android_system_core/fs_mgr/libsnapshot/snapuserd.cpp

843 lines
28 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <csignal>
#include <libsnapshot/snapuserd.h>
#include <libsnapshot/snapuserd_client.h>
#include <libsnapshot/snapuserd_daemon.h>
#include <libsnapshot/snapuserd_server.h>
namespace android {
namespace snapshot {
using namespace android;
using namespace android::dm;
using android::base::unique_fd;
#define DM_USER_MAP_READ 0
#define DM_USER_MAP_WRITE 1
static constexpr size_t PAYLOAD_SIZE = (1UL << 16);
static_assert(PAYLOAD_SIZE >= BLOCK_SIZE);
void BufferSink::Initialize(size_t size) {
buffer_size_ = size;
buffer_offset_ = 0;
buffer_ = std::make_unique<uint8_t[]>(size);
}
void* BufferSink::GetPayloadBuffer(size_t size) {
if ((buffer_size_ - buffer_offset_) < size) return nullptr;
char* buffer = reinterpret_cast<char*>(GetBufPtr());
struct dm_user_message* msg = (struct dm_user_message*)(&(buffer[0]));
return (char*)msg->payload.buf + buffer_offset_;
}
void* BufferSink::GetBuffer(size_t requested, size_t* actual) {
void* buf = GetPayloadBuffer(requested);
if (!buf) {
*actual = 0;
return nullptr;
}
*actual = requested;
return buf;
}
struct dm_user_header* BufferSink::GetHeaderPtr() {
CHECK(sizeof(struct dm_user_header) <= buffer_size_);
char* buf = reinterpret_cast<char*>(GetBufPtr());
struct dm_user_header* header = (struct dm_user_header*)(&(buf[0]));
return header;
}
// Construct kernel COW header in memory
// This header will be in sector 0. The IO
// request will always be 4k. After constructing
// the header, zero out the remaining block.
int Snapuserd::ConstructKernelCowHeader() {
void* buffer = bufsink_.GetPayloadBuffer(BLOCK_SIZE);
CHECK(buffer != nullptr);
memset(buffer, 0, BLOCK_SIZE);
struct disk_header* dh = reinterpret_cast<struct disk_header*>(buffer);
dh->magic = SNAP_MAGIC;
dh->valid = SNAPSHOT_VALID;
dh->version = SNAPSHOT_DISK_VERSION;
dh->chunk_size = CHUNK_SIZE;
return BLOCK_SIZE;
}
// Start the replace operation. This will read the
// internal COW format and if the block is compressed,
// it will be de-compressed.
int Snapuserd::ProcessReplaceOp(const CowOperation* cow_op) {
if (!reader_->ReadData(*cow_op, &bufsink_)) {
LOG(ERROR) << "ReadData failed for chunk: " << cow_op->new_block;
return -EIO;
}
return BLOCK_SIZE;
}
// Start the copy operation. This will read the backing
// block device which is represented by cow_op->source.
int Snapuserd::ProcessCopyOp(const CowOperation* cow_op) {
void* buffer = bufsink_.GetPayloadBuffer(BLOCK_SIZE);
CHECK(buffer != nullptr);
// Issue a single 4K IO. However, this can be optimized
// if the successive blocks are contiguous.
if (!android::base::ReadFullyAtOffset(backing_store_fd_, buffer, BLOCK_SIZE,
cow_op->source * BLOCK_SIZE)) {
LOG(ERROR) << "Copy-op failed. Read from backing store at: " << cow_op->source;
return -1;
}
return BLOCK_SIZE;
}
int Snapuserd::ProcessZeroOp() {
// Zero out the entire block
void* buffer = bufsink_.GetPayloadBuffer(BLOCK_SIZE);
CHECK(buffer != nullptr);
memset(buffer, 0, BLOCK_SIZE);
return BLOCK_SIZE;
}
/*
* Read the data of size bytes from a given chunk.
*
* Kernel can potentially merge the blocks if the
* successive chunks are contiguous. For chunk size of 8,
* there can be 256 disk exceptions; and if
* all 256 disk exceptions are contiguous, kernel can merge
* them into a single IO.
*
* Since each chunk in the disk exception
* mapping represents a 4k block, kernel can potentially
* issue 256*4k = 1M IO in one shot.
*
* Even though kernel assumes that the blocks are
* contiguous, we need to split the 1M IO into 4k chunks
* as each operation represents 4k and it can either be:
*
* 1: Replace operation
* 2: Copy operation
* 3: Zero operation
*
*/
int Snapuserd::ReadData(chunk_t chunk, size_t size) {
int ret = 0;
size_t read_size = size;
chunk_t chunk_key = chunk;
uint32_t stride;
lldiv_t divresult;
// Size should always be aligned
CHECK((read_size & (BLOCK_SIZE - 1)) == 0);
while (read_size > 0) {
const CowOperation* cow_op = chunk_map_[chunk_key];
CHECK(cow_op != nullptr);
int result;
switch (cow_op->type) {
case kCowReplaceOp: {
result = ProcessReplaceOp(cow_op);
break;
}
case kCowZeroOp: {
result = ProcessZeroOp();
break;
}
case kCowCopyOp: {
result = ProcessCopyOp(cow_op);
break;
}
default: {
LOG(ERROR) << "Unknown operation-type found: " << cow_op->type;
ret = -EIO;
goto done;
}
}
if (result < 0) {
ret = result;
goto done;
}
// Update the buffer offset
bufsink_.UpdateBufferOffset(BLOCK_SIZE);
read_size -= BLOCK_SIZE;
ret += BLOCK_SIZE;
// Start iterating the chunk incrementally; Since while
// constructing the metadata, we know that the chunk IDs
// are contiguous
chunk_key += 1;
if (cow_op->type == kCowCopyOp) CHECK(read_size == 0);
// This is similar to the way when chunk IDs were assigned
// in ReadMetadata().
//
// Skip if the chunk id represents a metadata chunk.
stride = exceptions_per_area_ + 1;
divresult = lldiv(chunk_key, stride);
if (divresult.rem == NUM_SNAPSHOT_HDR_CHUNKS) {
// Crossing exception boundary. Kernel will never
// issue IO which is spanning between a data chunk
// and a metadata chunk. This should be perfectly aligned.
//
// Since the input read_size is 4k aligned, we will
// always end up reading all 256 data chunks in one area.
// Thus, every multiple of 4K IO represents 256 data chunks
CHECK(read_size == 0);
break;
}
}
done:
// Reset the buffer offset
bufsink_.ResetBufferOffset();
return ret;
}
/*
* dm-snap does prefetch reads while reading disk-exceptions.
* By default, prefetch value is set to 12; this means that
* dm-snap will issue 12 areas wherein each area is a 4k page
* of disk-exceptions.
*
* If during prefetch, if the chunk-id seen is beyond the
* actual number of metadata page, fill the buffer with zero.
* When dm-snap starts parsing the buffer, it will stop
* reading metadata page once the buffer content is zero.
*/
int Snapuserd::ZerofillDiskExceptions(size_t read_size) {
size_t size = exceptions_per_area_ * sizeof(struct disk_exception);
if (read_size > size) return -EINVAL;
void* buffer = bufsink_.GetPayloadBuffer(size);
CHECK(buffer != nullptr);
memset(buffer, 0, size);
return size;
}
/*
* A disk exception is a simple mapping of old_chunk to new_chunk.
* When dm-snapshot device is created, kernel requests these mapping.
*
* Each disk exception is of size 16 bytes. Thus a single 4k page can
* have:
*
* exceptions_per_area_ = 4096/16 = 256. This entire 4k page
* is considered a metadata page and it is represented by chunk ID.
*
* Convert the chunk ID to index into the vector which gives us
* the metadata page.
*/
int Snapuserd::ReadDiskExceptions(chunk_t chunk, size_t read_size) {
uint32_t stride = exceptions_per_area_ + 1;
size_t size;
// ChunkID to vector index
lldiv_t divresult = lldiv(chunk, stride);
if (divresult.quot < vec_.size()) {
size = exceptions_per_area_ * sizeof(struct disk_exception);
if (read_size > size) return -EINVAL;
void* buffer = bufsink_.GetPayloadBuffer(size);
CHECK(buffer != nullptr);
memcpy(buffer, vec_[divresult.quot].get(), size);
} else {
size = ZerofillDiskExceptions(read_size);
}
return size;
}
loff_t Snapuserd::GetMergeStartOffset(void* merged_buffer, void* unmerged_buffer,
int* unmerged_exceptions) {
loff_t offset = 0;
*unmerged_exceptions = 0;
while (*unmerged_exceptions <= exceptions_per_area_) {
struct disk_exception* merged_de =
reinterpret_cast<struct disk_exception*>((char*)merged_buffer + offset);
struct disk_exception* cow_de =
reinterpret_cast<struct disk_exception*>((char*)unmerged_buffer + offset);
// Unmerged op by the kernel
if (merged_de->old_chunk != 0) {
CHECK(merged_de->new_chunk != 0);
CHECK(merged_de->old_chunk == cow_de->old_chunk);
CHECK(merged_de->new_chunk == cow_de->new_chunk);
offset += sizeof(struct disk_exception);
*unmerged_exceptions += 1;
continue;
}
// Merge complete on this exception. However, we don't know how many
// merged in this cycle; hence break here.
CHECK(merged_de->new_chunk == 0);
CHECK(merged_de->old_chunk == 0);
break;
}
CHECK(!(*unmerged_exceptions == exceptions_per_area_));
LOG(DEBUG) << "Unmerged_Exceptions: " << *unmerged_exceptions << " Offset: " << offset;
return offset;
}
int Snapuserd::GetNumberOfMergedOps(void* merged_buffer, void* unmerged_buffer, loff_t offset,
int unmerged_exceptions) {
int merged_ops_cur_iter = 0;
// Find the operations which are merged in this cycle.
while ((unmerged_exceptions + merged_ops_cur_iter) <= exceptions_per_area_) {
struct disk_exception* merged_de =
reinterpret_cast<struct disk_exception*>((char*)merged_buffer + offset);
struct disk_exception* cow_de =
reinterpret_cast<struct disk_exception*>((char*)unmerged_buffer + offset);
CHECK(merged_de->new_chunk == 0);
CHECK(merged_de->old_chunk == 0);
if (cow_de->new_chunk != 0) {
merged_ops_cur_iter += 1;
offset += sizeof(struct disk_exception);
// zero out to indicate that operation is merged.
cow_de->old_chunk = 0;
cow_de->new_chunk = 0;
} else if (cow_de->old_chunk == 0) {
// Already merged op in previous iteration or
// This could also represent a partially filled area.
//
// If the op was merged in previous cycle, we don't have
// to count them.
CHECK(cow_de->new_chunk == 0);
break;
} else {
LOG(ERROR) << "Error in merge operation. Found invalid metadata";
LOG(ERROR) << "merged_de-old-chunk: " << merged_de->old_chunk;
LOG(ERROR) << "merged_de-new-chunk: " << merged_de->new_chunk;
LOG(ERROR) << "cow_de-old-chunk: " << cow_de->old_chunk;
LOG(ERROR) << "cow_de-new-chunk: " << cow_de->new_chunk;
return -1;
}
}
return merged_ops_cur_iter;
}
bool Snapuserd::AdvanceMergedOps(int merged_ops_cur_iter) {
// Advance the merge operation pointer in the
// vector.
//
// cowop_iter_ is already initialized in ReadMetadata(). Just resume the
// merge process
while (!cowop_iter_->Done() && merged_ops_cur_iter) {
const CowOperation* cow_op = &cowop_iter_->Get();
CHECK(cow_op != nullptr);
if (cow_op->type == kCowFooterOp || cow_op->type == kCowLabelOp) {
cowop_iter_->Next();
continue;
}
if (!(cow_op->type == kCowReplaceOp || cow_op->type == kCowZeroOp ||
cow_op->type == kCowCopyOp)) {
LOG(ERROR) << "Unknown operation-type found during merge: " << cow_op->type;
return false;
}
merged_ops_cur_iter -= 1;
LOG(DEBUG) << "Merge op found of type " << cow_op->type
<< "Pending-merge-ops: " << merged_ops_cur_iter;
cowop_iter_->Next();
}
if (cowop_iter_->Done()) {
CHECK(merged_ops_cur_iter == 0);
LOG(DEBUG) << "All cow operations merged successfully in this cycle";
}
return true;
}
bool Snapuserd::ProcessMergeComplete(chunk_t chunk, void* buffer) {
uint32_t stride = exceptions_per_area_ + 1;
CowHeader header;
if (!reader_->GetHeader(&header)) {
LOG(ERROR) << "Failed to get header";
return false;
}
// ChunkID to vector index
lldiv_t divresult = lldiv(chunk, stride);
CHECK(divresult.quot < vec_.size());
LOG(DEBUG) << "ProcessMergeComplete: chunk: " << chunk << " Metadata-Index: " << divresult.quot;
int unmerged_exceptions = 0;
loff_t offset = GetMergeStartOffset(buffer, vec_[divresult.quot].get(), &unmerged_exceptions);
int merged_ops_cur_iter =
GetNumberOfMergedOps(buffer, vec_[divresult.quot].get(), offset, unmerged_exceptions);
// There should be at least one operation merged in this cycle
CHECK(merged_ops_cur_iter > 0);
if (!AdvanceMergedOps(merged_ops_cur_iter)) return false;
header.num_merge_ops += merged_ops_cur_iter;
reader_->UpdateMergeProgress(merged_ops_cur_iter);
if (!writer_->CommitMerge(merged_ops_cur_iter)) {
LOG(ERROR) << "CommitMerge failed...";
return false;
}
LOG(DEBUG) << "Merge success";
return true;
}
bool Snapuserd::IsChunkIdMetadata(chunk_t chunk) {
uint32_t stride = exceptions_per_area_ + 1;
lldiv_t divresult = lldiv(chunk, stride);
return (divresult.rem == NUM_SNAPSHOT_HDR_CHUNKS);
}
// Find the next free chunk-id to be assigned. Check if the next free
// chunk-id represents a metadata page. If so, skip it.
chunk_t Snapuserd::GetNextAllocatableChunkId(chunk_t chunk) {
chunk_t next_chunk = chunk + 1;
if (IsChunkIdMetadata(next_chunk)) {
next_chunk += 1;
}
return next_chunk;
}
/*
* Read the metadata from COW device and
* construct the metadata as required by the kernel.
*
* Please see design on kernel COW format
*
* 1: Read the metadata from internal COW device
* 2: There are 3 COW operations:
* a: Replace op
* b: Copy op
* c: Zero op
* 3: For each of the 3 operations, op->new_block
* represents the block number in the base device
* for which one of the 3 operations have to be applied.
* This represents the old_chunk in the kernel COW format
* 4: We need to assign new_chunk for a corresponding old_chunk
* 5: The algorithm is similar to how kernel assigns chunk number
* while creating exceptions. However, there are few cases
* which needs to be addressed here:
* a: During merge process, kernel scans the metadata page
* from backwards when merge is initiated. Since, we need
* to make sure that the merge ordering follows our COW format,
* we read the COW operation from backwards and populate the
* metadata so that when kernel starts the merging from backwards,
* those ops correspond to the beginning of our COW format.
* b: Kernel can merge successive operations if the two chunk IDs
* are contiguous. This can be problematic when there is a crash
* during merge; specifically when the merge operation has dependency.
* These dependencies can only happen during copy operations.
*
* To avoid this problem, we make sure that no two copy-operations
* do not have contiguous chunk IDs. Additionally, we make sure
* that each copy operation is merged individually.
* 6: Use a monotonically increasing chunk number to assign the
* new_chunk
* 7: Each chunk-id represents either a: Metadata page or b: Data page
* 8: Chunk-id representing a data page is stored in a map.
* 9: Chunk-id representing a metadata page is converted into a vector
* index. We store this in vector as kernel requests metadata during
* two stage:
* a: When initial dm-snapshot device is created, kernel requests
* all the metadata and stores it in its internal data-structures.
* b: During merge, kernel once again requests the same metadata
* once-again.
* In both these cases, a quick lookup based on chunk-id is done.
* 10: When chunk number is incremented, we need to make sure that
* if the chunk is representing a metadata page and skip.
* 11: Each 4k page will contain 256 disk exceptions. We call this
* exceptions_per_area_
* 12: Kernel will stop issuing metadata IO request when new-chunk ID is 0.
*/
bool Snapuserd::ReadMetadata() {
reader_ = std::make_unique<CowReader>();
CowHeader header;
CowOptions options;
bool prev_copy_op = false;
bool metadata_found = false;
LOG(DEBUG) << "ReadMetadata Start...";
if (!reader_->Parse(cow_fd_)) {
LOG(ERROR) << "Failed to parse";
return false;
}
if (!reader_->GetHeader(&header)) {
LOG(ERROR) << "Failed to get header";
return false;
}
CHECK(header.block_size == BLOCK_SIZE);
LOG(DEBUG) << "Merge-ops: " << header.num_merge_ops;
writer_ = std::make_unique<CowWriter>(options);
writer_->InitializeMerge(cow_fd_.get(), &header);
// Initialize the iterator for reading metadata
cowop_riter_ = reader_->GetRevOpIter();
exceptions_per_area_ = (CHUNK_SIZE << SECTOR_SHIFT) / sizeof(struct disk_exception);
// Start from chunk number 2. Chunk 0 represents header and chunk 1
// represents first metadata page.
chunk_t next_free = NUM_SNAPSHOT_HDR_CHUNKS + 1;
loff_t offset = 0;
std::unique_ptr<uint8_t[]> de_ptr =
std::make_unique<uint8_t[]>(exceptions_per_area_ * sizeof(struct disk_exception));
// This memset is important. Kernel will stop issuing IO when new-chunk ID
// is 0. When Area is not filled completely with all 256 exceptions,
// this memset will ensure that metadata read is completed.
memset(de_ptr.get(), 0, (exceptions_per_area_ * sizeof(struct disk_exception)));
size_t num_ops = 0;
while (!cowop_riter_->Done()) {
const CowOperation* cow_op = &cowop_riter_->Get();
struct disk_exception* de =
reinterpret_cast<struct disk_exception*>((char*)de_ptr.get() + offset);
if (cow_op->type == kCowFooterOp || cow_op->type == kCowLabelOp) {
cowop_riter_->Next();
continue;
}
if (!(cow_op->type == kCowReplaceOp || cow_op->type == kCowZeroOp ||
cow_op->type == kCowCopyOp)) {
LOG(ERROR) << "Unknown operation-type found: " << cow_op->type;
return false;
}
metadata_found = true;
if ((cow_op->type == kCowCopyOp || prev_copy_op)) {
next_free = GetNextAllocatableChunkId(next_free);
}
prev_copy_op = (cow_op->type == kCowCopyOp);
// Construct the disk-exception
de->old_chunk = cow_op->new_block;
de->new_chunk = next_free;
LOG(DEBUG) << "Old-chunk: " << de->old_chunk << "New-chunk: " << de->new_chunk;
// Store operation pointer.
chunk_map_[next_free] = cow_op;
num_ops += 1;
offset += sizeof(struct disk_exception);
cowop_riter_->Next();
if (num_ops == exceptions_per_area_) {
// Store it in vector at the right index. This maps the chunk-id to
// vector index.
vec_.push_back(std::move(de_ptr));
offset = 0;
num_ops = 0;
// Create buffer for next area
de_ptr = std::make_unique<uint8_t[]>(exceptions_per_area_ *
sizeof(struct disk_exception));
memset(de_ptr.get(), 0, (exceptions_per_area_ * sizeof(struct disk_exception)));
if (cowop_riter_->Done()) {
vec_.push_back(std::move(de_ptr));
LOG(DEBUG) << "ReadMetadata() completed; Number of Areas: " << vec_.size();
}
}
next_free = GetNextAllocatableChunkId(next_free);
}
// Partially filled area or there is no metadata
// If there is no metadata, fill with zero so that kernel
// is aware that merge is completed.
if (num_ops || !metadata_found) {
vec_.push_back(std::move(de_ptr));
LOG(DEBUG) << "ReadMetadata() completed. Partially filled area num_ops: " << num_ops
<< "Areas : " << vec_.size();
}
LOG(DEBUG) << "ReadMetadata() completed. chunk_id: " << next_free
<< "Num Sector: " << ChunkToSector(next_free);
// Initialize the iterator for merging
cowop_iter_ = reader_->GetOpIter();
// Total number of sectors required for creating dm-user device
num_sectors_ = ChunkToSector(next_free);
metadata_read_done_ = true;
return true;
}
void MyLogger(android::base::LogId, android::base::LogSeverity severity, const char*, const char*,
unsigned int, const char* message) {
if (severity == android::base::ERROR) {
fprintf(stderr, "%s\n", message);
} else {
fprintf(stdout, "%s\n", message);
}
}
// Read Header from dm-user misc device. This gives
// us the sector number for which IO is issued by dm-snapshot device
int Snapuserd::ReadDmUserHeader() {
int ret;
ret = read(ctrl_fd_, bufsink_.GetBufPtr(), sizeof(struct dm_user_header));
if (ret < 0) {
PLOG(ERROR) << "Control-read failed with: " << ret;
return ret;
}
return sizeof(struct dm_user_header);
}
// Send the payload/data back to dm-user misc device.
int Snapuserd::WriteDmUserPayload(size_t size) {
if (!android::base::WriteFully(ctrl_fd_, bufsink_.GetBufPtr(),
sizeof(struct dm_user_header) + size)) {
PLOG(ERROR) << "Write to dm-user failed";
return -1;
}
return sizeof(struct dm_user_header) + size;
}
bool Snapuserd::ReadDmUserPayload(void* buffer, size_t size) {
if (!android::base::ReadFully(ctrl_fd_, buffer, size)) {
PLOG(ERROR) << "ReadDmUserPayload failed";
return false;
}
return true;
}
bool Snapuserd::InitCowDevice(std::string& cow_device) {
cow_device_ = cow_device;
cow_fd_.reset(open(cow_device_.c_str(), O_RDWR));
if (cow_fd_ < 0) {
PLOG(ERROR) << "Open Failed: " << cow_device_;
return false;
}
// Allocate the buffer which is used to communicate between
// daemon and dm-user. The buffer comprises of header and a fixed payload.
// If the dm-user requests a big IO, the IO will be broken into chunks
// of PAYLOAD_SIZE.
size_t buf_size = sizeof(struct dm_user_header) + PAYLOAD_SIZE;
bufsink_.Initialize(buf_size);
return ReadMetadata();
}
bool Snapuserd::InitBackingAndControlDevice(std::string& backing_device,
std::string& control_device) {
backing_store_device_ = backing_device;
control_device_ = control_device;
backing_store_fd_.reset(open(backing_store_device_.c_str(), O_RDONLY));
if (backing_store_fd_ < 0) {
PLOG(ERROR) << "Open Failed: " << backing_store_device_;
return false;
}
ctrl_fd_.reset(open(control_device_.c_str(), O_RDWR));
if (ctrl_fd_ < 0) {
PLOG(ERROR) << "Unable to open " << control_device_;
return false;
}
return true;
}
int Snapuserd::Run() {
int ret = 0;
struct dm_user_header* header = bufsink_.GetHeaderPtr();
bufsink_.Clear();
ret = ReadDmUserHeader();
if (ret < 0) return ret;
LOG(DEBUG) << "dm-user returned " << ret << " bytes";
LOG(DEBUG) << "msg->seq: " << std::hex << header->seq;
LOG(DEBUG) << "msg->type: " << std::hex << header->type;
LOG(DEBUG) << "msg->flags: " << std::hex << header->flags;
LOG(DEBUG) << "msg->sector: " << std::hex << header->sector;
LOG(DEBUG) << "msg->len: " << std::hex << header->len;
switch (header->type) {
case DM_USER_MAP_READ: {
size_t remaining_size = header->len;
loff_t offset = 0;
ret = 0;
do {
size_t read_size = std::min(PAYLOAD_SIZE, remaining_size);
// Request to sector 0 is always for kernel
// representation of COW header. This IO should be only
// once during dm-snapshot device creation. We should
// never see multiple IO requests. Additionally this IO
// will always be a single 4k.
if (header->sector == 0) {
CHECK(metadata_read_done_ == true);
CHECK(read_size == BLOCK_SIZE);
ret = ConstructKernelCowHeader();
if (ret < 0) return ret;
} else {
// Convert the sector number to a chunk ID.
//
// Check if the chunk ID represents a metadata
// page. If the chunk ID is not found in the
// vector, then it points to a metadata page.
chunk_t chunk = SectorToChunk(header->sector);
if (chunk_map_.find(chunk) == chunk_map_.end()) {
ret = ReadDiskExceptions(chunk, read_size);
if (ret < 0) {
LOG(ERROR) << "ReadDiskExceptions failed";
return ret;
}
} else {
chunk_t num_chunks_read = (offset >> BLOCK_SHIFT);
ret = ReadData(chunk + num_chunks_read, read_size);
if (ret < 0) {
LOG(ERROR) << "ReadData failed";
// TODO: Bug 168259959: All the error paths from this function
// should send error code to dm-user thereby IO
// terminates with an error from dm-user. Returning
// here without sending error code will block the
// IO.
return ret;
}
}
}
ssize_t written = WriteDmUserPayload(ret);
if (written < 0) return written;
remaining_size -= ret;
offset += ret;
if (remaining_size) {
LOG(DEBUG) << "Write done ret: " << ret
<< " remaining size: " << remaining_size;
}
} while (remaining_size);
break;
}
case DM_USER_MAP_WRITE: {
size_t remaining_size = header->len;
size_t read_size = std::min(PAYLOAD_SIZE, remaining_size);
CHECK(read_size == BLOCK_SIZE);
CHECK(header->sector > 0);
chunk_t chunk = SectorToChunk(header->sector);
CHECK(chunk_map_.find(chunk) == chunk_map_.end());
void* buffer = bufsink_.GetPayloadBuffer(read_size);
CHECK(buffer != nullptr);
if (!ReadDmUserPayload(buffer, read_size)) {
return 1;
}
if (!ProcessMergeComplete(chunk, buffer)) {
LOG(ERROR) << "ProcessMergeComplete failed...";
return 1;
}
// Write the header only.
ssize_t written = WriteDmUserPayload(0);
if (written < 0) return written;
break;
}
}
LOG(DEBUG) << "read() finished, next message";
return 0;
}
} // namespace snapshot
} // namespace android
int main([[maybe_unused]] int argc, char** argv) {
android::base::InitLogging(argv, &android::base::KernelLogger);
android::snapshot::Daemon& daemon = android::snapshot::Daemon::Instance();
std::string socket = android::snapshot::kSnapuserdSocket;
if (argc >= 2) {
socket = argv[1];
}
daemon.StartServer(socket);
daemon.Run();
return 0;
}