two different relative values when executing the Step: a pc that is relative to the beginning of the elf for the reading data the actual instructions when trying to determine if this is in a signal frame, and a pc that is relative to the map for finding the appropriate unwind information. - Add a feature to Unwinder so that an unwind can be stopped if it ends up in map that has a specified suffix. This is so that the ART unwinding code doesn't require skipping the compressed section. Instead, stop at if trying to unwind through a known suffix code that means the code is in java code. This is important because the compressed section data is not only used by the jave compiled code, so that will continue to work. - Fix tests for restructuring, add new tests for new functionality. Test: Ran art test 137-cfi using new unwinder as default. Test: Ran new unit tests. Change-Id: I42e658c64c5e14f698ba34944a3043afac967884
2017-10-19 23:08:58 +00:00
return pc - map_info->start + load_bias_ + map_info->elf_offset;
}
bool Elf::GetFunctionName(uint64_t addr, std::string* name, uint64_t* func_offset) {
std::lock_guard<std::mutex> guard(lock_);
Multiple bugfixes, small restructuring. - Move the load bias stored out of ElfInterface into Elf. For the compressed sections, the load bias was not the same as the data from the uncompressed section. - Move the initialization of the compressed section into Init. It was too easy to forget to call the init of the compressed section. - Do not automatically add in load bias to the pc before calling ElfInterface code. Do all of the pc manipulations in the Elf object. - Change the interface GetFunctionName code to pass in the load_bias instead of modifying the pc inside the code. - Modify the Step function to pass in the elf offset, not add it to the pc. It is necessary to have two different relative values when executing the Step: a pc that is relative to the beginning of the elf for the reading data the actual instructions when trying to determine if this is in a signal frame, and a pc that is relative to the map for finding the appropriate unwind information. - Add a feature to Unwinder so that an unwind can be stopped if it ends up in map that has a specified suffix. This is so that the ART unwinding code doesn't require skipping the compressed section. Instead, stop at if trying to unwind through a known suffix code that means the code is in java code. This is important because the compressed section data is not only used by the jave compiled code, so that will continue to work. - Fix tests for restructuring, add new tests for new functionality. Test: Ran art test 137-cfi using new unwinder as default. Test: Ran new unit tests. Change-Id: I42e658c64c5e14f698ba34944a3043afac967884
2017-10-19 23:08:58 +00:00
return valid_ && (interface_->GetFunctionName(addr, load_bias_, name, func_offset) ||
(gnu_debugdata_interface_ && gnu_debugdata_interface_->GetFunctionName(
addr, load_bias_, name, func_offset)));
}
bool Elf::GetGlobalVariable(const std::string& name, uint64_t* memory_address) {
if (!valid_) {
return false;
}
if (!interface_->GetGlobalVariable(name, memory_address) &&
(gnu_debugdata_interface_ == nullptr ||
!gnu_debugdata_interface_->GetGlobalVariable(name, memory_address))) {
return false;
}
// Adjust by the load bias.
if (*memory_address < load_bias_) {
return false;
}
*memory_address -= load_bias_;
// If this winds up in the dynamic section, then we might need to adjust
// the address.
uint64_t dynamic_end = interface_->dynamic_vaddr() + interface_->dynamic_size();
if (*memory_address >= interface_->dynamic_vaddr() && *memory_address < dynamic_end) {
if (interface_->dynamic_vaddr() > interface_->dynamic_offset()) {
*memory_address -= interface_->dynamic_vaddr() - interface_->dynamic_offset();
} else {
*memory_address += interface_->dynamic_offset() - interface_->dynamic_vaddr();
}
}
return true;
}
Multiple bugfixes, small restructuring. - Move the load bias stored out of ElfInterface into Elf. For the compressed sections, the load bias was not the same as the data from the uncompressed section. - Move the initialization of the compressed section into Init. It was too easy to forget to call the init of the compressed section. - Do not automatically add in load bias to the pc before calling ElfInterface code. Do all of the pc manipulations in the Elf object. - Change the interface GetFunctionName code to pass in the load_bias instead of modifying the pc inside the code. - Modify the Step function to pass in the elf offset, not add it to the pc. It is necessary to have two different relative values when executing the Step: a pc that is relative to the beginning of the elf for the reading data the actual instructions when trying to determine if this is in a signal frame, and a pc that is relative to the map for finding the appropriate unwind information. - Add a feature to Unwinder so that an unwind can be stopped if it ends up in map that has a specified suffix. This is so that the ART unwinding code doesn't require skipping the compressed section. Instead, stop at if trying to unwind through a known suffix code that means the code is in java code. This is important because the compressed section data is not only used by the jave compiled code, so that will continue to work. - Fix tests for restructuring, add new tests for new functionality. Test: Ran art test 137-cfi using new unwinder as default. Test: Ran new unit tests. Change-Id: I42e658c64c5e14f698ba34944a3043afac967884
2017-10-19 23:08:58 +00:00
// The relative pc is always relative to the start of the map from which it comes.
bool Elf::Step(uint64_t rel_pc, uint64_t adjusted_rel_pc, uint64_t elf_offset, Regs* regs,
Memory* process_memory, bool* finished) {
if (!valid_) {
return false;
}
Multiple bugfixes, small restructuring. - Move the load bias stored out of ElfInterface into Elf. For the compressed sections, the load bias was not the same as the data from the uncompressed section. - Move the initialization of the compressed section into Init. It was too easy to forget to call the init of the compressed section. - Do not automatically add in load bias to the pc before calling ElfInterface code. Do all of the pc manipulations in the Elf object. - Change the interface GetFunctionName code to pass in the load_bias instead of modifying the pc inside the code. - Modify the Step function to pass in the elf offset, not add it to the pc. It is necessary to have two different relative values when executing the Step: a pc that is relative to the beginning of the elf for the reading data the actual instructions when trying to determine if this is in a signal frame, and a pc that is relative to the map for finding the appropriate unwind information. - Add a feature to Unwinder so that an unwind can be stopped if it ends up in map that has a specified suffix. This is so that the ART unwinding code doesn't require skipping the compressed section. Instead, stop at if trying to unwind through a known suffix code that means the code is in java code. This is important because the compressed section data is not only used by the jave compiled code, so that will continue to work. - Fix tests for restructuring, add new tests for new functionality. Test: Ran art test 137-cfi using new unwinder as default. Test: Ran new unit tests. Change-Id: I42e658c64c5e14f698ba34944a3043afac967884
2017-10-19 23:08:58 +00:00
// The relative pc expectd by StepIfSignalHandler is relative to the start of the elf.
if (regs->StepIfSignalHandler(rel_pc + elf_offset, this, process_memory)) {
*finished = false;
return true;
}
Multiple bugfixes, small restructuring. - Move the load bias stored out of ElfInterface into Elf. For the compressed sections, the load bias was not the same as the data from the uncompressed section. - Move the initialization of the compressed section into Init. It was too easy to forget to call the init of the compressed section. - Do not automatically add in load bias to the pc before calling ElfInterface code. Do all of the pc manipulations in the Elf object. - Change the interface GetFunctionName code to pass in the load_bias instead of modifying the pc inside the code. - Modify the Step function to pass in the elf offset, not add it to the pc. It is necessary to have two different relative values when executing the Step: a pc that is relative to the beginning of the elf for the reading data the actual instructions when trying to determine if this is in a signal frame, and a pc that is relative to the map for finding the appropriate unwind information. - Add a feature to Unwinder so that an unwind can be stopped if it ends up in map that has a specified suffix. This is so that the ART unwinding code doesn't require skipping the compressed section. Instead, stop at if trying to unwind through a known suffix code that means the code is in java code. This is important because the compressed section data is not only used by the jave compiled code, so that will continue to work. - Fix tests for restructuring, add new tests for new functionality. Test: Ran art test 137-cfi using new unwinder as default. Test: Ran new unit tests. Change-Id: I42e658c64c5e14f698ba34944a3043afac967884
2017-10-19 23:08:58 +00:00
// Lock during the step which can update information in the object.
std::lock_guard<std::mutex> guard(lock_);
return interface_->Step(adjusted_rel_pc, load_bias_, regs, process_memory, finished);
}
bool Elf::IsValidElf(Memory* memory) {
if (memory == nullptr) {
return false;
}
// Verify that this is a valid elf file.
uint8_t e_ident[SELFMAG + 1];
if (!memory->ReadFully(0, e_ident, SELFMAG)) {
return false;
}
if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) {
return false;
}
return true;
}
void Elf::GetInfo(Memory* memory, bool* valid, uint64_t* size) {
if (!IsValidElf(memory)) {
*valid = false;
return;
}
*size = 0;
*valid = true;
// Now read the section header information.
uint8_t class_type;
if (!memory->ReadFully(EI_CLASS, &class_type, 1)) {
return;
}
if (class_type == ELFCLASS32) {
ElfInterface32::GetMaxSize(memory, size);
} else if (class_type == ELFCLASS64) {
ElfInterface64::GetMaxSize(memory, size);
} else {
*valid = false;
}
}
bool Elf::IsValidPc(uint64_t pc) {
if (!valid_ || pc < load_bias_) {
return false;
}
pc -= load_bias_;
if (interface_->IsValidPc(pc)) {
return true;
}
if (gnu_debugdata_interface_ != nullptr && gnu_debugdata_interface_->IsValidPc(pc)) {
return true;
}
return false;
}
ElfInterface* Elf::CreateInterfaceFromMemory(Memory* memory) {
if (!IsValidElf(memory)) {
return nullptr;
}
std::unique_ptr<ElfInterface> interface;
if (!memory->ReadFully(EI_CLASS, &class_type_, 1)) {
return nullptr;
}
if (class_type_ == ELFCLASS32) {
Elf32_Half e_machine;
if (!memory->ReadFully(EI_NIDENT + sizeof(Elf32_Half), &e_machine, sizeof(e_machine))) {
return nullptr;
}
machine_type_ = e_machine;
if (e_machine == EM_ARM) {
arch_ = ARCH_ARM;
interface.reset(new ElfInterfaceArm(memory));
} else if (e_machine == EM_386) {
arch_ = ARCH_X86;
interface.reset(new ElfInterface32(memory));
} else if (e_machine == EM_MIPS) {
arch_ = ARCH_MIPS;
interface.reset(new ElfInterface32(memory));
} else {
// Unsupported.
ALOGI("32 bit elf that is neither arm nor x86 nor mips: e_machine = %d\n", e_machine);
return nullptr;
}
} else if (class_type_ == ELFCLASS64) {
Elf64_Half e_machine;
if (!memory->ReadFully(EI_NIDENT + sizeof(Elf64_Half), &e_machine, sizeof(e_machine))) {
return nullptr;
}
machine_type_ = e_machine;
if (e_machine == EM_AARCH64) {
arch_ = ARCH_ARM64;
} else if (e_machine == EM_X86_64) {
arch_ = ARCH_X86_64;
} else if (e_machine == EM_MIPS) {
arch_ = ARCH_MIPS64;
} else {
// Unsupported.
ALOGI("64 bit elf that is neither aarch64 nor x86_64 nor mips64: e_machine = %d\n",
e_machine);
return nullptr;
}
interface.reset(new ElfInterface64(memory));
}
return interface.release();
}
uint64_t Elf::GetLoadBias(Memory* memory) {
if (!IsValidElf(memory)) {
return 0;
}
uint8_t class_type;
if (!memory->Read(EI_CLASS, &class_type, 1)) {
return 0;
}
if (class_type == ELFCLASS32) {
return ElfInterface::GetLoadBias<Elf32_Ehdr, Elf32_Phdr>(memory);
} else if (class_type == ELFCLASS64) {
return ElfInterface::GetLoadBias<Elf64_Ehdr, Elf64_Phdr>(memory);
}
return 0;
}
} // namespace unwindstack