655 lines
22 KiB
C
655 lines
22 KiB
C
/*
|
|
* Copyright (C) 2009 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* This program constructs binary patches for images -- such as boot.img
|
|
* and recovery.img -- that consist primarily of large chunks of gzipped
|
|
* data interspersed with uncompressed data. Doing a naive bsdiff of
|
|
* these files is not useful because small changes in the data lead to
|
|
* large changes in the compressed bitstream; bsdiff patches of gzipped
|
|
* data are typically as large as the data itself.
|
|
*
|
|
* To patch these usefully, we break the source and target images up into
|
|
* chunks of two types: "normal" and "gzip". Normal chunks are simply
|
|
* patched using a plain bsdiff. Gzip chunks are first expanded, then a
|
|
* bsdiff is applied to the uncompressed data, then the patched data is
|
|
* gzipped using the same encoder parameters. Patched chunks are
|
|
* concatenated together to create the output file; the output image
|
|
* should be *exactly* the same series of bytes as the target image used
|
|
* originally to generate the patch.
|
|
*
|
|
* To work well with this tool, the gzipped sections of the target
|
|
* image must have been generated using the same deflate encoder that
|
|
* is available in applypatch, namely, the one in the zlib library.
|
|
* In practice this means that images should be compressed using the
|
|
* "minigzip" tool included in the zlib distribution, not the GNU gzip
|
|
* program.
|
|
*
|
|
* An "imgdiff" patch consists of a header describing the chunk structure
|
|
* of the file and any encoding parameters needed for the gzipped
|
|
* chunks, followed by N bsdiff patches, one per chunk.
|
|
*
|
|
* For a diff to be generated, the source and target images must have the
|
|
* same "chunk" structure: that is, the same number of gzipped and normal
|
|
* chunks in the same order. Android boot and recovery images currently
|
|
* consist of five chunks: a small normal header, a gzipped kernel, a
|
|
* small normal section, a gzipped ramdisk, and finally a small normal
|
|
* footer.
|
|
*
|
|
* Caveats: we locate gzipped sections within the source and target
|
|
* images by searching for the byte sequence 1f8b0800: 1f8b is the gzip
|
|
* magic number; 08 specifies the "deflate" encoding [the only encoding
|
|
* supported by the gzip standard]; and 00 is the flags byte. We do not
|
|
* currently support any extra header fields (which would be indicated by
|
|
* a nonzero flags byte). We also don't handle the case when that byte
|
|
* sequence appears spuriously in the file. (Note that it would have to
|
|
* occur spuriously within a normal chunk to be a problem.)
|
|
*
|
|
*
|
|
* The imgdiff patch header looks like this:
|
|
*
|
|
* "IMGDIFF1" (8) [magic number and version]
|
|
* chunk count (4)
|
|
* for each chunk:
|
|
* chunk type (4) [CHUNK_NORMAL or CHUNK_GZIP]
|
|
* source start (8)
|
|
* source len (8)
|
|
* bsdiff patch offset (8) [from start of patch file]
|
|
* if chunk type == CHUNK_GZIP:
|
|
* source expanded len (8) [size of uncompressed source]
|
|
* target expected len (8) [size of uncompressed target]
|
|
* gzip level (4)
|
|
* method (4)
|
|
* windowBits (4)
|
|
* memLevel (4)
|
|
* strategy (4)
|
|
* gzip header len (4)
|
|
* gzip header (gzip header len)
|
|
* gzip footer (8)
|
|
*
|
|
* All integers are little-endian. "source start" and "source len"
|
|
* specify the section of the input image that comprises this chunk,
|
|
* including the gzip header and footer for gzip chunks. "source
|
|
* expanded len" is the size of the uncompressed source data. "target
|
|
* expected len" is the size of the uncompressed data after applying
|
|
* the bsdiff patch. The next five parameters specify the zlib
|
|
* parameters to be used when compressing the patched data, and the
|
|
* next three specify the header and footer to be wrapped around the
|
|
* compressed data to create the output chunk (so that header contents
|
|
* like the timestamp are recreated exactly).
|
|
*
|
|
* After the header there are 'chunk count' bsdiff patches; the offset
|
|
* of each from the beginning of the file is specified in the header.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
|
|
#include "zlib.h"
|
|
#include "imgdiff.h"
|
|
|
|
typedef struct {
|
|
int type; // CHUNK_NORMAL or CHUNK_GZIP
|
|
size_t start; // offset of chunk in original image file
|
|
|
|
size_t len;
|
|
unsigned char* data; // data to be patched (ie, uncompressed, for
|
|
// gzip chunks)
|
|
|
|
// everything else is for CHUNK_GZIP chunks only:
|
|
|
|
size_t gzip_header_len;
|
|
unsigned char* gzip_header;
|
|
unsigned char* gzip_footer;
|
|
|
|
// original (compressed) gzip data, including header and footer
|
|
size_t gzip_len;
|
|
unsigned char* gzip_data;
|
|
|
|
// deflate encoder parameters
|
|
int level, method, windowBits, memLevel, strategy;
|
|
} ImageChunk;
|
|
|
|
/*
|
|
* Read the given file and break it up into chunks, putting the number
|
|
* of chunks and their info in *num_chunks and **chunks,
|
|
* respectively. Returns a malloc'd block of memory containing the
|
|
* contents of the file; various pointers in the output chunk array
|
|
* will point into this block of memory. The caller should free the
|
|
* return value when done with all the chunks. Returns NULL on
|
|
* failure.
|
|
*/
|
|
unsigned char* ReadImage(const char* filename,
|
|
int* num_chunks, ImageChunk** chunks) {
|
|
struct stat st;
|
|
if (stat(filename, &st) != 0) {
|
|
fprintf(stderr, "failed to stat \"%s\": %s\n", filename, strerror(errno));
|
|
return NULL;
|
|
}
|
|
|
|
unsigned char* img = malloc(st.st_size + 4);
|
|
FILE* f = fopen(filename, "rb");
|
|
if (fread(img, 1, st.st_size, f) != st.st_size) {
|
|
fprintf(stderr, "failed to read \"%s\" %s\n", filename, strerror(errno));
|
|
fclose(f);
|
|
return NULL;
|
|
}
|
|
fclose(f);
|
|
|
|
// append 4 zero bytes to the data so we can always search for the
|
|
// four-byte string 1f8b0800 starting at any point in the actual
|
|
// file data, without special-casing the end of the data.
|
|
memset(img+st.st_size, 0, 4);
|
|
|
|
size_t pos = 0;
|
|
|
|
*num_chunks = 0;
|
|
*chunks = NULL;
|
|
|
|
while (pos < st.st_size) {
|
|
unsigned char* p = img+pos;
|
|
|
|
// Reallocate the list for every chunk; we expect the number of
|
|
// chunks to be small (5 for typical boot and recovery images).
|
|
++*num_chunks;
|
|
*chunks = realloc(*chunks, *num_chunks * sizeof(ImageChunk));
|
|
ImageChunk* curr = *chunks + (*num_chunks-1);
|
|
curr->start = pos;
|
|
|
|
if (st.st_size - pos >= 4 &&
|
|
p[0] == 0x1f && p[1] == 0x8b &&
|
|
p[2] == 0x08 && // deflate compression
|
|
p[3] == 0x00) { // no header flags
|
|
// 'pos' is the offset of the start of a gzip chunk.
|
|
|
|
curr->type = CHUNK_GZIP;
|
|
curr->gzip_header_len = GZIP_HEADER_LEN;
|
|
curr->gzip_header = p;
|
|
|
|
// We must decompress this chunk in order to discover where it
|
|
// ends, and so we can put the uncompressed data and its length
|
|
// into curr->data and curr->len;
|
|
|
|
size_t allocated = 32768;
|
|
curr->len = 0;
|
|
curr->data = malloc(allocated);
|
|
curr->gzip_data = p;
|
|
|
|
z_stream strm;
|
|
strm.zalloc = Z_NULL;
|
|
strm.zfree = Z_NULL;
|
|
strm.opaque = Z_NULL;
|
|
strm.avail_in = st.st_size - (pos + curr->gzip_header_len);
|
|
strm.next_in = p + GZIP_HEADER_LEN;
|
|
|
|
// -15 means we are decoding a 'raw' deflate stream; zlib will
|
|
// not expect zlib headers.
|
|
int ret = inflateInit2(&strm, -15);
|
|
|
|
do {
|
|
strm.avail_out = allocated - curr->len;
|
|
strm.next_out = curr->data + curr->len;
|
|
ret = inflate(&strm, Z_NO_FLUSH);
|
|
curr->len = allocated - strm.avail_out;
|
|
if (strm.avail_out == 0) {
|
|
allocated *= 2;
|
|
curr->data = realloc(curr->data, allocated);
|
|
}
|
|
} while (ret != Z_STREAM_END);
|
|
|
|
curr->gzip_len = st.st_size - strm.avail_in - pos + GZIP_FOOTER_LEN;
|
|
pos = st.st_size - strm.avail_in;
|
|
inflateEnd(&strm);
|
|
|
|
// consume the gzip footer.
|
|
curr->gzip_footer = img+pos;
|
|
pos += GZIP_FOOTER_LEN;
|
|
p = img+pos;
|
|
|
|
// The footer (that we just skipped over) contains the size of
|
|
// the uncompressed data. Double-check to make sure that it
|
|
// matches the size of the data we got when we actually did
|
|
// the decompression.
|
|
size_t footer_size = p[-4] + (p[-3] << 8) + (p[-2] << 16) + (p[-1] << 24);
|
|
if (footer_size != curr->len) {
|
|
fprintf(stderr, "Error: footer size %d != decompressed size %d\n",
|
|
footer_size, curr->len);
|
|
free(img);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
// 'pos' is not the offset of the start of a gzip chunk, so scan
|
|
// forward until we find a gzip header.
|
|
curr->type = CHUNK_NORMAL;
|
|
curr->data = p;
|
|
|
|
for (curr->len = 0; curr->len < (st.st_size - pos); ++curr->len) {
|
|
if (p[curr->len] == 0x1f &&
|
|
p[curr->len+1] == 0x8b &&
|
|
p[curr->len+2] == 0x08 &&
|
|
p[curr->len+3] == 0x00) {
|
|
break;
|
|
}
|
|
}
|
|
pos += curr->len;
|
|
}
|
|
}
|
|
|
|
return img;
|
|
}
|
|
|
|
#define BUFFER_SIZE 32768
|
|
|
|
/*
|
|
* Takes the uncompressed data stored in the chunk, compresses it
|
|
* using the zlib parameters stored in the chunk, and checks that it
|
|
* matches exactly the compressed data we started with (also stored in
|
|
* the chunk). Return 0 on success.
|
|
*/
|
|
int TryReconstruction(ImageChunk* chunk, unsigned char* out) {
|
|
size_t p = chunk->gzip_header_len;
|
|
|
|
z_stream strm;
|
|
strm.zalloc = Z_NULL;
|
|
strm.zfree = Z_NULL;
|
|
strm.opaque = Z_NULL;
|
|
strm.avail_in = chunk->len;
|
|
strm.next_in = chunk->data;
|
|
int ret;
|
|
ret = deflateInit2(&strm, chunk->level, chunk->method, chunk->windowBits,
|
|
chunk->memLevel, chunk->strategy);
|
|
do {
|
|
strm.avail_out = BUFFER_SIZE;
|
|
strm.next_out = out;
|
|
ret = deflate(&strm, Z_FINISH);
|
|
size_t have = BUFFER_SIZE - strm.avail_out;
|
|
|
|
if (memcmp(out, chunk->gzip_data+p, have) != 0) {
|
|
// mismatch; data isn't the same.
|
|
deflateEnd(&strm);
|
|
return -1;
|
|
}
|
|
p += have;
|
|
} while (ret != Z_STREAM_END);
|
|
deflateEnd(&strm);
|
|
if (p + GZIP_FOOTER_LEN != chunk->gzip_len) {
|
|
// mismatch; ran out of data before we should have.
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Verify that we can reproduce exactly the same compressed data that
|
|
* we started with. Sets the level, method, windowBits, memLevel, and
|
|
* strategy fields in the chunk to the encoding parameters needed to
|
|
* produce the right output. Returns 0 on success.
|
|
*/
|
|
int ReconstructGzipChunk(ImageChunk* chunk) {
|
|
if (chunk->type != CHUNK_GZIP) {
|
|
fprintf(stderr, "attempt to reconstruct non-gzip chunk\n");
|
|
return -1;
|
|
}
|
|
|
|
size_t p = 0;
|
|
unsigned char* out = malloc(BUFFER_SIZE);
|
|
|
|
// We only check two combinations of encoder parameters: level 6
|
|
// (the default) and level 9 (the maximum).
|
|
for (chunk->level = 6; chunk->level <= 9; chunk->level += 3) {
|
|
chunk->windowBits = -15; // 32kb window; negative to indicate a raw stream.
|
|
chunk->memLevel = 8; // the default value.
|
|
chunk->method = Z_DEFLATED;
|
|
chunk->strategy = Z_DEFAULT_STRATEGY;
|
|
|
|
if (TryReconstruction(chunk, out) == 0) {
|
|
free(out);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
free(out);
|
|
return -1;
|
|
}
|
|
|
|
/** Write a 4-byte value to f in little-endian order. */
|
|
void Write4(int value, FILE* f) {
|
|
fputc(value & 0xff, f);
|
|
fputc((value >> 8) & 0xff, f);
|
|
fputc((value >> 16) & 0xff, f);
|
|
fputc((value >> 24) & 0xff, f);
|
|
}
|
|
|
|
/** Write an 8-byte value to f in little-endian order. */
|
|
void Write8(long long value, FILE* f) {
|
|
fputc(value & 0xff, f);
|
|
fputc((value >> 8) & 0xff, f);
|
|
fputc((value >> 16) & 0xff, f);
|
|
fputc((value >> 24) & 0xff, f);
|
|
fputc((value >> 32) & 0xff, f);
|
|
fputc((value >> 40) & 0xff, f);
|
|
fputc((value >> 48) & 0xff, f);
|
|
fputc((value >> 56) & 0xff, f);
|
|
}
|
|
|
|
|
|
/*
|
|
* Given source and target chunks, compute a bsdiff patch between them
|
|
* by running bsdiff in a subprocess. Return the patch data, placing
|
|
* its length in *size. Return NULL on failure. We expect the bsdiff
|
|
* program to be in the path.
|
|
*/
|
|
unsigned char* MakePatch(ImageChunk* src, ImageChunk* tgt, size_t* size) {
|
|
char stemp[] = "/tmp/imgdiff-src-XXXXXX";
|
|
char ttemp[] = "/tmp/imgdiff-tgt-XXXXXX";
|
|
char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
|
|
mkstemp(stemp);
|
|
mkstemp(ttemp);
|
|
mkstemp(ptemp);
|
|
|
|
FILE* f = fopen(stemp, "wb");
|
|
if (f == NULL) {
|
|
fprintf(stderr, "failed to open src chunk %s: %s\n",
|
|
stemp, strerror(errno));
|
|
return NULL;
|
|
}
|
|
if (fwrite(src->data, 1, src->len, f) != src->len) {
|
|
fprintf(stderr, "failed to write src chunk to %s: %s\n",
|
|
stemp, strerror(errno));
|
|
return NULL;
|
|
}
|
|
fclose(f);
|
|
|
|
f = fopen(ttemp, "wb");
|
|
if (f == NULL) {
|
|
fprintf(stderr, "failed to open tgt chunk %s: %s\n",
|
|
ttemp, strerror(errno));
|
|
return NULL;
|
|
}
|
|
if (fwrite(tgt->data, 1, tgt->len, f) != tgt->len) {
|
|
fprintf(stderr, "failed to write tgt chunk to %s: %s\n",
|
|
ttemp, strerror(errno));
|
|
return NULL;
|
|
}
|
|
fclose(f);
|
|
|
|
char cmd[200];
|
|
sprintf(cmd, "bsdiff %s %s %s", stemp, ttemp, ptemp);
|
|
if (system(cmd) != 0) {
|
|
fprintf(stderr, "failed to run bsdiff: %s\n", strerror(errno));
|
|
return NULL;
|
|
}
|
|
|
|
struct stat st;
|
|
if (stat(ptemp, &st) != 0) {
|
|
fprintf(stderr, "failed to stat patch file %s: %s\n",
|
|
ptemp, strerror(errno));
|
|
return NULL;
|
|
}
|
|
|
|
unsigned char* data = malloc(st.st_size);
|
|
*size = st.st_size;
|
|
|
|
f = fopen(ptemp, "rb");
|
|
if (f == NULL) {
|
|
fprintf(stderr, "failed to open patch %s: %s\n", ptemp, strerror(errno));
|
|
return NULL;
|
|
}
|
|
if (fread(data, 1, st.st_size, f) != st.st_size) {
|
|
fprintf(stderr, "failed to read patch %s: %s\n", ptemp, strerror(errno));
|
|
return NULL;
|
|
}
|
|
fclose(f);
|
|
|
|
unlink(stemp);
|
|
unlink(ttemp);
|
|
unlink(ptemp);
|
|
|
|
return data;
|
|
}
|
|
|
|
/*
|
|
* Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
|
|
* of uninterpreted data). The resulting patch will likely be about
|
|
* as big as the target file, but it lets us handle the case of images
|
|
* where some gzip chunks are reconstructible but others aren't (by
|
|
* treating the ones that aren't as normal chunks).
|
|
*/
|
|
void ChangeGzipChunkToNormal(ImageChunk* ch) {
|
|
ch->type = CHUNK_NORMAL;
|
|
free(ch->data);
|
|
ch->data = ch->gzip_data;
|
|
ch->len = ch->gzip_len;
|
|
}
|
|
|
|
/*
|
|
* Return true if the data in the chunk is identical (including the
|
|
* compressed representation, for gzip chunks).
|
|
*/
|
|
int AreChunksEqual(ImageChunk* a, ImageChunk* b) {
|
|
if (a->type != b->type) return 0;
|
|
|
|
switch (a->type) {
|
|
case CHUNK_NORMAL:
|
|
return a->len == b->len && memcmp(a->data, b->data, a->len) == 0;
|
|
|
|
case CHUNK_GZIP:
|
|
return a->gzip_len == b->gzip_len &&
|
|
memcmp(a->gzip_data, b->gzip_data, a->gzip_len) == 0;
|
|
|
|
default:
|
|
fprintf(stderr, "unknown chunk type %d\n", a->type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look for runs of adjacent normal chunks and compress them down into
|
|
* a single chunk. (Such runs can be produced when gzip chunks are
|
|
* changed to normal chunks.)
|
|
*/
|
|
void MergeAdjacentNormalChunks(ImageChunk* chunks, int* num_chunks) {
|
|
int out = 0;
|
|
int in_start = 0, in_end;
|
|
while (in_start < *num_chunks) {
|
|
if (chunks[in_start].type != CHUNK_NORMAL) {
|
|
in_end = in_start+1;
|
|
} else {
|
|
// in_start is a normal chunk. Look for a run of normal chunks
|
|
// that constitute a solid block of data (ie, each chunk begins
|
|
// where the previous one ended).
|
|
for (in_end = in_start+1;
|
|
in_end < num_chunks && chunks[in_end].type == CHUNK_NORMAL &&
|
|
(chunks[in_end].start ==
|
|
chunks[in_end-1].start + chunks[in_end-1].len &&
|
|
chunks[in_end].data ==
|
|
chunks[in_end-1].data + chunks[in_end-1].len);
|
|
++in_end);
|
|
}
|
|
|
|
if (in_end == in_start+1) {
|
|
if (out != in_start) {
|
|
memcpy(chunks+out, chunks+in_start, sizeof(ImageChunk));
|
|
}
|
|
} else {
|
|
printf("collapse normal chunks %d - %d\n", in_start, in_end-1);
|
|
|
|
// Merge chunks [in_start, in_end-1] into one chunk. Since the
|
|
// data member of each chunk is just a pointer into an in-memory
|
|
// copy of the file, this can be done without recopying (the
|
|
// output chunk has the first chunk's start location and data
|
|
// pointer, and length equal to the sum of the input chunk
|
|
// lengths).
|
|
chunks[out].type = CHUNK_NORMAL;
|
|
chunks[out].start = chunks[in_start].start;
|
|
chunks[out].data = chunks[in_start].data;
|
|
chunks[out].len = chunks[in_end-1].len +
|
|
(chunks[in_end-1].start - chunks[in_start].start);
|
|
}
|
|
|
|
++out;
|
|
in_start = in_end;
|
|
}
|
|
*num_chunks = out;
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
if (argc != 4) {
|
|
fprintf(stderr, "usage: %s <src-img> <tgt-img> <patch-file>\n", argv[0]);
|
|
return 2;
|
|
}
|
|
|
|
int num_src_chunks;
|
|
ImageChunk* src_chunks;
|
|
if (ReadImage(argv[1], &num_src_chunks, &src_chunks) == NULL) {
|
|
fprintf(stderr, "failed to break apart source image\n");
|
|
return 1;
|
|
}
|
|
|
|
int num_tgt_chunks;
|
|
ImageChunk* tgt_chunks;
|
|
if (ReadImage(argv[2], &num_tgt_chunks, &tgt_chunks) == NULL) {
|
|
fprintf(stderr, "failed to break apart target image\n");
|
|
return 1;
|
|
}
|
|
|
|
// Verify that the source and target images have the same chunk
|
|
// structure (ie, the same sequence of gzip and normal chunks).
|
|
|
|
if (num_src_chunks != num_tgt_chunks) {
|
|
fprintf(stderr, "source and target don't have same number of chunks!\n");
|
|
return 1;
|
|
}
|
|
int i;
|
|
for (i = 0; i < num_src_chunks; ++i) {
|
|
if (src_chunks[i].type != tgt_chunks[i].type) {
|
|
fprintf(stderr, "source and target don't have same chunk "
|
|
"structure! (chunk %d)\n", i);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_tgt_chunks; ++i) {
|
|
if (tgt_chunks[i].type == CHUNK_GZIP) {
|
|
// Confirm that given the uncompressed chunk data in the target, we
|
|
// can recompress it and get exactly the same bits as are in the
|
|
// input target image. If this fails, treat the chunk as a normal
|
|
// non-gzipped chunk.
|
|
if (ReconstructGzipChunk(tgt_chunks+i) < 0) {
|
|
printf("failed to reconstruct target gzip chunk %d; "
|
|
"treating as normal chunk\n", i);
|
|
ChangeGzipChunkToNormal(tgt_chunks+i);
|
|
ChangeGzipChunkToNormal(src_chunks+i);
|
|
continue;
|
|
} else {
|
|
printf("reconstructed target gzip chunk %d\n", i);
|
|
}
|
|
|
|
// If two gzip chunks are identical (eg, the kernel has not
|
|
// changed between two builds), treat them as normal chunks.
|
|
// This makes applypatch much faster -- it can apply a trivial
|
|
// patch to the compressed data, rather than uncompressing and
|
|
// recompressing to apply the trivial patch to the uncompressed
|
|
// data.
|
|
if (AreChunksEqual(tgt_chunks+i, src_chunks+i)) {
|
|
printf("source and target chunk %d are identical; "
|
|
"treating as normal chunk\n", i);
|
|
ChangeGzipChunkToNormal(tgt_chunks+i);
|
|
ChangeGzipChunkToNormal(src_chunks+i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we changed any gzip chunks to normal chunks, we can simplify
|
|
// the patch by merging neighboring normal chunks.
|
|
MergeAdjacentNormalChunks(src_chunks, &num_src_chunks);
|
|
MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks);
|
|
if (num_src_chunks != num_tgt_chunks) {
|
|
// This shouldn't happen.
|
|
fprintf(stderr, "merging normal chunks went awry\n");
|
|
return 1;
|
|
}
|
|
|
|
// Compute bsdiff patches for each chunk's data (the uncompressed
|
|
// data, in the case of gzip chunks).
|
|
|
|
unsigned char** patch_data = malloc(num_src_chunks * sizeof(unsigned char*));
|
|
size_t* patch_size = malloc(num_src_chunks * sizeof(size_t));
|
|
for (i = 0; i < num_src_chunks; ++i) {
|
|
patch_data[i] = MakePatch(src_chunks+i, tgt_chunks+i, patch_size+i);
|
|
printf("patch %d is %d bytes (of %d)\n", i, patch_size[i],
|
|
tgt_chunks[i].type == CHUNK_NORMAL ? tgt_chunks[i].len : tgt_chunks[i].gzip_len);
|
|
|
|
}
|
|
|
|
// Figure out how big the imgdiff file header is going to be, so
|
|
// that we can correctly compute the offset of each bsdiff patch
|
|
// within the file.
|
|
|
|
size_t total_header_size = 12;
|
|
for (i = 0; i < num_src_chunks; ++i) {
|
|
total_header_size += 4 + 8*3;
|
|
if (src_chunks[i].type == CHUNK_GZIP) {
|
|
total_header_size += 8*2 + 4*6 + tgt_chunks[i].gzip_header_len + 8;
|
|
}
|
|
}
|
|
|
|
size_t offset = total_header_size;
|
|
|
|
FILE* f = fopen(argv[3], "wb");
|
|
|
|
// Write out the headers.
|
|
|
|
fwrite("IMGDIFF1", 1, 8, f);
|
|
Write4(num_src_chunks, f);
|
|
for (i = 0; i < num_tgt_chunks; ++i) {
|
|
Write4(tgt_chunks[i].type, f);
|
|
Write8(src_chunks[i].start, f);
|
|
Write8(src_chunks[i].type == CHUNK_NORMAL ? src_chunks[i].len :
|
|
(src_chunks[i].gzip_len + src_chunks[i].gzip_header_len + 8), f);
|
|
Write8(offset, f);
|
|
|
|
if (tgt_chunks[i].type == CHUNK_GZIP) {
|
|
Write8(src_chunks[i].len, f);
|
|
Write8(tgt_chunks[i].len, f);
|
|
Write4(tgt_chunks[i].level, f);
|
|
Write4(tgt_chunks[i].method, f);
|
|
Write4(tgt_chunks[i].windowBits, f);
|
|
Write4(tgt_chunks[i].memLevel, f);
|
|
Write4(tgt_chunks[i].strategy, f);
|
|
Write4(tgt_chunks[i].gzip_header_len, f);
|
|
fwrite(tgt_chunks[i].gzip_header, 1, tgt_chunks[i].gzip_header_len, f);
|
|
fwrite(tgt_chunks[i].gzip_footer, 1, GZIP_FOOTER_LEN, f);
|
|
}
|
|
|
|
offset += patch_size[i];
|
|
}
|
|
|
|
// Append each chunk's bsdiff patch, in order.
|
|
|
|
for (i = 0; i < num_tgt_chunks; ++i) {
|
|
fwrite(patch_data[i], 1, patch_size[i], f);
|
|
}
|
|
|
|
fclose(f);
|
|
|
|
return 0;
|
|
}
|