android_system_core/libmemunreachable/HeapWalker.cpp

138 lines
4.1 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <map>
#include <utility>
#include "Allocator.h"
#include "HeapWalker.h"
#include "log.h"
bool HeapWalker::Allocation(uintptr_t begin, uintptr_t end) {
if (end == begin) {
end = begin + 1;
}
auto inserted = allocations_.insert(std::pair<Range, RangeInfo>(Range{begin, end}, RangeInfo{false, false}));
if (inserted.second) {
valid_allocations_range_.begin = std::min(valid_allocations_range_.begin, begin);
valid_allocations_range_.end = std::max(valid_allocations_range_.end, end);
allocation_bytes_ += end - begin;
return true;
} else {
Range overlap = inserted.first->first;
ALOGE("range %p-%p overlaps with existing range %p-%p",
reinterpret_cast<void*>(begin),
reinterpret_cast<void*>(end),
reinterpret_cast<void*>(overlap.begin),
reinterpret_cast<void*>(overlap.end));
return false;
}
}
void HeapWalker::Walk(const Range& range, bool RangeInfo::*flag) {
allocator::vector<Range> to_do(1, range, allocator_);
while (!to_do.empty()) {
Range range = to_do.back();
to_do.pop_back();
uintptr_t begin = (range.begin + (sizeof(uintptr_t) - 1)) & ~(sizeof(uintptr_t) - 1);
// TODO(ccross): we might need to consider a pointer to the end of a buffer
// to be inside the buffer, which means the common case of a pointer to the
// beginning of a buffer may keep two ranges live.
for (uintptr_t i = begin; i < range.end; i += sizeof(uintptr_t)) {
uintptr_t val = *reinterpret_cast<uintptr_t*>(i);
if (val >= valid_allocations_range_.begin && val < valid_allocations_range_.end) {
RangeMap::iterator it = allocations_.find(Range{val, val + 1});
if (it != allocations_.end()) {
if (!(it->second.*flag)) {
to_do.push_back(it->first);
it->second.*flag = true;
}
}
}
}
}
}
void HeapWalker::Root(uintptr_t begin, uintptr_t end) {
roots_.push_back(Range{begin, end});
}
void HeapWalker::Root(const allocator::vector<uintptr_t>& vals) {
root_vals_.insert(root_vals_.end(), vals.begin(), vals.end());
}
size_t HeapWalker::Allocations() {
return allocations_.size();
}
size_t HeapWalker::AllocationBytes() {
return allocation_bytes_;
}
bool HeapWalker::DetectLeaks() {
for (auto it = roots_.begin(); it != roots_.end(); it++) {
Walk(*it, &RangeInfo::referenced_from_root);
}
Range vals;
vals.begin = reinterpret_cast<uintptr_t>(root_vals_.data());
vals.end = vals.begin + root_vals_.size() * sizeof(uintptr_t);
Walk(vals, &RangeInfo::referenced_from_root);
for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
if (!it->second.referenced_from_root) {
Walk(it->first, &RangeInfo::referenced_from_leak);
}
}
return true;
}
bool HeapWalker::Leaked(allocator::vector<Range>& leaked, size_t limit,
size_t* num_leaks_out, size_t* leak_bytes_out) {
DetectLeaks();
leaked.clear();
size_t num_leaks = 0;
size_t leak_bytes = 0;
for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
if (!it->second.referenced_from_root) {
num_leaks++;
leak_bytes += it->first.end - it->first.begin;
}
}
size_t n = 0;
for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
if (!it->second.referenced_from_root) {
if (n++ <= limit) {
leaked.push_back(it->first);
}
}
}
if (num_leaks_out) {
*num_leaks_out = num_leaks;
}
if (leak_bytes_out) {
*leak_bytes_out = leak_bytes;
}
return true;
}