android_build/tools/applypatch/imgdiff.c

655 lines
22 KiB
C

/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This program constructs binary patches for images -- such as boot.img
* and recovery.img -- that consist primarily of large chunks of gzipped
* data interspersed with uncompressed data. Doing a naive bsdiff of
* these files is not useful because small changes in the data lead to
* large changes in the compressed bitstream; bsdiff patches of gzipped
* data are typically as large as the data itself.
*
* To patch these usefully, we break the source and target images up into
* chunks of two types: "normal" and "gzip". Normal chunks are simply
* patched using a plain bsdiff. Gzip chunks are first expanded, then a
* bsdiff is applied to the uncompressed data, then the patched data is
* gzipped using the same encoder parameters. Patched chunks are
* concatenated together to create the output file; the output image
* should be *exactly* the same series of bytes as the target image used
* originally to generate the patch.
*
* To work well with this tool, the gzipped sections of the target
* image must have been generated using the same deflate encoder that
* is available in applypatch, namely, the one in the zlib library.
* In practice this means that images should be compressed using the
* "minigzip" tool included in the zlib distribution, not the GNU gzip
* program.
*
* An "imgdiff" patch consists of a header describing the chunk structure
* of the file and any encoding parameters needed for the gzipped
* chunks, followed by N bsdiff patches, one per chunk.
*
* For a diff to be generated, the source and target images must have the
* same "chunk" structure: that is, the same number of gzipped and normal
* chunks in the same order. Android boot and recovery images currently
* consist of five chunks: a small normal header, a gzipped kernel, a
* small normal section, a gzipped ramdisk, and finally a small normal
* footer.
*
* Caveats: we locate gzipped sections within the source and target
* images by searching for the byte sequence 1f8b0800: 1f8b is the gzip
* magic number; 08 specifies the "deflate" encoding [the only encoding
* supported by the gzip standard]; and 00 is the flags byte. We do not
* currently support any extra header fields (which would be indicated by
* a nonzero flags byte). We also don't handle the case when that byte
* sequence appears spuriously in the file. (Note that it would have to
* occur spuriously within a normal chunk to be a problem.)
*
*
* The imgdiff patch header looks like this:
*
* "IMGDIFF1" (8) [magic number and version]
* chunk count (4)
* for each chunk:
* chunk type (4) [CHUNK_NORMAL or CHUNK_GZIP]
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* if chunk type == CHUNK_GZIP:
* source expanded len (8) [size of uncompressed source]
* target expected len (8) [size of uncompressed target]
* gzip level (4)
* method (4)
* windowBits (4)
* memLevel (4)
* strategy (4)
* gzip header len (4)
* gzip header (gzip header len)
* gzip footer (8)
*
* All integers are little-endian. "source start" and "source len"
* specify the section of the input image that comprises this chunk,
* including the gzip header and footer for gzip chunks. "source
* expanded len" is the size of the uncompressed source data. "target
* expected len" is the size of the uncompressed data after applying
* the bsdiff patch. The next five parameters specify the zlib
* parameters to be used when compressing the patched data, and the
* next three specify the header and footer to be wrapped around the
* compressed data to create the output chunk (so that header contents
* like the timestamp are recreated exactly).
*
* After the header there are 'chunk count' bsdiff patches; the offset
* of each from the beginning of the file is specified in the header.
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include "zlib.h"
#include "imgdiff.h"
typedef struct {
int type; // CHUNK_NORMAL or CHUNK_GZIP
size_t start; // offset of chunk in original image file
size_t len;
unsigned char* data; // data to be patched (ie, uncompressed, for
// gzip chunks)
// everything else is for CHUNK_GZIP chunks only:
size_t gzip_header_len;
unsigned char* gzip_header;
unsigned char* gzip_footer;
// original (compressed) gzip data, including header and footer
size_t gzip_len;
unsigned char* gzip_data;
// deflate encoder parameters
int level, method, windowBits, memLevel, strategy;
} ImageChunk;
/*
* Read the given file and break it up into chunks, putting the number
* of chunks and their info in *num_chunks and **chunks,
* respectively. Returns a malloc'd block of memory containing the
* contents of the file; various pointers in the output chunk array
* will point into this block of memory. The caller should free the
* return value when done with all the chunks. Returns NULL on
* failure.
*/
unsigned char* ReadImage(const char* filename,
int* num_chunks, ImageChunk** chunks) {
struct stat st;
if (stat(filename, &st) != 0) {
fprintf(stderr, "failed to stat \"%s\": %s\n", filename, strerror(errno));
return NULL;
}
unsigned char* img = malloc(st.st_size + 4);
FILE* f = fopen(filename, "rb");
if (fread(img, 1, st.st_size, f) != st.st_size) {
fprintf(stderr, "failed to read \"%s\" %s\n", filename, strerror(errno));
fclose(f);
return NULL;
}
fclose(f);
// append 4 zero bytes to the data so we can always search for the
// four-byte string 1f8b0800 starting at any point in the actual
// file data, without special-casing the end of the data.
memset(img+st.st_size, 0, 4);
size_t pos = 0;
*num_chunks = 0;
*chunks = NULL;
while (pos < st.st_size) {
unsigned char* p = img+pos;
// Reallocate the list for every chunk; we expect the number of
// chunks to be small (5 for typical boot and recovery images).
++*num_chunks;
*chunks = realloc(*chunks, *num_chunks * sizeof(ImageChunk));
ImageChunk* curr = *chunks + (*num_chunks-1);
curr->start = pos;
if (st.st_size - pos >= 4 &&
p[0] == 0x1f && p[1] == 0x8b &&
p[2] == 0x08 && // deflate compression
p[3] == 0x00) { // no header flags
// 'pos' is the offset of the start of a gzip chunk.
curr->type = CHUNK_GZIP;
curr->gzip_header_len = GZIP_HEADER_LEN;
curr->gzip_header = p;
// We must decompress this chunk in order to discover where it
// ends, and so we can put the uncompressed data and its length
// into curr->data and curr->len;
size_t allocated = 32768;
curr->len = 0;
curr->data = malloc(allocated);
curr->gzip_data = p;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = st.st_size - (pos + curr->gzip_header_len);
strm.next_in = p + GZIP_HEADER_LEN;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
int ret = inflateInit2(&strm, -15);
do {
strm.avail_out = allocated - curr->len;
strm.next_out = curr->data + curr->len;
ret = inflate(&strm, Z_NO_FLUSH);
curr->len = allocated - strm.avail_out;
if (strm.avail_out == 0) {
allocated *= 2;
curr->data = realloc(curr->data, allocated);
}
} while (ret != Z_STREAM_END);
curr->gzip_len = st.st_size - strm.avail_in - pos + GZIP_FOOTER_LEN;
pos = st.st_size - strm.avail_in;
inflateEnd(&strm);
// consume the gzip footer.
curr->gzip_footer = img+pos;
pos += GZIP_FOOTER_LEN;
p = img+pos;
// The footer (that we just skipped over) contains the size of
// the uncompressed data. Double-check to make sure that it
// matches the size of the data we got when we actually did
// the decompression.
size_t footer_size = p[-4] + (p[-3] << 8) + (p[-2] << 16) + (p[-1] << 24);
if (footer_size != curr->len) {
fprintf(stderr, "Error: footer size %d != decompressed size %d\n",
footer_size, curr->len);
free(img);
return NULL;
}
} else {
// 'pos' is not the offset of the start of a gzip chunk, so scan
// forward until we find a gzip header.
curr->type = CHUNK_NORMAL;
curr->data = p;
for (curr->len = 0; curr->len < (st.st_size - pos); ++curr->len) {
if (p[curr->len] == 0x1f &&
p[curr->len+1] == 0x8b &&
p[curr->len+2] == 0x08 &&
p[curr->len+3] == 0x00) {
break;
}
}
pos += curr->len;
}
}
return img;
}
#define BUFFER_SIZE 32768
/*
* Takes the uncompressed data stored in the chunk, compresses it
* using the zlib parameters stored in the chunk, and checks that it
* matches exactly the compressed data we started with (also stored in
* the chunk). Return 0 on success.
*/
int TryReconstruction(ImageChunk* chunk, unsigned char* out) {
size_t p = chunk->gzip_header_len;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = chunk->len;
strm.next_in = chunk->data;
int ret;
ret = deflateInit2(&strm, chunk->level, chunk->method, chunk->windowBits,
chunk->memLevel, chunk->strategy);
do {
strm.avail_out = BUFFER_SIZE;
strm.next_out = out;
ret = deflate(&strm, Z_FINISH);
size_t have = BUFFER_SIZE - strm.avail_out;
if (memcmp(out, chunk->gzip_data+p, have) != 0) {
// mismatch; data isn't the same.
deflateEnd(&strm);
return -1;
}
p += have;
} while (ret != Z_STREAM_END);
deflateEnd(&strm);
if (p + GZIP_FOOTER_LEN != chunk->gzip_len) {
// mismatch; ran out of data before we should have.
return -1;
}
return 0;
}
/*
* Verify that we can reproduce exactly the same compressed data that
* we started with. Sets the level, method, windowBits, memLevel, and
* strategy fields in the chunk to the encoding parameters needed to
* produce the right output. Returns 0 on success.
*/
int ReconstructGzipChunk(ImageChunk* chunk) {
if (chunk->type != CHUNK_GZIP) {
fprintf(stderr, "attempt to reconstruct non-gzip chunk\n");
return -1;
}
size_t p = 0;
unsigned char* out = malloc(BUFFER_SIZE);
// We only check two combinations of encoder parameters: level 6
// (the default) and level 9 (the maximum).
for (chunk->level = 6; chunk->level <= 9; chunk->level += 3) {
chunk->windowBits = -15; // 32kb window; negative to indicate a raw stream.
chunk->memLevel = 8; // the default value.
chunk->method = Z_DEFLATED;
chunk->strategy = Z_DEFAULT_STRATEGY;
if (TryReconstruction(chunk, out) == 0) {
free(out);
return 0;
}
}
free(out);
return -1;
}
/** Write a 4-byte value to f in little-endian order. */
void Write4(int value, FILE* f) {
fputc(value & 0xff, f);
fputc((value >> 8) & 0xff, f);
fputc((value >> 16) & 0xff, f);
fputc((value >> 24) & 0xff, f);
}
/** Write an 8-byte value to f in little-endian order. */
void Write8(long long value, FILE* f) {
fputc(value & 0xff, f);
fputc((value >> 8) & 0xff, f);
fputc((value >> 16) & 0xff, f);
fputc((value >> 24) & 0xff, f);
fputc((value >> 32) & 0xff, f);
fputc((value >> 40) & 0xff, f);
fputc((value >> 48) & 0xff, f);
fputc((value >> 56) & 0xff, f);
}
/*
* Given source and target chunks, compute a bsdiff patch between them
* by running bsdiff in a subprocess. Return the patch data, placing
* its length in *size. Return NULL on failure. We expect the bsdiff
* program to be in the path.
*/
unsigned char* MakePatch(ImageChunk* src, ImageChunk* tgt, size_t* size) {
char stemp[] = "/tmp/imgdiff-src-XXXXXX";
char ttemp[] = "/tmp/imgdiff-tgt-XXXXXX";
char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
mkstemp(stemp);
mkstemp(ttemp);
mkstemp(ptemp);
FILE* f = fopen(stemp, "wb");
if (f == NULL) {
fprintf(stderr, "failed to open src chunk %s: %s\n",
stemp, strerror(errno));
return NULL;
}
if (fwrite(src->data, 1, src->len, f) != src->len) {
fprintf(stderr, "failed to write src chunk to %s: %s\n",
stemp, strerror(errno));
return NULL;
}
fclose(f);
f = fopen(ttemp, "wb");
if (f == NULL) {
fprintf(stderr, "failed to open tgt chunk %s: %s\n",
ttemp, strerror(errno));
return NULL;
}
if (fwrite(tgt->data, 1, tgt->len, f) != tgt->len) {
fprintf(stderr, "failed to write tgt chunk to %s: %s\n",
ttemp, strerror(errno));
return NULL;
}
fclose(f);
char cmd[200];
sprintf(cmd, "bsdiff %s %s %s", stemp, ttemp, ptemp);
if (system(cmd) != 0) {
fprintf(stderr, "failed to run bsdiff: %s\n", strerror(errno));
return NULL;
}
struct stat st;
if (stat(ptemp, &st) != 0) {
fprintf(stderr, "failed to stat patch file %s: %s\n",
ptemp, strerror(errno));
return NULL;
}
unsigned char* data = malloc(st.st_size);
*size = st.st_size;
f = fopen(ptemp, "rb");
if (f == NULL) {
fprintf(stderr, "failed to open patch %s: %s\n", ptemp, strerror(errno));
return NULL;
}
if (fread(data, 1, st.st_size, f) != st.st_size) {
fprintf(stderr, "failed to read patch %s: %s\n", ptemp, strerror(errno));
return NULL;
}
fclose(f);
unlink(stemp);
unlink(ttemp);
unlink(ptemp);
return data;
}
/*
* Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
* of uninterpreted data). The resulting patch will likely be about
* as big as the target file, but it lets us handle the case of images
* where some gzip chunks are reconstructible but others aren't (by
* treating the ones that aren't as normal chunks).
*/
void ChangeGzipChunkToNormal(ImageChunk* ch) {
ch->type = CHUNK_NORMAL;
free(ch->data);
ch->data = ch->gzip_data;
ch->len = ch->gzip_len;
}
/*
* Return true if the data in the chunk is identical (including the
* compressed representation, for gzip chunks).
*/
int AreChunksEqual(ImageChunk* a, ImageChunk* b) {
if (a->type != b->type) return 0;
switch (a->type) {
case CHUNK_NORMAL:
return a->len == b->len && memcmp(a->data, b->data, a->len) == 0;
case CHUNK_GZIP:
return a->gzip_len == b->gzip_len &&
memcmp(a->gzip_data, b->gzip_data, a->gzip_len) == 0;
default:
fprintf(stderr, "unknown chunk type %d\n", a->type);
return 0;
}
}
/*
* Look for runs of adjacent normal chunks and compress them down into
* a single chunk. (Such runs can be produced when gzip chunks are
* changed to normal chunks.)
*/
void MergeAdjacentNormalChunks(ImageChunk* chunks, int* num_chunks) {
int out = 0;
int in_start = 0, in_end;
while (in_start < *num_chunks) {
if (chunks[in_start].type != CHUNK_NORMAL) {
in_end = in_start+1;
} else {
// in_start is a normal chunk. Look for a run of normal chunks
// that constitute a solid block of data (ie, each chunk begins
// where the previous one ended).
for (in_end = in_start+1;
in_end < num_chunks && chunks[in_end].type == CHUNK_NORMAL &&
(chunks[in_end].start ==
chunks[in_end-1].start + chunks[in_end-1].len &&
chunks[in_end].data ==
chunks[in_end-1].data + chunks[in_end-1].len);
++in_end);
}
if (in_end == in_start+1) {
if (out != in_start) {
memcpy(chunks+out, chunks+in_start, sizeof(ImageChunk));
}
} else {
printf("collapse normal chunks %d - %d\n", in_start, in_end-1);
// Merge chunks [in_start, in_end-1] into one chunk. Since the
// data member of each chunk is just a pointer into an in-memory
// copy of the file, this can be done without recopying (the
// output chunk has the first chunk's start location and data
// pointer, and length equal to the sum of the input chunk
// lengths).
chunks[out].type = CHUNK_NORMAL;
chunks[out].start = chunks[in_start].start;
chunks[out].data = chunks[in_start].data;
chunks[out].len = chunks[in_end-1].len +
(chunks[in_end-1].start - chunks[in_start].start);
}
++out;
in_start = in_end;
}
*num_chunks = out;
}
int main(int argc, char** argv) {
if (argc != 4) {
fprintf(stderr, "usage: %s <src-img> <tgt-img> <patch-file>\n", argv[0]);
return 2;
}
int num_src_chunks;
ImageChunk* src_chunks;
if (ReadImage(argv[1], &num_src_chunks, &src_chunks) == NULL) {
fprintf(stderr, "failed to break apart source image\n");
return 1;
}
int num_tgt_chunks;
ImageChunk* tgt_chunks;
if (ReadImage(argv[2], &num_tgt_chunks, &tgt_chunks) == NULL) {
fprintf(stderr, "failed to break apart target image\n");
return 1;
}
// Verify that the source and target images have the same chunk
// structure (ie, the same sequence of gzip and normal chunks).
if (num_src_chunks != num_tgt_chunks) {
fprintf(stderr, "source and target don't have same number of chunks!\n");
return 1;
}
int i;
for (i = 0; i < num_src_chunks; ++i) {
if (src_chunks[i].type != tgt_chunks[i].type) {
fprintf(stderr, "source and target don't have same chunk "
"structure! (chunk %d)\n", i);
return 1;
}
}
for (i = 0; i < num_tgt_chunks; ++i) {
if (tgt_chunks[i].type == CHUNK_GZIP) {
// Confirm that given the uncompressed chunk data in the target, we
// can recompress it and get exactly the same bits as are in the
// input target image. If this fails, treat the chunk as a normal
// non-gzipped chunk.
if (ReconstructGzipChunk(tgt_chunks+i) < 0) {
printf("failed to reconstruct target gzip chunk %d; "
"treating as normal chunk\n", i);
ChangeGzipChunkToNormal(tgt_chunks+i);
ChangeGzipChunkToNormal(src_chunks+i);
continue;
} else {
printf("reconstructed target gzip chunk %d\n", i);
}
// If two gzip chunks are identical (eg, the kernel has not
// changed between two builds), treat them as normal chunks.
// This makes applypatch much faster -- it can apply a trivial
// patch to the compressed data, rather than uncompressing and
// recompressing to apply the trivial patch to the uncompressed
// data.
if (AreChunksEqual(tgt_chunks+i, src_chunks+i)) {
printf("source and target chunk %d are identical; "
"treating as normal chunk\n", i);
ChangeGzipChunkToNormal(tgt_chunks+i);
ChangeGzipChunkToNormal(src_chunks+i);
}
}
}
// If we changed any gzip chunks to normal chunks, we can simplify
// the patch by merging neighboring normal chunks.
MergeAdjacentNormalChunks(src_chunks, &num_src_chunks);
MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks);
if (num_src_chunks != num_tgt_chunks) {
// This shouldn't happen.
fprintf(stderr, "merging normal chunks went awry\n");
return 1;
}
// Compute bsdiff patches for each chunk's data (the uncompressed
// data, in the case of gzip chunks).
unsigned char** patch_data = malloc(num_src_chunks * sizeof(unsigned char*));
size_t* patch_size = malloc(num_src_chunks * sizeof(size_t));
for (i = 0; i < num_src_chunks; ++i) {
patch_data[i] = MakePatch(src_chunks+i, tgt_chunks+i, patch_size+i);
printf("patch %d is %d bytes (of %d)\n", i, patch_size[i],
tgt_chunks[i].type == CHUNK_NORMAL ? tgt_chunks[i].len : tgt_chunks[i].gzip_len);
}
// Figure out how big the imgdiff file header is going to be, so
// that we can correctly compute the offset of each bsdiff patch
// within the file.
size_t total_header_size = 12;
for (i = 0; i < num_src_chunks; ++i) {
total_header_size += 4 + 8*3;
if (src_chunks[i].type == CHUNK_GZIP) {
total_header_size += 8*2 + 4*6 + tgt_chunks[i].gzip_header_len + 8;
}
}
size_t offset = total_header_size;
FILE* f = fopen(argv[3], "wb");
// Write out the headers.
fwrite("IMGDIFF1", 1, 8, f);
Write4(num_src_chunks, f);
for (i = 0; i < num_tgt_chunks; ++i) {
Write4(tgt_chunks[i].type, f);
Write8(src_chunks[i].start, f);
Write8(src_chunks[i].type == CHUNK_NORMAL ? src_chunks[i].len :
(src_chunks[i].gzip_len + src_chunks[i].gzip_header_len + 8), f);
Write8(offset, f);
if (tgt_chunks[i].type == CHUNK_GZIP) {
Write8(src_chunks[i].len, f);
Write8(tgt_chunks[i].len, f);
Write4(tgt_chunks[i].level, f);
Write4(tgt_chunks[i].method, f);
Write4(tgt_chunks[i].windowBits, f);
Write4(tgt_chunks[i].memLevel, f);
Write4(tgt_chunks[i].strategy, f);
Write4(tgt_chunks[i].gzip_header_len, f);
fwrite(tgt_chunks[i].gzip_header, 1, tgt_chunks[i].gzip_header_len, f);
fwrite(tgt_chunks[i].gzip_footer, 1, GZIP_FOOTER_LEN, f);
}
offset += patch_size[i];
}
// Append each chunk's bsdiff patch, in order.
for (i = 0; i < num_tgt_chunks; ++i) {
fwrite(patch_data[i], 1, patch_size[i], f);
}
fclose(f);
return 0;
}