android_system_core/libunwindstack/tests/MapInfoCreateMemoryTest.cpp

234 lines
7.8 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <unistd.h>
#include <memory>
#include <vector>
#include <android-base/file.h>
#include <android-base/test_utils.h>
#include <gtest/gtest.h>
#include <unwindstack/Elf.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Memory.h>
#include "MemoryFake.h"
namespace unwindstack {
class MapInfoCreateMemoryTest : public ::testing::Test {
protected:
template <typename Ehdr, typename Shdr>
static void InitElf(int fd, uint64_t file_offset, uint64_t sh_offset, uint8_t class_type) {
std::vector<uint8_t> buffer(20000);
memset(buffer.data(), 0, buffer.size());
Ehdr ehdr;
memset(&ehdr, 0, sizeof(ehdr));
memcpy(ehdr.e_ident, ELFMAG, SELFMAG);
ehdr.e_ident[EI_CLASS] = class_type;
ehdr.e_shoff = sh_offset;
ehdr.e_shentsize = sizeof(Shdr) + 100;
ehdr.e_shnum = 4;
memcpy(&buffer[file_offset], &ehdr, sizeof(ehdr));
ASSERT_TRUE(android::base::WriteFully(fd, buffer.data(), buffer.size()));
}
static void SetUpTestCase() {
std::vector<uint8_t> buffer(1024);
memset(buffer.data(), 0, buffer.size());
memcpy(buffer.data(), ELFMAG, SELFMAG);
buffer[EI_CLASS] = ELFCLASS32;
ASSERT_TRUE(android::base::WriteFully(elf_.fd, buffer.data(), buffer.size()));
memset(buffer.data(), 0, buffer.size());
memcpy(&buffer[0x100], ELFMAG, SELFMAG);
buffer[0x100 + EI_CLASS] = ELFCLASS64;
ASSERT_TRUE(android::base::WriteFully(elf_at_100_.fd, buffer.data(), buffer.size()));
InitElf<Elf32_Ehdr, Elf32_Shdr>(elf32_at_map_.fd, 0x1000, 0x2000, ELFCLASS32);
InitElf<Elf64_Ehdr, Elf64_Shdr>(elf64_at_map_.fd, 0x2000, 0x3000, ELFCLASS64);
}
void SetUp() override {
memory_ = new MemoryFake;
process_memory_.reset(memory_);
}
MemoryFake* memory_;
std::shared_ptr<Memory> process_memory_;
static TemporaryFile elf_;
static TemporaryFile elf_at_100_;
static TemporaryFile elf32_at_map_;
static TemporaryFile elf64_at_map_;
};
TemporaryFile MapInfoCreateMemoryTest::elf_;
TemporaryFile MapInfoCreateMemoryTest::elf_at_100_;
TemporaryFile MapInfoCreateMemoryTest::elf32_at_map_;
TemporaryFile MapInfoCreateMemoryTest::elf64_at_map_;
TEST_F(MapInfoCreateMemoryTest, end_le_start) {
MapInfo info(0x100, 0x100, 0, 0, elf_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() == nullptr);
info.end = 0xff;
memory.reset(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() == nullptr);
// Make sure this test is valid.
info.end = 0x101;
memory.reset(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
}
// Verify that if the offset is non-zero but there is no elf at the offset,
// that the full file is used.
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_full_file) {
MapInfo info(0x100, 0x200, 0x100, 0, elf_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
ASSERT_EQ(0x100U, info.elf_offset);
// Read the entire file.
std::vector<uint8_t> buffer(1024);
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 1024));
ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0);
ASSERT_EQ(ELFCLASS32, buffer[EI_CLASS]);
for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) {
ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i;
}
ASSERT_FALSE(memory->ReadFully(1024, buffer.data(), 1));
}
// Verify that if the offset is non-zero and there is an elf at that
// offset, that only part of the file is used.
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file) {
MapInfo info(0x100, 0x200, 0x100, 0, elf_at_100_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
ASSERT_EQ(0U, info.elf_offset);
// Read the valid part of the file.
std::vector<uint8_t> buffer(0x100);
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), 0x100));
ASSERT_TRUE(memcmp(buffer.data(), ELFMAG, SELFMAG) == 0);
ASSERT_EQ(ELFCLASS64, buffer[EI_CLASS]);
for (size_t i = EI_CLASS + 1; i < buffer.size(); i++) {
ASSERT_EQ(0, buffer[i]) << "Failed at byte " << i;
}
ASSERT_FALSE(memory->ReadFully(0x100, buffer.data(), 1));
}
// Verify that if the offset is non-zero and there is an elf at that
// offset, that only part of the file is used. Further verify that if the
// embedded elf is bigger than the initial map, the new object is larger
// than the original map size. Do this for a 32 bit elf and a 64 bit elf.
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf32) {
MapInfo info(0x5000, 0x6000, 0x1000, 0, elf32_at_map_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
ASSERT_EQ(0U, info.elf_offset);
// Verify the memory is a valid elf.
uint8_t e_ident[SELFMAG + 1];
ASSERT_TRUE(memory->ReadFully(0, e_ident, SELFMAG));
ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG));
// Read past the end of what would normally be the size of the map.
ASSERT_TRUE(memory->ReadFully(0x1000, e_ident, 1));
}
TEST_F(MapInfoCreateMemoryTest, file_backed_non_zero_offset_partial_file_whole_elf64) {
MapInfo info(0x7000, 0x8000, 0x2000, 0, elf64_at_map_.path);
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
ASSERT_EQ(0U, info.elf_offset);
// Verify the memory is a valid elf.
uint8_t e_ident[SELFMAG + 1];
ASSERT_TRUE(memory->ReadFully(0, e_ident, SELFMAG));
ASSERT_EQ(0, memcmp(e_ident, ELFMAG, SELFMAG));
// Read past the end of what would normally be the size of the map.
ASSERT_TRUE(memory->ReadFully(0x1000, e_ident, 1));
}
// Verify that device file names will never result in Memory object creation.
TEST_F(MapInfoCreateMemoryTest, check_device_maps) {
// Set up some memory so that a valid local memory object would
// be returned if the file mapping fails, but the device check is incorrect.
std::vector<uint8_t> buffer(1024);
MapInfo info;
info.start = reinterpret_cast<uint64_t>(buffer.data());
info.end = info.start + buffer.size();
info.offset = 0;
info.flags = 0x8000;
info.name = "/dev/something";
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() == nullptr);
}
TEST_F(MapInfoCreateMemoryTest, process_memory) {
MapInfo info;
info.start = 0x2000;
info.end = 0x3000;
info.offset = 0;
// Verify that the the process_memory object is used, so seed it
// with memory.
std::vector<uint8_t> buffer(1024);
for (size_t i = 0; i < buffer.size(); i++) {
buffer[i] = i % 256;
}
memory_->SetMemory(info.start, buffer.data(), buffer.size());
std::unique_ptr<Memory> memory(info.CreateMemory(process_memory_));
ASSERT_TRUE(memory.get() != nullptr);
memset(buffer.data(), 0, buffer.size());
ASSERT_TRUE(memory->ReadFully(0, buffer.data(), buffer.size()));
for (size_t i = 0; i < buffer.size(); i++) {
ASSERT_EQ(i % 256, buffer[i]) << "Failed at byte " << i;
}
// Try to read outside of the map size.
ASSERT_FALSE(memory->ReadFully(buffer.size(), buffer.data(), 1));
}
} // namespace unwindstack