android_device_qcom_common/cryptfs_hw/cryptfs_hw.c

389 lines
12 KiB
C
Executable File

/* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include <string.h>
#include <sys/limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <dirent.h>
#include <dlfcn.h>
#include <linux/qseecom.h>
#include "cutils/log.h"
#include "cutils/properties.h"
#include "cutils/android_reboot.h"
#include "keymaster_common.h"
#include "hardware.h"
#include "cryptfs_hw.h"
/*
* When device comes up or when user tries to change the password, user can
* try wrong password upto a certain number of times. If user enters wrong
* password further, HW would wipe all disk encryption related crypto data
* and would return an error ERR_MAX_PASSWORD_ATTEMPTS to VOLD. VOLD would
* wipe userdata partition once this error is received.
*/
#define ERR_MAX_PASSWORD_ATTEMPTS -10
#define MAX_PASSWORD_LEN 32
#define QCOM_ICE_STORAGE_UFS 1
#define QCOM_ICE_STORAGE_SDCC 2
#define SET_HW_DISK_ENC_KEY 1
#define UPDATE_HW_DISK_ENC_KEY 2
#define CRYPTFS_HW_KMS_CLEAR_KEY 0
#define CRYPTFS_HW_KMS_WIPE_KEY 1
#define CRYPTFS_HW_UP_CHECK_COUNT 10
#define CRYPTFS_HW_CLEAR_KEY_FAILED -11
#define CRYPTFS_HW_KMS_MAX_FAILURE -10
#define CRYPTFS_HW_UPDATE_KEY_FAILED -9
#define CRYPTFS_HW_WIPE_KEY_FAILED -8
#define CRYPTFS_HW_CREATE_KEY_FAILED -7
enum cryptfs_hw_key_management_usage_type {
CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION = 0x01,
CRYPTFS_HW_KM_USAGE_FILE_ENCRYPTION = 0x02,
CRYPTFS_HW_KM_USAGE_UFS_ICE_DISK_ENCRYPTION = 0x03,
CRYPTFS_HW_KM_USAGE_SDCC_ICE_DISK_ENCRYPTION = 0x04,
CRYPTFS_HW_KM_USAGE_MAX
};
static inline void* secure_memset(void* v, int c , size_t n)
{
volatile unsigned char* p = (volatile unsigned char* )v;
while (n--) *p++ = c;
return v;
}
static size_t memscpy(void *dst, size_t dst_size, const void *src, size_t src_size)
{
size_t min_size = (dst_size < src_size) ? dst_size : src_size;
memcpy(dst, src, min_size);
return min_size;
}
static int cryptfs_hw_create_key(enum cryptfs_hw_key_management_usage_type usage,
unsigned char *hash32)
{
struct qseecom_create_key_req req;
int qseecom_fd;
int32_t ret;
if (usage < CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION ||
usage >= CRYPTFS_HW_KM_USAGE_MAX) {
SLOGE("Error:: unsupported usage %d\n", usage);
return CRYPTFS_HW_CREATE_KEY_FAILED;
}
qseecom_fd = open("/dev/qseecom", O_RDWR);
if (qseecom_fd < 0) {
SLOGE("Error::Failed to open /dev/qseecom device\n");
return CRYPTFS_HW_CREATE_KEY_FAILED;;
}
if (!hash32) {
secure_memset((void *)req.hash32, 0, QSEECOM_HASH_SIZE);
} else {
memscpy((void *)req.hash32, QSEECOM_HASH_SIZE, (void *)hash32,
QSEECOM_HASH_SIZE);
}
req.usage = (enum qseecom_key_management_usage_type)usage;
ret = ioctl(qseecom_fd, QSEECOM_IOCTL_CREATE_KEY_REQ, &req);
if (ret) {
SLOGE("Error::ioctl call to create encryption key for usage %d failed with ret = %d, errno = %d\n",
usage, ret, errno);
if (errno == ERANGE)
ret = CRYPTFS_HW_KMS_MAX_FAILURE;
else
ret = CRYPTFS_HW_CREATE_KEY_FAILED;
} else {
SLOGE("SUCESS::ioctl call to create encryption key for usage %d success with ret = %d\n",
usage, ret);
}
close(qseecom_fd);
return ret;
}
static int __cryptfs_hw_wipe_clear_key(enum cryptfs_hw_key_management_usage_type usage, int wipe_key_flag)
{
struct qseecom_wipe_key_req req;
int32_t ret;
int qseecom_fd;
if (usage < CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION ||
usage >= CRYPTFS_HW_KM_USAGE_MAX) {
SLOGE("Error:: unsupported usage %d\n", usage);
return -1;
}
qseecom_fd = open("/dev/qseecom", O_RDWR);
if (qseecom_fd < 0) {
SLOGE("Error::Failed to open /dev/qseecom device\n");
return -1;
}
req.usage = (enum qseecom_key_management_usage_type)usage;
req.wipe_key_flag = wipe_key_flag;
ret = ioctl(qseecom_fd, QSEECOM_IOCTL_WIPE_KEY_REQ, &req);
close(qseecom_fd);
return ret;
}
static int cryptfs_hw_wipe_key(enum cryptfs_hw_key_management_usage_type usage)
{
int32_t ret;
ret = __cryptfs_hw_wipe_clear_key(usage, CRYPTFS_HW_KMS_WIPE_KEY);
if (ret) {
SLOGE("Error::ioctl call to wipe the encryption key for usage %d failed with ret = %d, errno = %d\n",
usage, ret, errno);
ret = CRYPTFS_HW_WIPE_KEY_FAILED;
} else {
SLOGE("SUCCESS::ioctl call to wipe the encryption key for usage %d success with ret = %d\n",
usage, ret);
}
return ret;
}
static int cryptfs_hw_clear_key(enum cryptfs_hw_key_management_usage_type usage)
{
int32_t ret;
ret = __cryptfs_hw_wipe_clear_key(usage, CRYPTFS_HW_KMS_CLEAR_KEY);
if (ret) {
SLOGE("Error::ioctl call to wipe the encryption key for usage %d failed with ret = %d, errno = %d\n",
usage, ret, errno);
ret = CRYPTFS_HW_CLEAR_KEY_FAILED;
} else {
SLOGE("SUCCESS::ioctl call to wipe the encryption key for usage %d success with ret = %d\n",
usage, ret);
}
return ret;
}
static int cryptfs_hw_update_key(enum cryptfs_hw_key_management_usage_type usage,
unsigned char *current_hash32, unsigned char *new_hash32)
{
struct qseecom_update_key_userinfo_req req;
int qseecom_fd;
int32_t ret;
if (usage < CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION ||
usage >= CRYPTFS_HW_KM_USAGE_MAX) {
SLOGE("Error:: unsupported usage %d\n", usage);
return CRYPTFS_HW_UPDATE_KEY_FAILED;
}
qseecom_fd = open("/dev/qseecom", O_RDWR);
if (qseecom_fd < 0) {
SLOGE("Error::Failed to open /dev/qseecom device\n");
return CRYPTFS_HW_UPDATE_KEY_FAILED;
}
req.usage = (enum qseecom_key_management_usage_type)usage;
if (!current_hash32) {
secure_memset((void *)req.current_hash32, 0, QSEECOM_HASH_SIZE);
} else {
memscpy((void *)req.current_hash32, QSEECOM_HASH_SIZE, (void *)current_hash32,
QSEECOM_HASH_SIZE);
}
if (!new_hash32) {
secure_memset((void *)req.new_hash32, 0, QSEECOM_HASH_SIZE);
} else {
memscpy((void *)req.new_hash32, QSEECOM_HASH_SIZE, (void *)new_hash32,
QSEECOM_HASH_SIZE);
}
ret = ioctl(qseecom_fd, QSEECOM_IOCTL_UPDATE_KEY_USER_INFO_REQ, &req);
if (ret) {
SLOGE("Error::ioctl call to update the encryption key for usage %d failed with ret = %d, errno = %d\n",
usage, ret, errno);
if (errno == ERANGE)
ret = CRYPTFS_HW_KMS_MAX_FAILURE;
else
ret = CRYPTFS_HW_UPDATE_KEY_FAILED;
} else {
SLOGE("SUCCESS::ioctl call to update the encryption key for usage %d success with ret = %d\n",
usage, ret);
}
close(qseecom_fd);
return ret;
}
static int map_usage(int usage)
{
int storage_type = is_ice_enabled();
if (usage == CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION) {
if (storage_type == QCOM_ICE_STORAGE_UFS) {
return CRYPTFS_HW_KM_USAGE_UFS_ICE_DISK_ENCRYPTION;
}
else if (storage_type == QCOM_ICE_STORAGE_SDCC) {
return CRYPTFS_HW_KM_USAGE_SDCC_ICE_DISK_ENCRYPTION;
}
}
return usage;
}
static unsigned char* get_tmp_passwd(const char* passwd)
{
int passwd_len = 0;
unsigned char * tmp_passwd = NULL;
if(passwd) {
tmp_passwd = (unsigned char*)malloc(MAX_PASSWORD_LEN);
if(tmp_passwd) {
secure_memset(tmp_passwd, 0, MAX_PASSWORD_LEN);
passwd_len = strnlen(passwd, MAX_PASSWORD_LEN);
memcpy(tmp_passwd, passwd, passwd_len);
} else {
SLOGE("%s: Failed to allocate memory for tmp passwd \n", __func__);
}
} else {
SLOGE("%s: Passed argument is NULL \n", __func__);
}
return tmp_passwd;
}
static int is_qseecom_up()
{
int i = 0;
char value[PROPERTY_VALUE_MAX] = {0};
for (; i<CRYPTFS_HW_UP_CHECK_COUNT; i++) {
property_get("sys.keymaster.loaded", value, "");
if (!strncmp(value, "true", PROPERTY_VALUE_MAX))
return 1;
usleep(100000);
}
return 0;
}
/*
* For NON-ICE targets, it would return 0 on success. On ICE based targets,
* it would return key index in the ICE Key LUT
*/
static int set_key(const char* currentpasswd, const char* passwd, const char* enc_mode, int operation)
{
int err = -1;
if (is_hw_disk_encryption(enc_mode)) {
unsigned char* tmp_passwd = get_tmp_passwd(passwd);
unsigned char* tmp_currentpasswd = get_tmp_passwd(currentpasswd);
if (tmp_passwd) {
if (operation == UPDATE_HW_DISK_ENC_KEY) {
if (tmp_currentpasswd) {
err = cryptfs_hw_update_key(map_usage(CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION), tmp_currentpasswd, tmp_passwd);
secure_memset(tmp_currentpasswd, 0, MAX_PASSWORD_LEN);
}
} else if (operation == SET_HW_DISK_ENC_KEY) {
err = cryptfs_hw_create_key(map_usage(CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION), tmp_passwd);
}
if(err < 0) {
if(ERR_MAX_PASSWORD_ATTEMPTS == err)
SLOGI("Maximum wrong password attempts reached, will erase userdata\n");
}
secure_memset(tmp_passwd, 0, MAX_PASSWORD_LEN);
free(tmp_passwd);
free(tmp_currentpasswd);
}
}
return err;
}
int set_hw_device_encryption_key(const char* passwd, const char* enc_mode)
{
return set_key(NULL, passwd, enc_mode, SET_HW_DISK_ENC_KEY);
}
int update_hw_device_encryption_key(const char* oldpw, const char* newpw, const char* enc_mode)
{
return set_key(oldpw, newpw, enc_mode, UPDATE_HW_DISK_ENC_KEY);
}
unsigned int is_hw_disk_encryption(const char* encryption_mode)
{
int ret = 0;
if(encryption_mode) {
if (!strcmp(encryption_mode, "aes-xts")) {
SLOGD("HW based disk encryption is enabled \n");
ret = 1;
}
}
return ret;
}
int is_ice_enabled(void)
{
char prop_storage[PATH_MAX];
int storage_type = 0;
int fd;
if (property_get("ro.boot.bootdevice", prop_storage, "")) {
if (strstr(prop_storage, "ufs")) {
/* All UFS based devices has ICE in it. So we dont need
* to check if corresponding device exists or not
*/
storage_type = QCOM_ICE_STORAGE_UFS;
} else if (strstr(prop_storage, "sdhc")) {
if (access("/dev/icesdcc", F_OK) != -1)
storage_type = QCOM_ICE_STORAGE_SDCC;
}
}
return storage_type;
}
int clear_hw_device_encryption_key()
{
return cryptfs_hw_wipe_key(map_usage(CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION));
}
static int get_keymaster_version()
{
int rc = -1;
const hw_module_t* mod;
rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
if (rc) {
SLOGE("could not find any keystore module");
return rc;
}
return mod->module_api_version;
}
int should_use_keymaster()
{
/* HW FDE key would be tied to keymaster only if:
* New Keymaster is available
* keymaster partition exists on the device
*/
int rc = 0;
if (get_keymaster_version() != KEYMASTER_MODULE_API_VERSION_1_0) {
SLOGI("Keymaster version is not 1.0");
return rc;
}
return 1;
}