cryptfs_hw: Add new APIs for key management

Add new APIs for create, wipe and update keys, which is
required for HW based Full Disk Encryption.

Change-Id: I483ce1a734db7b7cbfb2a06fe74baf559cfb51fb
This commit is contained in:
AnilKumar Chimata 2017-06-22 23:55:07 +05:30
parent 69513a67c9
commit 0047ad01c1
2 changed files with 200 additions and 90 deletions

View File

@ -13,7 +13,8 @@ commonSharedLibraries := \
liblog
commonIncludes := \
hardware/libhardware/include/hardware/
hardware/libhardware/include/hardware/ \
$(TARGET_OUT_INTERMEDIATES)/KERNEL_OBJ/usr/include \
LOCAL_C_INCLUDES := $(commonIncludes)
LOCAL_SRC_FILES := $(sourceFiles)

View File

@ -26,7 +26,6 @@
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cryptfs_hw.h>
#include <stdlib.h>
#include <string.h>
#include <sys/limits.h>
@ -35,59 +34,215 @@
#include <fcntl.h>
#include <dirent.h>
#include <dlfcn.h>
#include <linux/qseecom.h>
#include "cutils/log.h"
#include "cutils/properties.h"
#include "cutils/android_reboot.h"
#include "keymaster_common.h"
#include "hardware.h"
#include "cryptfs_hw.h"
#if defined(__LP64__)
#define QSEECOM_LIBRARY_PATH "/vendor/lib64/libQSEEComAPI.so"
#else
#define QSEECOM_LIBRARY_PATH "/vendor/lib/libQSEEComAPI.so"
#endif
/*
* When device comes up or when user tries to change the password, user can
* try wrong password upto a certain number of times. If user enters wrong
* password further, HW would wipe all disk encryption related crypto data
* and would return an error ERR_MAX_PASSWORD_ATTEMPTS to VOLD. VOLD would
* wipe userdata partition once this error is received.
*/
#define ERR_MAX_PASSWORD_ATTEMPTS -10
#define MAX_PASSWORD_LEN 32
#define QCOM_ICE_STORAGE_UFS 1
#define QCOM_ICE_STORAGE_SDCC 2
#define SET_HW_DISK_ENC_KEY 1
#define UPDATE_HW_DISK_ENC_KEY 2
#define CRYPTFS_HW_KMS_CLEAR_KEY 0
#define CRYPTFS_HW_KMS_WIPE_KEY 1
#define CRYPTFS_HW_UP_CHECK_COUNT 10
#define CRYPTFS_HW_CLEAR_KEY_FAILED -11
#define CRYPTFS_HW_KMS_MAX_FAILURE -10
#define CRYPTFS_HW_UPDATE_KEY_FAILED -9
#define CRYPTFS_HW_WIPE_KEY_FAILED -8
#define CRYPTFS_HW_CREATE_KEY_FAILED -7
// When device comes up or when user tries to change the password, user can
// try wrong password upto a certain number of times. If user enters wrong
// password further, HW would wipe all disk encryption related crypto data
// and would return an error ERR_MAX_PASSWORD_ATTEMPTS to VOLD. VOLD would
// wipe userdata partition once this error is received.
#define ERR_MAX_PASSWORD_ATTEMPTS -10
#define QSEECOM_DISK_ENCRYPTION 1
#define QSEECOM_UFS_ICE_DISK_ENCRYPTION 3
#define QSEECOM_SDCC_ICE_DISK_ENCRYPTION 4
#define MAX_PASSWORD_LEN 32
#define QCOM_ICE_STORAGE_UFS 1
#define QCOM_ICE_STORAGE_SDCC 2
enum cryptfs_hw_key_management_usage_type {
CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION = 0x01,
CRYPTFS_HW_KM_USAGE_FILE_ENCRYPTION = 0x02,
CRYPTFS_HW_KM_USAGE_UFS_ICE_DISK_ENCRYPTION = 0x03,
CRYPTFS_HW_KM_USAGE_SDCC_ICE_DISK_ENCRYPTION = 0x04,
CRYPTFS_HW_KM_USAGE_MAX
};
/* Operations that be performed on HW based device encryption key */
#define SET_HW_DISK_ENC_KEY 1
#define UPDATE_HW_DISK_ENC_KEY 2
#define QSEECOM_UP_CHECK_COUNT 10
static int loaded_library = 0;
static int (*qseecom_create_key)(int, void*);
static int (*qseecom_update_key)(int, void*, void*);
static int (*qseecom_wipe_key)(int);
inline void* secure_memset(void* v, int c , size_t n) {
volatile unsigned char* p = (volatile unsigned char* )v;
while (n--) *p++ = c;
return v;
static inline void* secure_memset(void* v, int c , size_t n)
{
volatile unsigned char* p = (volatile unsigned char* )v;
while (n--) *p++ = c;
return v;
}
static size_t memscpy(void *dst, size_t dst_size, const void *src, size_t src_size)
{
size_t min_size = (dst_size < src_size) ? dst_size : src_size;
memcpy(dst, src, min_size);
return min_size;
}
static int cryptfs_hw_create_key(enum cryptfs_hw_key_management_usage_type usage,
unsigned char *hash32)
{
struct qseecom_create_key_req req;
int qseecom_fd;
int32_t ret;
if (usage < CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION ||
usage >= CRYPTFS_HW_KM_USAGE_MAX) {
SLOGE("Error:: unsupported usage %d\n", usage);
return CRYPTFS_HW_CREATE_KEY_FAILED;
}
qseecom_fd = open("/dev/qseecom", O_RDWR);
if (qseecom_fd < 0) {
SLOGE("Error::Failed to open /dev/qseecom device\n");
return CRYPTFS_HW_CREATE_KEY_FAILED;;
}
if (!hash32) {
secure_memset((void *)req.hash32, 0, QSEECOM_HASH_SIZE);
} else {
memscpy((void *)req.hash32, QSEECOM_HASH_SIZE, (void *)hash32,
QSEECOM_HASH_SIZE);
}
req.usage = (enum qseecom_key_management_usage_type)usage;
ret = ioctl(qseecom_fd, QSEECOM_IOCTL_CREATE_KEY_REQ, &req);
if (ret) {
SLOGE("Error::ioctl call to create encryption key for usage %d failed with ret = %d, errno = %d\n",
usage, ret, errno);
if (errno == ERANGE)
ret = CRYPTFS_HW_KMS_MAX_FAILURE;
else
ret = CRYPTFS_HW_CREATE_KEY_FAILED;
} else {
SLOGE("SUCESS::ioctl call to create encryption key for usage %d success with ret = %d\n",
usage, ret);
}
close(qseecom_fd);
return ret;
}
static int __cryptfs_hw_wipe_clear_key(enum cryptfs_hw_key_management_usage_type usage, int wipe_key_flag)
{
struct qseecom_wipe_key_req req;
int32_t ret;
int qseecom_fd;
if (usage < CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION ||
usage >= CRYPTFS_HW_KM_USAGE_MAX) {
SLOGE("Error:: unsupported usage %d\n", usage);
return -1;
}
qseecom_fd = open("/dev/qseecom", O_RDWR);
if (qseecom_fd < 0) {
SLOGE("Error::Failed to open /dev/qseecom device\n");
return -1;
}
req.usage = (enum qseecom_key_management_usage_type)usage;
req.wipe_key_flag = wipe_key_flag;
ret = ioctl(qseecom_fd, QSEECOM_IOCTL_WIPE_KEY_REQ, &req);
close(qseecom_fd);
return ret;
}
static int cryptfs_hw_wipe_key(enum cryptfs_hw_key_management_usage_type usage)
{
int32_t ret;
ret = __cryptfs_hw_wipe_clear_key(usage, CRYPTFS_HW_KMS_WIPE_KEY);
if (ret) {
SLOGE("Error::ioctl call to wipe the encryption key for usage %d failed with ret = %d, errno = %d\n",
usage, ret, errno);
ret = CRYPTFS_HW_WIPE_KEY_FAILED;
} else {
SLOGE("SUCCESS::ioctl call to wipe the encryption key for usage %d success with ret = %d\n",
usage, ret);
}
return ret;
}
static int cryptfs_hw_clear_key(enum cryptfs_hw_key_management_usage_type usage)
{
int32_t ret;
ret = __cryptfs_hw_wipe_clear_key(usage, CRYPTFS_HW_KMS_CLEAR_KEY);
if (ret) {
SLOGE("Error::ioctl call to wipe the encryption key for usage %d failed with ret = %d, errno = %d\n",
usage, ret, errno);
ret = CRYPTFS_HW_CLEAR_KEY_FAILED;
} else {
SLOGE("SUCCESS::ioctl call to wipe the encryption key for usage %d success with ret = %d\n",
usage, ret);
}
return ret;
}
static int cryptfs_hw_update_key(enum cryptfs_hw_key_management_usage_type usage,
unsigned char *current_hash32, unsigned char *new_hash32)
{
struct qseecom_update_key_userinfo_req req;
int qseecom_fd;
int32_t ret;
if (usage < CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION ||
usage >= CRYPTFS_HW_KM_USAGE_MAX) {
SLOGE("Error:: unsupported usage %d\n", usage);
return CRYPTFS_HW_UPDATE_KEY_FAILED;
}
qseecom_fd = open("/dev/qseecom", O_RDWR);
if (qseecom_fd < 0) {
SLOGE("Error::Failed to open /dev/qseecom device\n");
return CRYPTFS_HW_UPDATE_KEY_FAILED;
}
req.usage = (enum qseecom_key_management_usage_type)usage;
if (!current_hash32) {
secure_memset((void *)req.current_hash32, 0, QSEECOM_HASH_SIZE);
} else {
memscpy((void *)req.current_hash32, QSEECOM_HASH_SIZE, (void *)current_hash32,
QSEECOM_HASH_SIZE);
}
if (!new_hash32) {
secure_memset((void *)req.new_hash32, 0, QSEECOM_HASH_SIZE);
} else {
memscpy((void *)req.new_hash32, QSEECOM_HASH_SIZE, (void *)new_hash32,
QSEECOM_HASH_SIZE);
}
ret = ioctl(qseecom_fd, QSEECOM_IOCTL_UPDATE_KEY_USER_INFO_REQ, &req);
if (ret) {
SLOGE("Error::ioctl call to update the encryption key for usage %d failed with ret = %d, errno = %d\n",
usage, ret, errno);
if (errno == ERANGE)
ret = CRYPTFS_HW_KMS_MAX_FAILURE;
else
ret = CRYPTFS_HW_UPDATE_KEY_FAILED;
} else {
SLOGE("SUCCESS::ioctl call to update the encryption key for usage %d success with ret = %d\n",
usage, ret);
}
close(qseecom_fd);
return ret;
}
static int map_usage(int usage)
{
int storage_type = is_ice_enabled();
if (usage == QSEECOM_DISK_ENCRYPTION) {
if (usage == CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION) {
if (storage_type == QCOM_ICE_STORAGE_UFS) {
return QSEECOM_UFS_ICE_DISK_ENCRYPTION;
return CRYPTFS_HW_KM_USAGE_UFS_ICE_DISK_ENCRYPTION;
}
else if (storage_type == QCOM_ICE_STORAGE_SDCC) {
return QSEECOM_SDCC_ICE_DISK_ENCRYPTION ;
return CRYPTFS_HW_KM_USAGE_SDCC_ICE_DISK_ENCRYPTION;
}
}
return usage;
@ -100,7 +255,7 @@ static unsigned char* get_tmp_passwd(const char* passwd)
if(passwd) {
tmp_passwd = (unsigned char*)malloc(MAX_PASSWORD_LEN);
if(tmp_passwd) {
memset(tmp_passwd, 0, MAX_PASSWORD_LEN);
secure_memset(tmp_passwd, 0, MAX_PASSWORD_LEN);
passwd_len = strnlen(passwd, MAX_PASSWORD_LEN);
memcpy(tmp_passwd, passwd, passwd_len);
} else {
@ -117,7 +272,7 @@ static int is_qseecom_up()
int i = 0;
char value[PROPERTY_VALUE_MAX] = {0};
for (; i<QSEECOM_UP_CHECK_COUNT; i++) {
for (; i<CRYPTFS_HW_UP_CHECK_COUNT; i++) {
property_get("sys.keymaster.loaded", value, "");
if (!strncmp(value, "true", PROPERTY_VALUE_MAX))
return 1;
@ -126,49 +281,6 @@ static int is_qseecom_up()
return 0;
}
static int load_qseecom_library()
{
const char *error = NULL;
if (loaded_library)
return loaded_library;
if (!is_qseecom_up()) {
SLOGE("Timed out waiting for QSEECom listeners..aborting FDE key operation");
return 0;
}
void * handle = dlopen(QSEECOM_LIBRARY_PATH, RTLD_NOW);
if(handle) {
dlerror(); /* Clear any existing error */
*(void **) (&qseecom_create_key) = dlsym(handle,"QSEECom_create_key");
if((error = dlerror()) == NULL) {
SLOGD("Success loading QSEECom_create_key \n");
*(void **) (&qseecom_update_key) = dlsym(handle,"QSEECom_update_key_user_info");
if ((error = dlerror()) == NULL) {
SLOGD("Success loading QSEECom_update_key_user_info\n");
*(void **) (&qseecom_wipe_key) = dlsym(handle,"QSEECom_wipe_key");
if ((error = dlerror()) == NULL) {
loaded_library = 1;
SLOGD("Success loading QSEECom_wipe_key \n");
}
else
SLOGE("Error %s loading symbols for QSEECom APIs \n", error);
}
else
SLOGE("Error %s loading symbols for QSEECom APIs \n", error);
}
} else {
SLOGE("Could not load libQSEEComAPI.so \n");
}
if(error)
dlclose(handle);
return loaded_library;
}
/*
* For NON-ICE targets, it would return 0 on success. On ICE based targets,
* it would return key index in the ICE Key LUT
@ -176,17 +288,17 @@ static int load_qseecom_library()
static int set_key(const char* currentpasswd, const char* passwd, const char* enc_mode, int operation)
{
int err = -1;
if (is_hw_disk_encryption(enc_mode) && load_qseecom_library()) {
if (is_hw_disk_encryption(enc_mode)) {
unsigned char* tmp_passwd = get_tmp_passwd(passwd);
unsigned char* tmp_currentpasswd = get_tmp_passwd(currentpasswd);
if(tmp_passwd) {
if (tmp_passwd) {
if (operation == UPDATE_HW_DISK_ENC_KEY) {
if (tmp_currentpasswd) {
err = qseecom_update_key(map_usage(QSEECOM_DISK_ENCRYPTION), tmp_currentpasswd, tmp_passwd);
err = cryptfs_hw_update_key(map_usage(CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION), tmp_currentpasswd, tmp_passwd);
secure_memset(tmp_currentpasswd, 0, MAX_PASSWORD_LEN);
}
} else if (operation == SET_HW_DISK_ENC_KEY) {
err = qseecom_create_key(map_usage(QSEECOM_DISK_ENCRYPTION), tmp_passwd);
err = cryptfs_hw_create_key(map_usage(CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION), tmp_passwd);
}
if(err < 0) {
if(ERR_MAX_PASSWORD_ATTEMPTS == err)
@ -244,10 +356,7 @@ int is_ice_enabled(void)
int clear_hw_device_encryption_key()
{
if (load_qseecom_library())
return qseecom_wipe_key(map_usage(QSEECOM_DISK_ENCRYPTION));
return 0;
return cryptfs_hw_wipe_key(map_usage(CRYPTFS_HW_KM_USAGE_DISK_ENCRYPTION));
}
static int get_keymaster_version()